Inorganic Qualitative Analysis Notes

Aim: To deduce the ions present in the unknown compound through reaction with various common reagents which cause colour change, precipitation or other visible changes.

Before proceeding:

- Check the reagents and their labels.
- Make sure there is no contamination, i.e. NaOH should not look cloudy
- Test-tubes and other apparatus should be dry.
- Read through the instructions and <u>think about what is the nature of the reagent you are using</u>. What constituents a positive test, i.e. white ppt form.
- Don't do redundant test i.e. don't test for acidic gas after adding conc. Acid.

Heating:

- Remember to close the air hole completely before lighting the Bunsen burner.
- Once it's lighted, you can adjust it to a get a blue flame.
- If you are testing the gas with a litmus paper, do not let it touch the test tube.
- To heat solids, heat it evenly along the length of the test tube and on both sides to prevent condensation.

Observation/recording:

- If ppt formed cannot be clearly observed, allow suspension to settle to bottom of test tube.
- If gas is evolved from solution "effervescence"; if gas evolved from heating of solid 'fume"
- If identity of unknown is not required, state the nature, e.g. acidic/basic or oxidizing/reducing

Chemical equations are not required for the deduction column.

Test for Cations using NaOH(aq) and NH₃(aq)

Cation	Reaction with			
	NaOH(aq)	NH₃(aq)		
Aluminium, A/ ³⁺ (aq)	White precipitate, soluble in excess.	White precipitate, insoluble in excess.		
	$A/^{3+}(aq) + 3OH^{-}(aq) \rightarrow A/(OH)_{3}(s)$ $A/(OH)_{3}(s) + OH^{-}(aq) \rightarrow [A/(OH)_{4}]^{-}(aq)$	A/ ³⁺ (aq) + 3OH [–] (aq) → A/(OH)₃(s)		
Ammonium, NH₄⁺(aq)	No ppt. Ammonia gas, NH₃ produced on heating.			
	$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(g) + H_2O(I)$			
Barium, Ba ²⁺ (aq)	No precipitate.	No precipitate.		
Calcium, Ca ²⁺ (aq)	White precipitate (with high [Ca ²⁺]).	No precipitate.		
	$Ca^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ca(OH)_{2}(s)$			
Chromium(III),	Grey-green precipitate, soluble in excess	Grey-green precipitate, insoluble in		
Cr ³⁺ (aq)	to give a dark green solution.	excess.		
(Green)	$Cr^{3+}(aq) + 3OH^{-}(aq) \rightarrow Cr(OH)_{3}(s)$ $Cr(OH)_{3}(s) + 3OH^{-}(aq) \rightarrow [Cr(OH)_{6}]^{3-}(aq)$	Cr ³⁺ (aq) + 3OH⁻(aq) → Cr(OH)₃(s)		

Cation	Reaction with			
	NaOH(aq)	NH₃(aq)		
Copper(II), Cu ²⁺ (aq) (Blue)	Pale blue precipitate, insoluble in excess. $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$	Pale blue precipitate, soluble in excess to give a dark blue solution. $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ $Cu(OH)_{2}(s) + 4NH_{3}(aq)$		
Iron(II), Fe ²⁺ (aq) (Pale green)	Green precipitate, insoluble in excess. $Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_2(s)$ The green precipitate, $Fe(OH)_2$ is rapidly oxidised to red-brown precipitate, $Fe(OH)_3(s)$, on exposure to air.	→ $[Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$ Green precipitate, insoluble in excess. $Fe^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s)$ The green precipitate, $Fe(OH)_2$ is rapidly oxidised to red-brown precipitate, $Fe(OH)_3(s)$, on exposure to air.		
Iron(III), Fe ³⁺ (aq) (Yellow)	Red-brown precipitate, insoluble in excess. Fe ³⁺ (aq) + 3OH [−] (aq) → Fe(OH) ₃ (s)	Red-brown precipitate, insoluble in excess. $Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$		
Magnesium, Mg ²⁺ (aq)	White precipitate, insoluble in excess. Mg ²⁺ (aq) + 2OH ⁻ (aq) \rightarrow Mg(OH) ₂ (s)	White precipitate, insoluble in excess. $Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$		
Manganese(II), Mn ²⁺ (aq) (Pale pink)	Off-white precipitate, insoluble in excess. $Mn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mn(OH)_{2}(s)$ On exposure to air, the off-white precipitate is rapidly oxidised to the brown precipitate, Mn(OH)_3.	Off-white precipitate, insoluble in excess. $Mn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mn(OH)_{2}(s)$ On exposure to air, the off-white precipitate is rapidly oxidised to the brown precipitate, Mn(OH)_{3}.		
Zinc, Zn ²⁺ (aq)	White precipitate, soluble in excess. $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_2(s)$ $Zn(OH)_2(s) + 2OH^{-}(aq) \rightarrow [Zn(OH)_4]^{2-}$ (aq)	White precipitate, soluble in excess. $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$ $Zn(OH)_{2}(s) + NH_{3}(aq)$ $\rightarrow [Zn(NH_{3})_{4}]^{2+}(aq) + 2OH^{-}(aq)$		

