MATHSFORNURSES

Working Out a Basic Dose - Worked Solutions

Question 1

A patient is prescribed 400mg of a drug with a stock dose of $100 \mathrm{mg} / 10 \mathrm{ml}$. How much of the solution should the patient be given?

To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 400 mg . The stock dose is 100 mg and it is in a volume of 10 ml .
First, work out $400 \div 100$. This is another way of asking how many 100 s make 400 , so this would be 4.

Then work out $4 \times 10 \mathrm{ml}$, which will be 40 ml .
Answer: 40ml

Question 2

A patient is prescribed 750 mg of a drug that is available with a stock dose of $25 \mathrm{mg} / 20 \mathrm{ml}$. How much of the solution should the patient be given?

To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 750 mg . The stock dose is 25 mg and it is in a volume of 20 ml .
First, work out $750 \div 25$. You could do this using the fractions method, so write that fraction $750 / 25$ and simplify it by dividing both numbers by 5 to get ${ }^{150} / 5$ and then divide both numbers by 5 again to get $30 / 1$.

Then work out $30 \times 20 \mathrm{ml}$, which will be 600 ml (because $3 \times 2=6$ and there are two zeroes to add).

Answer: 600ml

Question 3

A patient is prescribed 40 mg of a drug with a stock dose of $1 \mathrm{mg} / 5 \mathrm{ml}$. How much of the solution should the patient be given?

To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

MATHSFORNURSES

Working Out a Basic Dose - Worked Solutions

The prescribed dose is 40 mg . The stock dose is 1 mg and it is in a volume of 5 ml .
First, work out $40 \div 1$. Dividing by 1 leaves a number unchanged, so this will be 40 .
Then work out $40 \times 5 \mathrm{ml}$, which will be 200 ml .
Answer: 200ml

Question 4

A patient is prescribed 225 mg of a drug that is available with a stock dose of $10 \mathrm{mg} / 5 \mathrm{ml}$. How much of the solution should the patient be given?

To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 225 mg . The stock dose is 10 mg and it is in a volume of 5 ml .
First, work out $225 \div 10$. Dividing by 10 moves each digit one place to the right, so this would be 22.5 .

Then work out $22.5 \times 5 \mathrm{ml}$, which you can do using the grid method, breaking the 22.5 into ' 20 ', ' 2 ' and '0.5'. In your grid, you should have $20 \times 5=100,2 \times 5=10$ and $0.5 \times 5=$ 2.5 .

Add these values together to get your final answer. $100+10+2.5=112.5 \mathrm{ml}$

Answer: 112.5ml

Question 5

A patient is prescribed 80 mg of a drug that is available with a stock dose of $50 \mathrm{mg} / 20 \mathrm{ml}$. How much of the solution should the patient be given?

To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 80 mg . The stock dose is 50 mg and it is in a volume of 20 ml .
First, work out $80 \div 50$. You could set this up as the fraction $80 / 50$ and simplify this by dividing both numbers by 5 to get ${ }^{16} /{ }_{10}$ (don't simplify it any further because the 10 on the bottom is easier to divide by than a 5 would be).

MATHSFORNURSES

Working Out a Basic Dose - Worked Solutions

Now you need to work out $16 \div 10$, which you can do by moving each digit one place to the right, which will be 1.6

Then work out $1.6 \times 20 \mathrm{ml}$. To do this break up the 20 into 10×2, so you will have $1.6 \times$ 10×2. Multiplying by 10 moves each digit one place to the left to leave 16×2, which is 32 ml .

Answer: 32ml

