1 2 3 4 5			
bohydrates			
Polymers of Carbohydrates			
⊕ ∘। .			

0	1	. 1	Glycogen and cellulose are both carbohydrates. Describe two differences between the structure of a cellulose molecule and a glycogen molecule. [2 marks]
			1
			2
0	1	. 2	Starch is a carbohydrate often stored in plant cells. Describe and explain two features of starch that make it a good storage molecule. [2 marks]
			1
			2

and back again.

	nmals convert the monosaccharide glucose into a highly branched polysaccharide called ogen, which gets stored in liver cells.
(a)	Explain why mammals store glycogen instead of glucose.
	[3]
(b)	Humans use the enzyme $\alpha\text{-amylase}$ to break down polysaccharides in food for absorption into the blood.
	The gene for human α -amylase is found on chromosome 1.
	The gene is transcribed in the nucleus and translation occurs on the rough endoplasmic reticulum in cells of the salivary gland.
	Describe how the molecule is prepared and secreted by cells of the salivary gland after translation has taken place.
	[3]

22 Many multicellular organisms need to be able to convert monosaccharides into polysaccharides

3	Blood plasma contains glucose dissolved in water. Glucose is a polar molecule that is taken up by muscle cells and used in the synthesis of glycogen.	
	(a) Explain why water is a good solvent.	
		(2)
	(b) Describe how glucose enters muscle cells through the cell membrane.	
		(2)
•••••		
•••••		
••••		
••••		

(d) (Glucose is used in the synthesis of glycogen in muscle cells.	
((i) Describe the formation of glycogen from glucose.	
		(2)
	(ii) Describe how the structure of glycogen is related to its function as a storage molecule.	
		(2)
•••••		

Question	Marking guidance	Mark	Comments
01.1	 Cellulose is made up of β-glucose (monomers) and glycogen is made up of α-glucose (monomers); Cellulose molecule has straight chain and glycogen is branched; Cellulose molecule has straight chain and glycogen is coiled; glycogen has 1,4- and 1,6- glycosidic bonds and cellulose has only 1,4- glycosidic bonds; 	2 max	Ignore ref. to H bonds / microfibrils
01.2	 Any two from: 1. Insoluble (in water), so doesn't affect water potential; 2. Branched / coiled / (α-)helix, so makes molecule compact; OR Branched / coiled / (α-)helix so can fit many (molecules) in small area; 3. Polymer of (α-)glucose so provides glucose for respiration; 4. Branched / more ends for fast breakdown / enzyme action; 5. Large (molecule), so can't cross the cell membrane 	2 max	Require feature and explanation for 1 mark 1. Accept Ψ or Ψ 1. Accept Insoluble so doesn't affect osmosis 1. Do not allow ref to 'doesn't affect water leaving cells' 4. Ignore 'surface area' 4. Accept 'branched so glucose readily released'

Question Answer		Answer	Marks	Guidance	
22	(a)			3	ACCEPT ORA for glucose for mps 1, 2 3 & 4 only
			glycogen is 1 insoluble , so has no effect on , water potential / Ψ (of cell) ✓		ACCEPT insoluble so has no osmotic effect (on cell)
			2 <u>metabol</u> ically inactive ✓		
			3 compact / lots can be stored in a small space ✓		
			4 able to store , large amounts / lots , of energy ✓		
			5 (highly branched so) has lots of ends for ,		5 IGNORE ref to surface area
					Note: 'compact so can store large amounts of energy' = 2 marks (mps 3 & 4)

	Quest	tion	Answer	Marks	Guidance
22	(b)			3 max	NOTE answers must be the in context of protein transport. Penalise once if a different material (e.g. gene) is transported to max 2
			1 <u>transport</u> vesicle from RER ✓		
			2 modification / processing / folding ✓		ACCEPT example of modification e.g. converted into a glycoprotein ACCEPT in context of RER or Golgi
			3 in / at , Golgi (body / apparatus) ✓		3 IGNORE SER / smooth endoplasmic reticulum
			4 (packaged into) <u>secretory</u> vesicle ✓		
			5 vesicles move along the cytoskeleton ✓		5 ACCEPT use of motor proteins / chaperones / microtubules
			6 (vesicle) fuses with , cell <u>surface</u> / plasma , membrane ✓		6 ACCEPT merges with DO NOT ACCEPT binds / attaches / dissolves
			7 (secretion occurs by) <u>exocytosis</u> ✓		7 DO NOT ACCEPT exocytosis in context of excretion (rather than secretion) DO NOT ACCEPT vesicle being released by exocytosis

Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation which includes reference to two of the following:		
	 description of water as a {polar / dipole / dipolar} molecule (1) 	ALLOW correct description of uneven charges	
	 water surrounds (polar) molecules allowing them to dissolve (1) 		
	• hydrogen bonds form (1)		(2)

Question Number	Answer		Additional Guidance	Mark
2/6)	A description that makes reference to the following:			
3(b)	carrier proteins (located in membrane)	(1)	ALLOW channel proteins	
	(glucose enters by) facilitated diffusion	(1)		
		- *		(2)

Question Number	Answer	Additional Guidance	Mark
2 (4)(;)	A description which includes reference to the following:		
3 (d)(i)	joining together in condensation reactions (1)		
	forming {1,4 and 1,6} glycosidic bonds (1)		(2)
			l

Question Number	Answer	Additional Guidance	Mark
3 (d)(ii)	A description which includes reference to the following:		
	branched molecule for more rapid hydrolysis (1)	ALLOW broken down	
	compact so more can be stored (1)	ALLOW 'doesn't take up much space'	(2)