Note: Zn^{2+} can be distinguished from AI^{3+} by excess NH_3 (aq)

Transition metal cations give coloured ppts or coloured aqueous solutions.

Cations list: NH4⁺, Mg²⁺, Al³⁺, Ca²⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cu²⁺, Zn²⁺, Ba²⁺

Anions list: CO₃²⁻, NO₃⁻, NO₂⁻, SO₄²⁻, SO₃²⁻, Cl⁻, Br⁻, l⁻

Tests for anions

Anion	Reaction		
Carbonate $(\Omega_2^2 - (2\alpha))$	CO ₂ liberated by dilute acids		
	$CO_3^{2^-} + H^+(aq) \rightarrow CO_2(g) + H_2O(I)$		
Chloride, C/¯(aq)	Gives white precipitate with Ag ⁺ (aq), soluble in excess NH ₃ (aq). Ag ⁺ (aq) + C/(aq) \rightarrow AgC/(s) AgC/(s) + 2NH ₃ (aq) \rightarrow [Ag(NH ₃) ₂] ⁺ (aq)		
Bromide, Br [–] (aq)	Gives cream precipitate with Ag ⁺ (aq), partially soluble in excess NH ₃ (aq). Ag ⁺ (aq) + Br ⁻ (aq) \rightarrow AgBr(s)		
lodide, l⁻(aq)	Gives yellow precipitate with Ag ⁺ (aq), insoluble in excess NH ₃ (aq). Ag ⁺ (aq) + I ⁻ (aq) \rightarrow AgI(s)		
Sulfate(VI), SO4 ^{2–} (aq)	Gives white precipitate with $Ba^{2+}(aq)$, insoluble in dilute strong acids. $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$		
Anion	Reaction		
Sulfate(IV), SO ₃ ^{2–} (aq)	Gives white precipitate with $Ba^{2+}(aq)$ soluble in dilute strong acids, liberating SO ₂ . $Ba^{2+}(aq) + SO_3^{2-}(aq) \rightarrow BaSO_3(s)$ $SO_3^{2-}(s) + 2H^+(aq) \rightarrow SO_2(g) + H_2O(I)$		
Nitrate(V), NO₃⁻(aq)	NH ₃ gas liberated on heating with NaOH(aq) and A/ foil (Devarda's alloy). $3NO_3^-$ (aq) + $8A/(s)$ + $5OH^-$ (aq) + $18H_2O(I) \rightarrow 3NH_3(g) + 8[A/(OH)_4]^-$ (aq) (A/ in a basic medium is a reducing agent, reduces NO ₃ ⁻ to NH ₃ gas).		
Nitrate(III), NO2 [–] (aq)	NH ₃ gas liberated on heating with NaOH(aq) and A/ foil (or Devarda's alloy). NO ₂ ⁻ (aq) + 2A/(s) + OH ⁻ (aq) + 5H ₂ O(I) \rightarrow NH ₃ (g) + 2[A/(OH) ₄] ⁻ (aq)		
	(A/ in a basic medium is a reducing agent, reduces NO ₂ ⁻ to NH ₃ gas). N.B: Nitrogen(II) oxide, NO gas liberated with dilute strong acids. NO_2^- (aq) + H ⁺ (aq) \rightarrow NO(g) + H ₂ O(I) (colourless NO gives pale brown NO ₂ gas in air).		
Anion	Reaction		
Chromate (VI), CrO4 ^{2–} (aq) (Yellow)	Yellow solution turns orange with $H^+(aq)$. $2CrO_4^{2-}(aq) + 2H^+(aq) \longrightarrow Cr_2O_7^{2-}(aq) + H_2O(I)$ yellow orange		
Note: Not in the syllabus	Gives yellow precipitate with $Ba^{2+}(aq)$. $Ba^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow BaCrO_4(s)$		

