





Avogadro's Constant = 6.02 x 10<sup>23</sup> atoms or molecules = 1 mole

### **MOLAR GAS CONSTANT**

#### 1 mole of ANY gas occupies 24.0 dm<sup>3</sup> at room temperature & pressure



### **IDEAL GAS EQUATION**

| $\mathbf{P}$ = Pressure (pa) | $\mathbf{V}$ = volume (m <sup>3</sup> )           | <b>n</b> = no. of moles    |
|------------------------------|---------------------------------------------------|----------------------------|
| <b>R</b> = Gas Const         | ant (8.314 J.K <sup>-1</sup> .mol <sup>-1</sup> ) | <b>T</b> = Temperature (K) |

PV = nRT

| P = <u>nRT</u>             | V = <u>nRT</u> | n = <u>PV</u>              | T = <u>PV</u> |
|----------------------------|----------------|----------------------------|---------------|
| V                          | Р              | RT                         | nR            |
| For changes in conditions: | $P_1V_1 =$     | $\mathbf{P}_2\mathbf{V}_2$ |               |
|                            | <b>T</b> 1     | T <sub>2</sub>             |               |





# MASS SPECTROSCOPY

Relative Atomic Mass =  $\frac{(\text{mass isotope 1 x abundance}) + (\text{mass isotope 2 x abundance}) + ...}{(Ar)}$ 

# **OTHER EQUATIONS**

% by mass = <u>mass of element in 1 mole</u> Mr

Empirical formula = M1 : M2 : M3Mr1 : Mr2 : Mr2 Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

% Atom Economy = mass of desired product x100 total mass of all products

You can use mass or number of moles here!

You can replace masses with Mr values here too!

% Yield = <u>actual yield</u> x100 theoretical yield





# **ENTHALPY**

 $\label{eq:Q} \begin{array}{l} \mbox{$\mathsf{Q}$} = \mbox{energy transferred (J)} \\ \mbox{$\mathsf{c}$} = \mbox{specific heat capacity (J.K^{-1}.mol^{-1})} \end{array}$ 

 $\label{eq:m} \begin{array}{l} m = mass \mbox{ of } \textbf{solution} \mbox{ (g)} \\ \bigtriangleup T = \textbf{change} \mbox{ in temperature (}^{\circ}C \mbox{ or }K) \end{array}$ 

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for  $\triangle H!$ 

Divide by 1000 for kJ.mol<sup>-1</sup>

| $\triangle H$ reaction = | $\Sigma$ reactant mean | bond enthalpies | - $\sum$ product mean | bond enthalpies |
|--------------------------|------------------------|-----------------|-----------------------|-----------------|
|                          | <b>_</b>               |                 |                       |                 |

(kJ.mol<sup>-1</sup>)

(kJ.mol<sup>-1</sup>)

ol<sup>-1</sup>)

(kJ.mol<sup>-1</sup>)

### **EQUILIBRIA**

 $aA + bB \rightleftharpoons cC + dD$ 

$$Kc = \begin{bmatrix} C \end{bmatrix}^{c} \begin{bmatrix} D \end{bmatrix}^{d} \\ \begin{bmatrix} A \end{bmatrix}^{a} \begin{bmatrix} B \end{bmatrix}^{b}$$

Where: [A] = concentration (mol.dm<sup>-3</sup>) a = no. of moles from equation





## **COMMON IONS**

### **POSITIVE**

### **NEGATIVE**

| GROUP 1 = +                      | GROUP 7 = -  |
|----------------------------------|--------------|
| GROUP 2 = 2+                     | GROUP 6 = 2- |
| H <sup>+</sup>                   | GROUP 5 = 3- |
| Ag⁺                              |              |
| Zn <sup>2+</sup>                 |              |
| Pb <sup>2+</sup>                 |              |
| Al <sup>3+</sup>                 |              |
| (Transition metals are variable) |              |

e.g. Fe<sup>2+</sup>, Fe<sup>3+</sup>

### **MOLECULAR IONS**

| <b>NH₄⁺</b>      | <b>OH</b> <sup>-</sup> | NO3 <sup>-</sup>  | <b>CN</b> <sup>-</sup> |
|------------------|------------------------|-------------------|------------------------|
| ammonium         | hydroxide              | nitrate           | cyanide                |
| H₃O <sup>+</sup> | CO3 <sup>2-</sup>      | SO4 <sup>2-</sup> | PO4 <sup>3-</sup>      |
| hydronium        | carbonate              | sulfate           | phosphate              |

# **ACIDS & BASES**

### <u>ACIDS</u>

#### BASES

HCIhydrochloric acidHNO3nitric acidH2SO4sulphuric acidH3PO4phosphoric acidCH3COOHethanoic acid

NaOH KOH Ca(OH)2 CuO sodium hydroxide potassium hydroxide calcium hydroxide copper (II) oxide





### **COMMON OXIDATION STATES**

| POSITIVE                         | NEGATIVE                          |    |
|----------------------------------|-----------------------------------|----|
| GROUP 1 = +I                     | F = -I                            |    |
| GROUP 2 = +II                    | O = -II                           |    |
| H = +I                           | Cl = -l                           |    |
| Ag = +I                          | Br = -I                           |    |
| Zn = +II                         | I = -I Most common oxidation      | 1  |
| Pb = +II or +IV                  | N = -III when covalently bonded   | to |
| AI = + III                       | S = -II more highly electronegati | ve |
| (Transition metals are variable) | P = -III i.e. F or O              |    |
| Fe = +   or +                    |                                   |    |
| Cu = +II (sometimes +I)          |                                   |    |
| C = +II or +IV                   |                                   |    |

**GROUP 1** SALTS: ALL SOLUBLE

#### **NITRATE** SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO3

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO<sub>3</sub>)<sub>2</sub>

**GROUP 7** SALTS: ALL SOLUBLE EXCEPT AgX and PbX<sub>2</sub>

CO3 SALTS: ALL INSOLUBLE EXEPT GROUP 1





| No. | Practical                                         | Detail                                                                                                                                     | Done? |
|-----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | Moles Determination                               | Use apparatus to record the mass and volume of<br>a gas                                                                                    |       |
| 2   | Perform a simple acid-base titration              | Use titration to:<br>- Determine the concentration of an acid<br>- Determine the molar mass of an acid<br>- Identify and unknown carbonate |       |
| 3   | Measure Enthalpy<br>Change                        | Use a calorimeter to experimentally determine<br>the energy released by:<br>- A neutralisation reaction<br>- A combustion reaction         |       |
| 4   | Identify Unknown<br>Inorganic Ions in<br>Solution | Use chemical tests to identify Group 2, Group 7, OH <sup>-</sup> , CO3 <sup>2-</sup> and SO4 <sup>2-</sup> ions in solution                |       |
| 5   | Synthesis of an<br>Organic Liquid                 | Synthesis of a haloalkane<br>(Reflux & Distillation)                                                                                       |       |
| 7   | Testing for organic<br>functional groups          | Use chemical tests to identify a carboxylic acid,<br>an alcohol and an aldehyde.                                                           |       |
| 9   | Rates of Reaction                                 | Using the "continuous rate monitoring" method                                                                                              |       |