| 17 | Methanol, CH ₃ OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as shown in equilibrium 1 . | | | | | |----|---|---|---------------------------------------|-------------------------|--| | | CO | $(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ | $\Delta H = -91 \text{ kJ mol}^{-1}$ | Equilibrium 1 | | | | (a) | Predict the conditions of pressure and temperature that would give the maximum equilibrium yield of $\mathrm{CH_3OH}$ in equilibrium 1 . | | | | | | | Explain your answer. | [3] | | | | (b) | A catalyst is used in the production | of methanol in equilibrium 1 . | | | | | | State two ways that the use of carmore sustainable and less harmful | | to make their processes | | | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | [2] | | (c) Standard entropy values are given below. | Substance | CO(g) | H ₂ (g) | CH ₃ OH(g) | |--|-------|--------------------|-----------------------| | S ^e /JK ⁻¹ mol ⁻¹ | 198 | 131 | 238 | | | A chemist proposed producing methanol at 525 K using equilibrium 1 . | | | | |-----|---|--|--|--| | | Explain, with a calculation, whether the production of methanol is feasible at 525 K. | [5] | | | | | (d) | At 298 K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is $-2.48 \times 10^4 \mathrm{J} \mathrm{mol}^{-1}$. | | | | | | ΔG is linked to $K_{\rm p}$ by the relationship: $\Delta G = -RT \ln K_{\rm p}$. | | | | | | R = gas constant T = temperature in K. | | | | | | Calculate $K_{\rm p}$ for equilibrium 1 at 298 K. | | | | | | Give your answer to 3 significant figures. | | | | K_{p} = units [3] © OCR 2020 Turn over