Test for gases

Gas	Test and test result	
Carbon dioxide, CO ₂	Gives a white precipitate with limewater, Ca(OH) ₂ (aq).	
	(Precipitate dissolves with excess CO ₂ gas).	
	$CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(g)$	
	$CaCO_3(s) + CO_2(g) + H_2O(I) \rightarrow Ca(HCO_3)_2(aq)$	
Ammonia, NH ₃	Turns damp red litmus paper blue. (basic)	
Oxygen, O ₂	Relights a glowing splint.	
Hydrogen, H ₂	'Pops' with a lighted splint.	
Chlorine, Cl ₂	Bleaches damp litmus paper.	
Sulfur dioxide, SO ₂	Turns acidified K ₂ Cr ₂ O ₇ (aq) from orange to green or turns acidif KMnO ₄ (aq) from purple to colourless.	
	$\begin{array}{l} Cr_2O_7^{2-}(aq) + 3SO_2(g) + 2H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(I) \\ orange \\ green \end{array}$	
	$2MnO_{4}^{-}(aq) + 5SO_{2}(g) + 2H_{2}O(I) \rightarrow 2Mn^{2+}(aq) + 5SO_{4}^{2-}(aq) + 4H^{+}(aq)$ purple colourless/pale pink	
	Note: K ₂ Cr ₂ O ₇ is carcinogenic, KMnO ₄ is the preferred choice.	

Colour of halogens

Halogen	Colour of element	Colour of element Colour in aqueous solution	
			nexane
Chlorine, Cl ₂	Greenish yellow gas	Pale yellow	Pale yellow
Bromine, Br ₂	Reddish brown gas/liquid	Orange	Orange-red
lodine, l ₂	Black solid/purple gas	Brown	Purple

<u>Planning</u>

Planning for Inorganic QA usually requires a **sequence** of tests presented in table form to identify the cations and anions or the nature (acidic/basic) of the unknown compound.

Example

	Test	Observations for FA1	Observations for FA2
(a)	Add 1 cm depth of each sample to a test-	Gas evolved which	No gas evolved
	tube. Add reagent E and warm gently.	relights a glowing	
		splinter	

Other tests

	TEST	OBSERVATION	DEDUCTION
(a)(i)	Add potassium iodide, <mark>KI</mark> (aq) to test sample,	Brown solution (sometimes, black solid at bottom of test tube),	Iodine liberated. Test sample is an oxidising agent (OA). I ⁻ is oxidised to I ₂ .
	followed by addition of sodium thiosulfate.	brown solution is decolourised.	I_2 is reduced to I ⁻ by $S_2O_3^{2-}$.
	$Na_2S_2O_3(aq).$	Oxidizing agent present, 2I ⁻ (aq) \rightarrow I ₂ + 2e ⁻ (aq)	I ₂ is reduced.
		$2S_2O_3^{2-}$ (aq) + $I_2(aq) \rightarrow S_4O_3^{2-}$ brown color) ₆ ²⁻ (aq) + 2I⁻ (aq) ırless
(ii)	Add KI(aq) to test sample,	Cream/off white ppt in brown solution.	lodine liberated.
			Test sample is an OA. I ⁻ is oxidised to I_2 .
			Cu ²⁺ present.
		2Cu ²⁺ (aq) + 4I⁻ (aq) → 2Cu crean	II(s) + I ₂ (aq) n ppt brown
	followed by addition of $Na_2S_2O_3(aq)$.	brown solution is decolourised leaving behind cream/off white ppt.	I_2 is reduced to I ⁻ by $S_2O_3^{2-}$.
		$2S_2O_3^{2-} (aq) + I_2(aq) \rightarrow S_4O_{brown} color$) ₆ ²⁻ (aq) + 2I⁻ (aq) urless
(b)(i)	Add silver nitrate, AgNO ₃ (aq) to test sample followed by addition of dilute nitric acid, HNO ₃ .	White ppt insoluble in acid.	C/-
	Add AgNO ₃ (aq) to test sample followed by addition of $NH_3(aq)$.	White ppt soluble in excess NH ₃ (aq) to give a colourless solution.	
		$Ag^+(aq) + C/(aq) \rightarrow AgC/(s)$ white pr	ot
(**)		AgC/(s) + 2NH ₃ (aq) → [Ag(N Co	NH₃)₂]⁺C/⁻ (aq) Iourless
(11)	Add AgNO ₃ (aq) to test sample followed by addition of dilute HNO ₃ and then $NH_3(aq)$.	sparingly soluble in NH ₃ (aq).	Br
		Ag⁺(aq) + Br⁻ (aq) → AgBr(s cream p	s) ot
(iii)	Add AgNO₃ (aq) to test sample followed by addition of dilute HNO ₃ and	Yellow ppt insoluble in acid and insoluble in NH ₃ (aq).	I-
	then NH₃(aq).	$Ag^+(aq) + I^-(aq) \rightarrow AgI(s)$ yellow ppt	

