

National Qualifications 2015

2015 Mathematics

New Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 One mark is available for each •. There are **no** half marks.
- **3** Working subsequent to an error **must be followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- 5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.
- 6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples:
$$\frac{15}{12}$$
 should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ should be simplified to 43
 $\frac{15}{0\cdot3}$ should be simplified to 50 $\frac{45}{3}$ should be simplified to $\frac{4}{15}$
 $\sqrt{64}$ must be simplified to 8 The square root of perfect squares up to and including 100 must be known.

- **9** Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- 10 Unless specifically mentioned in the marking instructions, the following should not be penalised:
 Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form (bad form only becomes bad form if subsequent working is correct), e.g.

$$(x^{3}+2x^{2}+3x+2)(2x+1)$$

written as

 $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ 2x⁴ + 4x³ + 6x² + 4x + x³ + 2x² + 3x + 2 2x⁴ + 5x³ + 8x² + 7x + 2 gains full credit;

- Repeated error within a question, but not between questions.
- 11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

- 12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- 13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- 14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- 15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark. Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Paper 2

Question	Generic Scheme	Illustrative Scheme	Max Mark			
1(a)						
 ¹ calculate gr 	adient of AB	• $m_{AB} = -3$				
• ² use property of perpendicular lines		• ² $m_{alt} = \frac{1}{3}$				
• ³ substitute in	nto general equation of a line	• $y - 3 = \frac{1}{3}(x - 13)$				
• ⁴ demonstrate	e result	• $^4 \dots \Rightarrow x - 3y = 4$	4			
Notes:						
 4 is only avand 4. The ONLY a 	 •³ is only available as a consequence of trying to find and use a perpendicular gradient. •⁴ is only available if there is/are appropriate intermediate lines of working between •³ and •⁴. The ONLY acceptable variations for the final equation for the line in •⁴ are 4 = x-3y, -3y+x = 4, 4 = -3y + x. 					
Commonly Ob	served Responses:					
Candidate A $m_{AB} = \frac{-1 - (-5)}{-5 - 7}$ $m_{alt} = 3$ $y - 3 = 3(x - 13)$ • ⁴ is not availa		Candidate B For • ⁴ $y-3 = \frac{1}{3}x - \frac{13}{3}$ $y = \frac{1}{3}x - \frac{4}{3}$ 3y = x - 4 - not acceptable 3y - x = -4 - not acceptable x - 3y = 4				
		$x - 3y - 4 \checkmark$				

Question	Generic Scheme	Illustrative Scheme	Max Mark	
1(b)			•	
 ⁵ calculate r 	midpoint of AC	• ⁵ $M_{AC} = (4,5)$		
• ⁶ calculate g	gradient of median	• $m_{BM} = 2$ • $y = 2x - 3$		
• ⁷ determine	equation of median	• ⁷ $y = 2x - 3$	3	
Notes:				
 5. •⁷ is only a 6. Candidate triangle ga 	s who find either the median throug ain 1 mark out of 3. of $y - (-5) = 2(x - (-1))$, $y - 5 = 2(x - 4)$	do not use a midpoint. a non-perpendicular gradient and a r gh A or the median through C or a sid $y_{1}, y_{2}-2x+3=0$ or any other rearrang	de of the	
Commonly O	bserved Responses:			
Median throu	Jgh A	Median through C		
$\mathbf{M}_{BC} = (6, -1)$		$\mathbf{M}_{AB} = (-3, 1)$		
$m_{AM} = \frac{-8}{11}$		$m_{CM} = \frac{1}{8}$		
$y+1 = \frac{-8}{11}(x-1)$	-6) or $y-7 = \frac{-8}{11}(x+5)$	$y-3 = \frac{1}{8}(x-13)$ or $y-1 = \frac{1}{8}(x+3)$		
Award 1/3		Award 1/3		
1(c)		8		
•° calculate	x or y coordinate	• ⁸ $x = 1$ or $y = -1$		
• ⁹ calculate of intersec	remaining coordinate of the point	• 9 $y = -1$ or $x = 1$	2	
Notes:				
	didate's 'median' is either a vertica linates are correct, otherwise award	I or horizontal line then award 1 out d 0.	t of 2 if	
	bserved Responses:			
	es who find the altitude through	Candidate A (b) $y-5=2(x-4) \bullet^7 \checkmark$ y=2x-13 -error		
$y = -\frac{7}{5}$	• ⁹ √1	(c) $\begin{array}{c} x-3y=4\\ y=2x-13\\ \text{Leading to } x=7 \text{ and } y=1 \end{array} \xrightarrow{\bullet^8 \times \bullet^9 \checkmark 1}$	ב	

