4 Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example is a catalyst to convert these emissions into methanol. The catalyst is thought to work by breaking a $\mathrm{H}-\mathrm{H}$ bond.

An equation for this formation of methanol is given below.

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-49 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Some mean bond enthalpies are shown in Table 2.

Table 2

Bond	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{O}-\mathrm{H}$
Mean bond enthalpy / kJ mol				
	743	412	360	463

0	4	1
Use the enthalpy change for the reaction and data from Table 2 to calculate a value		

$\mathrm{H}-\mathrm{H}$ bond enthalpy = \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

Suggest one reason why this value is different from your answer to Question 4.1.
\qquad
\qquad
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{3}$ Suggest one environmental advantage of manufacturing methanol fuel by this |
| :--- | :--- | :--- | reaction.

[1 mark]
\qquad
\qquad
\qquad

| 0 | 4 | 4 | Use Le Chatelier's principle to justify why the reaction is carried out at a high pressure |
| :--- | :--- | :--- | :--- | rather than at atmospheric pressure.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 5 | Suggest why the catalyst used in this process may become less efficient if the |
| :--- | :--- | :--- | :--- | carbon dioxide and hydrogen contain impurities.

[1 mark]
\qquad
\qquad
\qquad

Question 4 continues on the next page

| 0 | 4 | 6 |
| :--- | :--- | :--- | In a laboratory experiment to investigate the reaction shown in the equation below, 1.0 mol of carbon dioxide and 3.0 mol of hydrogen were sealed into a container. After the mixture had reached equilibrium, at a pressure of 500 kPa , the yield of methanol was 0.86 mol .

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate a value for K_{p}
Give your answer to the appropriate number of significant figures.
Give units with your answer

$$
K_{\mathrm{p}}=\square \text { Units }=
$$

\qquad