(iv)	Add AgNO ₃ (aq) to test sample followed by addition of dilute HNO ₃ .	No ppt.	Absence of halides/C/⁻, Br⁻, I⁻.
	TEST	OBSERVATION	DEDUCTION
(v)	Add AgNO ₃ (aq) to test sample. Filter the mixture, discarding the filtrate. Wash the residue by pouring distilled water though it. Discard the washings and then pour NH ₃ (aq) through the residue. Collect the filtrate produced and add dilute HNO ₃ dropwise to	White ppt. White residue is insoluble in water. White residue dissolves in excess NH ₃ (aq) to give a colourless solution. White ppt reappears on addition of acid.	C/⁻ present.
		$\begin{array}{rrr} Ag^+(aq) + C/^-(aq) \rightarrow AgC/(\\ & white p \\ AgC/(s) + 2NH_3(aq) & \hline \\ residue & H^+ \\ Addition of acid (H^+) shifts pot to reaction with NH_3 to give N \\ white ppt AgC/ reforms \\ \end{array}$	(s) pt [Ag(NH ₃) ₂]⁺C/⁻ (aq) filtrate osition of equilibrium to left (due NH₄⁺, decreasing [NH ₃]) and the
(c)	Add dilute sulfuric acid, H ₂ SO ₄ to test sample followed by addition of chlorine, C/ ₂ (aq) or NaC/O(aq) or bleaching solution. Then add the organic solvent, hexane provided and shake the mixture gently.	 (i) Purple organic layer. (ii) Orange-red layer. (iii) Colourless organic layer. I₂, Br₂ Br₂ and I₂ are more soluble distribute between the organic to their partition coefficients (explanation) 	I [−] present in test sample. Br [−] present in test sample. Absence of I [−] , Br [−] in test sample. $2I^{−}(aq) \xrightarrow{C/_2(aq)} I_2(aq)$ $2Br^{−}(aq) \xrightarrow{C/_2(aq)} Br_2(aq)$ in organic layer (hexane) and c and aqueous layers according equilibrium constants, K _c).
(d)	Add sodium hydroxide, NaOH (aq) to test sample and heat gently. Cool and then cautiously add A <i>I</i> powder or Devarda's alloy . Reheat if necessary. (Devarda's alloy = A <i>I</i> , Cu and Zn mixture)	No effect on damp red litmus paper. Gas liberated turns damp red litmus turns blue. $A/(s) + OH^-(aq) + 3H_2O(l)$ NO_3^- or $NO_2^- \rightarrow NH_3(g)$ Reduction	No NH ₃ gas liberated. Absence of NH ₄ ⁺ . NH ₃ gas liberated. NO ₃ ⁻ , NO ₂ ⁻ present. $\rightarrow A/(OH)_4^-$ (aq) + $\frac{3}{2}H_2(g)$