Question	Generic Scheme		Illustrative Scheme	Max Mark
2 (a)				
• ¹ interpret no	tation	-	(x+x)(3-x)(3-x) + 2) stated or lied by \bullet^2	
• ² state a correct expression			+(1+x)(3-x)+2 stated or lied by • ³	2
Notes:				
	ailable for $g(f(x)) = g(10+x)$ but \bullet^2	may be	e awarded for $(1+10+x)(3-(x+1))(3-(x+1))(3-(x+1))$	$10+x)\big)+2.$
	served Responses:			
Candidate A			Candidate B	
(a) $\int (g(x)) = 0$ = (1	g(f(x))' +10+x)(3-(10+x))+2 $e^{1} \times e^{2}$]	f(g(x)) = 10((1+x) - (3-x)) + 2	1 2 \times
(b) $= -75 - $ $= -(x^2)$	$-18x - x^2$ or $-x^2 - 18x - 75$ $3 \checkmark 1$ +18x $4 \checkmark 1$			
= -(x + x)	5 71		Candidate C	
, i i i i i i i i i i i i i i i i i i i	$(-9)^2 + 6$			
=-(x +	-9) +0		f(g(x))	1 🔥
(c) $-(x+9)$	$(1)^2 + 6 = 0$ • ⁶ \checkmark 1]	=10((1+x)(3-x)+2)	$\bullet^2 \times$
No.	$+\sqrt{6}$ or $-9-\sqrt{6}$ $e^7 \checkmark 1$			
2 (b)				
• ³ write $f(g(x))$;)) in quadratic form	• 3 15 +	$-2x - x^2$ or $-x^2 + 2x + 15$	
	Method 1		Method 1	
• ⁴ identify con	nmon factor	• ⁴ -1(: by •	$x^2 - 2x$ stated or implied 5	
● ⁵ complete th	ne square	• ⁵ -1(2	$(x-1)^2 + 16$	
Method 2			Method 2	
 ⁴ expand completed square form and equate coefficients 		• ⁴ px^2	$+2pqx + pq^2 + r$ and $p = -1$,	
 ⁵ process for form 	q and r and write in required		-1 and $r = 16f p = 1 \bullet^5 is not available$	3

Notes:					
2. Accept $16 - (x-1)^2$ or $-$	$(x-1)^2 - 16$ at •	5.			
Commonly Observed Response					
Candidate A	Candidate B	_	Candidate C		
$-(x^2 - 2x - 15) \qquad \bullet^4 \checkmark$ -(x^2 - 2x + 1 - 1 - 15)	$15+2x-x^{2}$ $x^{2}-2x-15$ $px^{2}+2pqx+pq$	• ⁴ ×	$-(x+1)^2$	³ ✓ ⁴ ×	
$-(x-1)^2 - 16$ • ⁵ ×		• ⁵ \checkmark 2 eased	$-(x+1)^2+14$	⁵ ×	
Candidate D	Candidate E		Candidate F		
$15+2x-x^{2} \qquad \bullet^{3} \checkmark$ $x^{2}-2x-15 \qquad \bullet^{4} \times$ $(x-1)^{2}-16 \qquad \bullet^{5} \checkmark 2 \text{ eased}$ Eased, unitary coefficient of x^{2}	$ \begin{array}{r} 15 + 2x - x^{2} \\ x^{2} - 2x - 15 \\ (x - 1)^{2} - 16 \\ \text{so } 15 + 2x - x^{2} \end{array} $	•4 🗸	$-(x+1)^2$	³ ✓ ⁴ × ⁵ ✓1	
(lower level skill)		• ⁵ ✓			
 ⁶ identify critical condition ⁷ identify critical values 	or $f((g(x))) = 0$				
Notes: 3. Any communication indicat 4. Accept $x = 5$ and $x = -3$ or 5. If $x = 5$ and $x = -3$ appear v	$x \neq 5$ and $x \neq -3$ without working	at ● ⁷ .	: be zero gains ● ⁶ .		
Commonly Observed Response	es:	Candidata D			
Candidate A $ \frac{1}{-(x-1)^{2}+16} \qquad \stackrel{6}{} \checkmark \qquad $					
3(a)• 1 determine the value of the required term• 1 $22\frac{3}{4}$ or $\frac{91}{4}$ or 22.75 Notes:					
 Do not penalise the inclusion of incorrect units. Accept rounded and unsimplified answers following evidence of correct substitution. Commonly Observed Responses: 					

