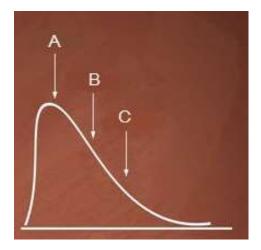
Start Time:

- You're manufacturing a widget and using an X-bar and S chart to control the critical feature of the product.
 Your normal process has the following attributes: X-double bar is 12.5, S-bar is 1.6, n = 10.
 Identify the lower control limits for the X-bar chart:
 - 9.65
 - 10.94
 - 11.26
 - 14.06
- 2. You're randomly selecting a card from a 52-card deck. What is the probability of selecting a three, a seven or a King?
 - 16 in 52
 - 12 in 52
 - 8 in 52
 - 4 in 52
- 3. Calculate P_{pk} for the following parameters: (LSL = 600, T = 625, USL = 655, σ = 5.5, μ = 633)
 - 0.67
 - 1.0
 - 1.33
 - 1.67
- 4. Calculate the sample standard deviation of the following data set: 3, 4, 7, 10
 - 7.50
 - 10.0
 - 2.74
 - 3.16
- 5. How many treatments would be required for a DOE with 3 factors where a half factorial design is chosen?
 - 3
 - 8
 - 4
 - 2

- 6. The one-way ANOVA Analysis below has 19 treatment groups with the total degrees of freedom of 37. Complete this ANOVA table and calculate the F-value.
 - 3.66

5


- 6.51
- 0.42

Variation Source	Sum of Squares (SS)	Degrees of freedom (DF)	Mean Squares (MS)	F-Value
Treatment (Between)	370			
Error (Within)				
Total	430			

- 7. A control chart showed a data point outside the control limit however no action was taken. What is this an example of?
 - Common cause variation
 - The re-sampling fallacy
 - Under Adjustment
 - Over Adjustment
- 8. According to a recent survey, 35% of households in the U.S. have a pet. If you were to randomly select 10 houses, what is the likelihood that two of them have a pet?
 - 20.0%
 - 57.1%
 - 35.0%
 - 17.6%
- 9. You're creating a linear regression model for your data and you've calculated the following values. What is the predicted value of Y when X = 12? (S_{yy} = 192, S_{xy} = 32, S_{xx} = 96, β_0 = 9)
 - 111.0
 - 45.0
 - 13.0
 - 108.3
- 10. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of Factor A?
 - -9.5
 - -21.5
 - 11
 - -8

		Factors		Response
		А	В	% Yield
reatments	1	+	+	64
	2	-	+	75
eatr	3	+	-	87
Tro	4	-	-	95

- 11. Which characteristic of this distribution is located at point A on the image below?
 - Skewness
 - Median
 - Mode
 - Mean

- 12. Calculate C_r for the following parameters: (USL = 630, T = 590, LSL = 570, μ = 610, σ = 10)
 - 0.60
 - 0.95
 - 1.00
 - 1.20
- 13. You're running a series of experiments, and you determine that the results of the first experiment changes the probabilities of the potential outcomes in the second experiment. How would you describe these experiments?
 - Independent
 - Dependent
 - Mutually Inclusive
 - Mutually Exclusive
- 14. You've sampled 20 units from the last production lot and found that 3 of them are non-conforming. Find the 95% confidence interval for the true population proportion of defective products.
 - -0.070 < p < 0.229
 - 0.000 < p < 0.306
 - -0.006 < p < 0.306
 - 0.018 < p < 0.282

		ou're performing a right-handed hypothesis test at 10% significance
level. What is	the critical value of this	test?
• 3.055		
• 3.453		
• 3.405		
• 3.108		
		ere you've sampled from 18 subgroups, each with 30 samples, and
	of 169 defective units. C	alculate the lower control limit for this process.
06.85		
• 1.77		
• 17.0		
Completion	(Congrata)	Finish Timo.
Completion!	(Congrats)	Finish Time:

15. You're comparing two population variances against each other using the F-distribution. You take 6