	TEST	OBSERVATION	DEDUCTION
(e)	Add barium chloride, BaCh(ag)/Ba(NOa)a to tost	White ppt insoluble in acid.	SO ₄ ²⁻ present
	sample followed by dilute	White ppt soluble in acid.	SO ₃ ²⁻ present
	HCI/HNO ₃ .	No ppt.	Absence of SO_4^{2-} , SO_3^{2-} .
		Ba ²⁺ (aq) + SO₄ ^{2−} → BaSO₄ white p BaSO₄ is insoluble in acid	(s) pt
		Ba²+(aq) + SO₃²- → BaSO₃ white p	(s) pt
		BaSO₃ is soluble in acid. BaSO₃(s) + 2HC/(aq) → Ba so	ICI2(aq) + SO2(g) + H2O(I) Iuble
(f)	Add NaOH(aq) to test sample.	White ppt soluble in excess NaOH(aq).	Al ³⁺ , Zn ²⁺ present
		$A/^{3+}(aq) + 3OH^{-}(aq) \rightarrow A/(OH)_{3}(s)$ white ppt	
		A/(OH)₃(s) + OH⁻ (aq) → [A/ sol	(OH)₄] [–] (aq) uble
		Zn²+(aq) + 2OH⁻ (aq) → Zn(whi	OH)₂(s) te ppt
		Zn(OH)₂(s) + 2OH⁻ (aq) → [s	Zn(OH) ₄]²- (aq) oluble
(a)	Add NaOH(ag) to test	No pot	NH ⁴⁺ ?
(9)	sample and heat gently.	Upon heating, gas liberated turns damp red litmus paper blue.	NH₃ gas liberated. NH₄⁺ present.
]) + H ₂ O(I)
		All ammonium salts liberate base.	NH_3 gas when heated with a
		No ppt.	NH ⁴⁺ ?

	TEST	OBSERVATION	DEDUCTION
(h)	Add ammonia, NH₃(aq) to test sample.	White ppt <mark>soluble</mark> in excess NH ₃ (aq).	Zn ²⁺ present
		$NH_3(aq) + H_2O(I) \Longrightarrow NH_3(aq)$	₄⁺(aq) + <mark>OH</mark> ⁻(aq)
		Zn ²⁺ (aq) + 2OH ⁻ (aq)	Zn(OH)₂(s) white ppt
		Zn(OH)₂(s) + 4NH₃(aq) → [2	Zn(NH₃)₄]²+(aq) + 2OH⁻(aq) soluble
(i)	Add <mark>NH₃(aq)</mark> to test sample.	White ppt insoluble in excess NH ₃ (aq).	Al ³⁺ present in residue.
	Filter and add dilute H ₂ SO ₄ /HC//HNO ₃ dropwise to the filtrate till in excess.	Colourless filtrate. White ppt with acid, soluble in excess acid.	Filtrate contains Zn ²⁺ .
		NH₃(aq) + H₂O(I) ← NH	₄ ⁺ (aq) + <mark>OH⁻</mark> (aq)
		<mark>Residue</mark> : A/ ³⁺ (aq) + 3OH⁻(a	aq) → A/(OH)₃(s) white ppt
		Filtrate: [Zn(NH ₃) ₄] ²⁺ (aq)	NH₂
		$Zn^{2+}(aq) + 2OH^{-}(aq) =$	$Zn(OH)_2(s) \longrightarrow$
		H ⁺	white ppt H ⁺
		With H ₂ SO ₄ /HC//HNO ₃ , Zn(Cacid, soluble ZnSO ₄ /ZnC/ positions of equilibrium abov	$DH)_2$ is formed, then with excess $_2/Zn(NO_3)_2$ is formed as the ve shift to the left.
(j)	Add <mark>NH₃(aq)</mark> to test sample.	White ppt.	Hydroxides of high K_{sp} suspected, e.g., Mg ²⁺ .
	Then add aqueous or solid ammonium chloride.	White ppt dissolves in the presence of NH ₄ C <i>I</i> .	
	NH₄CI.	$NH_3(aq) + H_2O(I) \longrightarrow NH_4CI(aq) \rightarrow NH_4CI(aq)$	₄⁺(aq) + OH⁻ (aq) H₄⁺(aq) + C <i>Ի</i> (aq)
		NH₄C/ provides a large exce equilibrium above shifts to le So, [OH⁻] decreases .	ess of NH ₄ ⁺ , therefore position of eft due to the common ion effect.
		So, hydroxides of $\frac{high K_{sp}}{high K_{sp}}$ v too low to exceed the K_{sp} of	vill not be precipitated as [OH⁻] is the hydroxides.
(k)	Add dilute H ₂ SO ₄ to test sample followed by iron(II)	Green solution turns yellow or brownish-yellow.	Test sample is an oxidising agent (OA).
	freshly prepared iron(II) sulfate.		Fe ²⁺ is oxidised to Fe ³⁺ .
		OA Fe²+(aq) → Fe³+(aq) green yellow	
		No change in colour.	Test sample is not an OA.

