SECTION B

Question			Answer	Marks	Guidance
21	(a)	(i)	1 discs same, size / thickness / surface area / surface area to volume ratio / diameter 2 same (variety / part, of) potato \checkmark 3 no skin on potato 4 ref to removing excess water before (re)weighing 5 same, number / amount, of discs (in each solution) 6 same volume (sucrose) solution \checkmark 7 same temperature 8 cover the tubes	max 2	Mark first two answers only, ignoring the numbered sections IGNORE mass / balance used / soak time / repeats IGNORE a list of variables unqualified 1 ACCEPT same cork borer used ACCEPT 'pieces of potato' etc. for 'discs' ACCEPT 'length' as equivalent to 'diameter' IGNORE same shape / similar size etc 4 e.g. blotting / shaking 7 ACCEPT in context of room / environment / solution

Question			Answer	Marks	Guidance
21	(a)	(ii)	1 idea that no change of mass occurs when the water potential of (sucrose) solution = water potential of potato (tissue)	max 3	ACCEPT Ψ for water potential throughout IGNORE ref to solute potential / isontonic
			2 ref. to no change in mass (of potato) between 0.2 and $0.3 \mathrm{~mol} \mathrm{dm}^{-3}$		2 correct units must be stated once ACCEPT 'between 0.2 and $0.3 \mathrm{~mol} \mathrm{dm}^{-3}$ the water potential of the solution and the potato will be the same'
			3 plot graph of concentration of, sucrose / solution, against (\%) change in mass and find which (sucrose) concentration gives no change in mass of potato		$3 x$ and y axes interchangeable When an axis has been identified it can be referred to by letter later. Needs some ref to the mass change being 0 . If the change in mass axis has previously been identified, then ref to that axis value being 0 is equivalent to no change in mass
					e.g. 'Should draw a graph of sucrose concentration on the x axis and change in mass of potato discs on the y axis. The point where the line of best fit crosses the x axis (when the y axis $=0$) is the concentration of sucrose in the potato discs.' will get the mark
			OR carry out the experiment again with more (sucrose) concentration intervals between 0.2 and $0.3 \mathrm{~mol} \mathrm{dm}^{-3}$		'Draw a graph with change in mass of potato discs on the y axis and concentration of sucrose solution on the x axis and draw a line of best fit. Where the line intercepts the x axis is where the change in mass of potato discs is zero.' will get the mark 3 correct units must be stated once
			4 look up the water potential of the (sucrose) solution (e.g. on calibration curve or table), of that concentration / of the concentration which gives no mass change		

Question			Answer	Marks	Guidance
21	(b)	(i)	X (cellulose) cell wall Y cell surface membrane / plasma membrane Z vacuole membrane / tonoplast \checkmark	max 3	If additional incorrect answer given, then 0 marks Y ACCEPT plasmalemma Z IGNORE vacuole
21	(b)	(ii)	sucrose solution \checkmark	1	If additional incorrect answer given, then 0 marks ACCEPT sugar solution / external solution / solution placed in DO NOT CREDIT ‘solution' unqualified
21	(c)		there is a lower water potential inside root hair (cells) actively transport / pump , (mineral) ions / salts, into root hair(s) (cells) or root hair(s) (cells) store / contain , (mineral) ions / salts / solutes	2	IGNORE ref to large surface area and short diffusion path IGNORE ref to solute potential / isotonic ACCEPT ψ for water potential 'it' or 'they' = root hairs IGNORE ref to roots or root cells unqualified as hairs ACCEPT root hair, has / creates, a lower water potential (than soil) ACCEPT maintains / sets up / establishes, a (steep) water potential gradient Look for a comparison in water potential between the cell and the soil IGNORE solutes / sugars / hydrogen ions ACCEPT named ions ACCEPT named ions ACCEPT named solutes e.g. sugars
			Total	11	