(I)	Add dilute H ₂ SO ₄ to test sample followed by potassium manganate(VII).	Purple MnO_4^-/H^+ is decolourised. $MnO_4^-(aq) + 8H^+(aq) + $	Test sample is a reducing agent (RA). $5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$
	KMnO₄(aq).	Purple MnO ₄ -/H ⁺ is not	colourless Test sample is not a RA.
		decolourised.	
	TEST	OBSERVATION	DEDUCTION
(m)	Add sodium sulfite,	White ppt insoluble in acid.	SO4 ²⁻ .
	Na ₂ SO ₃ (aq) to test sample followed by BaC l_2 (aq).		SO_3^{2-} is oxidised to SO_4^{2-} .
	Add dilute HCl to the		Test sample is an OA.
		$\begin{array}{r} OA \\ SO_3^{2^-}(aq) \ \rightarrow \ SO_4^{2^-}(aq) \end{array}$	
		$Ba^{2+}(aa) + SO^{2-}(aa) \rightarrow Ba^{2+}(aa)$	SQ.(s)
		whit	te ppt, insoluble in acid
(n)	Add conc HC to test sample and heat.	Gas liberated bleaches damp litmus paper.	Cl ₂ liberated; test sample is an OA.
			HC/ is oxidised to Cl_2 .
		<u>N.B.</u> Do not report and test f	or HC/!
		$HCI \rightarrow CI_2$	
(0)	Add concentrated H₂SO ₄ to test sample and heat.	Brown fumes liberated.	Br ₂ or NO ₂ liberated. Br ⁻ or NO ₃ ⁻ present.
		$\begin{array}{rl} H_2SO_4(I) \ + \ Br^-(s) \rightarrow \ HSO_4\\ 2HBr(g) \ + \ H_2SO_4(I) \ \rightarrow \ SO_4\\ \end{array}$	F(aq) + HBr(g) $H_2(g) + 2H_2O(I) + Br_2(g)$
		$\begin{array}{rcl} H_2SO_4(I) \ + \ NO_3\ \ (aq) \rightarrow \ HS\\ 2HNO_3(I) \ \rightarrow \ 2NO_2(g) \ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6O₄⁻(aq) + HNO₃(I) O₂(g) + H₂O(I)
		Gas which has a vinegar smell liberated.	CH_3CO_2H vapour liberated. $CH_3CO_2^-$ present.
		$H_2SO_4(I) \ + \ CH_3CO_2^-(s) \rightarrow$	HSO₄ [−] (aq) + CH ₃ CO ₂ H(g)
(p)	Add solid sodium	Effervescence.	CO ₂ liberated.
	hydrogen carbonate, NaHCO₃ to test sample.	Gas liberated gives a white ppt with limewater.	Test sample is an acid/acidic.
		$\frac{2H^{+}(aq)}{H^{+}(aq)} + CO_{3}^{2-}(s) \rightarrow \frac{CO}{CO}$ $\frac{H^{+}(aq)}{H^{+}(aq)} + HCO_{3}^{-}(s) \rightarrow \frac{CO}{CO}$	D ₂ (g) + H ₂ O(I) H ₂ (g) + H ₂ O(I)
(q)	Add magnesium, Mg	Effervescence.	H ₂ liberated.
	ווטטטוו נט נפאן אמוווטופי.	Gas liberated gives a 'pop' sound with a lighted splinter.	Test sample is an acid/acidic.
		$2H^+(aq) + Mg(s) \rightarrow Mg^{2+}(aq)$	aq) + <mark>H₂(g)</mark>

(r)) Add solid sample cautiously.	Na₂SO₃ and	to test heat	Gas liberated de purple KMnO₄(aq).	colourises acidified	SO ₂ liberated. Test sample is an acid/acidic.
				<mark>2H⁺(aq)</mark> + SO ₃ ²-	·(s) → <mark>SC</mark>	9 <mark>2(g)</mark> + H ₂ O(l)

	TEST	OBSERVATION	DEDUCTION
(s)	Add copper(II) sulfate, CuSO₄(aq) to test sample.	Blue colour turns green.	Concentrated HC/ or C/
		[Cu(H ₂ O) ₆] ²⁺ (aq) + 4C/ ⁻ (aq blue) \leftarrow CuCl ₄ ²⁻ (aq) + 6H ₂ O(l) yellow
		blue + yellow = <mark>green!</mark>	
(t)	Add CuSO4(aq) to test sample followed by Na ₂ S ₂ O ₃ (aq).	Cream ppt/off white ppt in a brown solution.	I₂ liberated. <mark> □ present in test sample.</mark> □ is oxidised by Cu ²⁺ to I₂.
		With $S_2O_3^{2^2}$, brown solution is decolourised leaving behind the cream/off white ppt.	S ₂ O ₃ ²⁻ reduces I ₂ to I [−] .
		2Cu²+(aq) + <mark>4I⁻ (aq)</mark> → 2C crear	uI(s) + I ₂ (aq) m ppt brown
		$\begin{array}{rrrr} 2S_2O_3^{2^-}(aq) \ + \ I_2(aq) \ \rightarrow \ S_4Q_{brown} \\ & brown \ & cold \end{array}$	D ₆ ²·(aq) + 2I⁻ (aq) purless

Cations with coloured solutions – Transition Metals

Cations	Colour	
Cu ²⁺	Blue	
Fe ²⁺	Pale green	
Fe ³⁺	Pale yellow	
Cr ³⁺	Green	
Mn ²⁺	Colourless/pale pink	

Always take note of the appearance of the unknown solution, these provides a clue to the ions present.

Coloured cation solids

White \Rightarrow Non-transition metal cpds Yellow when hot, white when cold \Rightarrow Zn cpds Brown \Rightarrow Fe cpds Black \Rightarrow Mn or Cu cpds

Acidic Cations

Cations	Explanation	Comment
Al ³⁺ , Fe ³⁺ , Cr ³⁺	Acidic solution due to the high charge density of cations which undergoes hydrolysis with	Cations with +3 charge and small ionic size
	$M(H_2O)_6^{3+} = M(H_2O)_5(OH)^{2+} + H^+$	
NH4 ⁺	NH ₄ ⁺ hydrolyse in water to release H ⁺	NH4 ⁺ is a conjugate acid
	$NH_4^+ + H_2O \implies NH_3 + H_3O^+$	

Test for acidity: Na₂CO₃ -> CO₂ gas evolved

Cations which forms amphoteric hydroxides

Zn²⁺ | Zn(OH)₂, Pb²⁺ | Pb(OH)₂, Al³⁺ | Al(OH)₃, Cr³⁺ | Cr(OH)₃

When to test for gases?

Reagents added	Gases to test	Deductions
Solid/residue and heat	Litmus paper turns blue (NH₃)	NH4 ⁺
	Litmus paper turns red (CO ₂ , SO ₂)	CO ₃ ²⁻ , SO ₃ ²⁻
	Litmus paper bleached (Cl ₂)	C/⁻ or C/O₃⁻
	Relights glowing splinter (O ₂)	Oxyanions
Dilute acids	Pop sound with lighted splinter (H ₂)	Reactive metal
Dilute acids with heat	CO ₂ , SO ₂ , NO ₂ (brown)	CO ₃ ²⁻ , SO ₃ ²⁻ , NO ₂
NaOH and heat	Litmus paper turns blue (NH ₃)	NH4 ⁺

Qualitative Analysis Arranged by Reagents

Reagent	Observation	Deduction
NaOH	White ppt; insoluble in excess	Ca ²⁺
Test for metal cations	White ppt; insoluble in excess	Mg ²⁺
Look for ppt colour, soluble in excess?	Off-white ppt, rapidly turns brown on contact with air, insoluble in excess NaOH	Mn ²⁺
NH₃ gas	Green ppt; turns brown on contact with air; insoluble in excess NaOH	Fe ²⁺
	Red-brown ppt; insoluble in excess NaOH	Fe ³⁺

	Pale-blue ppt, soluble in excess NaOH. Pale blue ppt turns black on boiling	Cu ²⁺
	White ppt, soluble in excess NaOH to form colourless solution	Zn ²⁺ , (Pb ²⁺), Al ³⁺
	Grey-green ppt, soluble in excess	C-3+
NoOl with boot	NaOH to form dark green solution	
NaOn with heat	Gas evolved turns red litinus blue	IN 174
NaOH, Al foil and heat	Gas evolved turns red litmus blue	NO ₃ ⁻ , NO ₂ ⁻
Look for NH ₃ gas		
NH_3	No ppt	Ca ²⁺
Test for metal cations	White ppt insoluble in excess	Μσ ²⁺ ΔΙ ³⁺ Ρh ²⁺
Look for ppt colour, soluble	white ppt, insoluble in excess	
in excess?	Grey-green ppt, insoluble in excess	Cr ³⁺
	Off-white ppt, rapidly turn brown on contact with air; insoluble in excess	Mn ²⁺
	Green ppt, turn brown on contact with air, insoluble in excess	Fe ²⁺
	Red-brown ppt, insoluble in excess	Fe ³⁺
	White ppt, soluble in excess to form colourless solution	Zn ²⁺
	Blue ppt soluble in excess to form	Cu ²⁺
Na ₂ CO ₃	White ppt	Al ³⁺
Look for ppt colour, CO ₂ , NH ₃ gas	Red-brown ppt	Fe ³⁺
	Green ppt	Cr ³⁺
	Gas evolved forms white ppt with limewater	
	Gas evolved forms white ppt with limewater	H+
	Gas evolved turns moist red litmus paper blue	NH4 ⁺ (needs warming)
	White ppt formed	Mg ²⁺ , Ca ²⁺ , Zn ²⁺ , Ba ²⁺
	Off-white ppt, turns brown on standing	Mn ²⁺

	Dirty-green ppt turns brown on standing	Fe ²⁺
	Red-brown ppt	Fe ³⁺
	Pale-blue ppt turn black on boiling	Cu ²⁺
H ₂ SO ₄ /HNO ₃ /HCl	Gas evolved form white ppt with limewater	CO32-
Look for CO ₂ , SO ₂ , NO ₂		
	Gas evolved turn purple KMnO₄ colourless	SO₃ ²⁻ (warming needed)
	Pungent brown gas (colourless NO turns brown NO2 in air)	NO ₂ - (warming needed)
Pb(NO ₃) ₂	White ppt	SO4 ²⁻ , Cl ⁻ , Br ⁻
Look for ppt		
	Yellow ppt	I ⁻
Ba(NO ₃) ₂	White ppt	SO ₃ ²⁻ , SO ₄ ²⁻
Look for ppt	White ppt insoluble in dilute HCI/HNO₃	BaSO ₄
	White ppt soluble in dilute HCI/HNO₃	BaSO₃
CuSO ₄	White/grey-white ppt in brown solution	I-
Look for ppt or colour		
change	Decolourisation of brown solution when Na ₂ S ₂ O ₃ is added	
	White ppt dissolves to form a colourless solution when Na ₂ S ₂ O ₃ is added in excess	
	Blue solution turns yellow-green	Cl ⁻
KMnO ₄ with H ₂ SO ₄	Decolourisation of purple KMnO ₄	Reducing agent (warming may
Look for ppt or colour change	Gas/ppt/solution colour change	be needed)
KI	White/grey-white ppt in brown solution	Cu ²⁺
	Decolourisation of brown solution when $Na_2S_2O_3$ is added	
	White ppt dissolves to form a	

K ₄ Fe(CN) ₆	Pale blue ppt	Fe ²⁺
Look for colour of ppt	Prussian blue ppt	Fe ³⁺
	Reddish brown ppt	Cu ²⁺
	Light green ppt	Ni ²⁺
	White ppt	Zn ²⁺
	White ppt	Mn ²⁺
Cl _(aq)	Reddish brown solution Decolourisation of yellow green	Br-
Look for colour change	solution Black ppt in brown solution Decolourisation of yellow green solution	I
AgNO ₃	White ppt	Cl-
Look for ppt	Cream ppt	Br-
	Yellow ppt	Ŀ
Mg	Cu ²⁺ -> pink deposit on metal	Solution has less reactive metals
Look for H₂ gas or metal deposits	Fe ²⁺ /Fe ³⁺ -> black deposit on metal	inclus
	Gas evolved give a pop sound with lighted splinter	H*
Conc HCl	Blue solution turns green then yellow. Cl ₂ produced.	Cu ²⁺
Look for colour change		
H ₂ O ₂	Effervescence of O ₂	Oxidising agent
Look for oxygen gas		
FeCl₃	Yellow solution turned green	Reducing agent
Look for colour change		