Question	Generic Scheme	Illustrative Scheme	Max Mark
3 (b)			
	Method 1	Method 1	
	(Considering both limits)	22 1	
• ² know how	to calculate limit	• ² $\frac{32}{1-\frac{1}{3}}$ or $L = \frac{1}{3}L + 32$	
• ³ know how	to calculate limit	• $^{3} \frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• ⁴ calculate I	imit	• 4 48	
 ⁵ calculate I 	imit	• ⁵ 52	
• ⁶ interpret li	mits and state conclusion	• 6 52 > 50 \therefore toad will escape	
(Frog f	Method 2 irst then numerical for toad)	Method 2	
• ² know how	to calculate limit	• $^{2}\frac{32}{1-\frac{1}{3}}$ or $L = \frac{1}{3}L + 32$	
• ³ calculate I	imit	• ³ 48	
 ⁴ determine than 50 	the value of the highest term less	• ⁴ 49·803	
greater that		• $5 50 \cdot 352$	
 6 interpret in 	nformation and state conclusion	• $50 \cdot 352 > 50$: toad will escape	
(Nume	Method 3 erical method for toad only)	Method 3	
• ² continuos u	numerical strategy	• ² numerical strategy	
 ³ exact value 	05	• 3 30.0625 • 4 49.803	
• ⁴ determine	the value of the highest term less	• 49.803	
than 50 ● ⁵ determine	the value of the lowest term	• $5 50 \cdot 352$	
greater that		• 6 50 · 352 > 50 \therefore toad will escape	
		Method 4	
	Method 4 imit method for toad only) how to calculate limit	• ² & • ³ $\frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• 4 & • 5 calcula	ate limit	$\bullet^4 \& \bullet^5 52$	
• • ⁶ interpret li	mit and state conclusion	• 6 52 > 50 \therefore toad will escape	5

Notes:						
3. • ⁶ is unavailable for candidates who do not consider the toad in their conclusion.						
Commonly Obse						
Error with frogs limit - Frog Only $L_{\rm F} = \frac{34}{1 - \frac{1}{3}} \stackrel{\circ}{\overset{\circ}{_{-}}}^{3}$ $L_{\rm F} = 51 \stackrel{\circ}{_{-}}^{5}$ $51 > 50 \stackrel{\circ}{_{-}}^{6}$ $\therefore \text{ frog will escap}$	y To: \times $\bullet^2 \checkmark$ $\bullet^2 \checkmark$ $\bullet^3 \checkmark$ \bullet^4 missin $\bullet^5 50 \cdot 35$ $\bullet^6 50.35$ so the to	52 🗸	Using Method 3- Toad Only • ² \checkmark • ³ \checkmark • ⁴ missing ^ • ⁵ 50 \cdot 1rounding error × • ⁶ 50.1 > 50 \checkmark 1 so the toad escapes.	Using Method 3 - Toad Only $e^2 \checkmark$ $e^3 \checkmark$ e^4 49.7rounding error × e^5 50.1 \checkmark e^6 50.1 > 50 so the toad escapes.		
Toad Conclusion Limit = 52 This is greater the However Limit =52 and so	han the height c		so the toad will escape -	award ∙ ⁶ .		
Iterations						
$f_1 = 32$	t. =13					
$f_1 = 32$ $f_2 = 42.667$						
$f_2 = 42 \cdot 007$ $f_3 = 46 \cdot 222$						
$f_3 = 40 \cdot 222$ $f_4 = 47 \cdot 407$						
$f_4 = 47 \cdot 407$ $f_5 = 47 \cdot 802$						
- 5	$t_5 = 39.000$ $t_6 = 42.745$					
0	0					
	$t_7 = 45 \cdot 059$ $t_8 = 46 \cdot 794$					
- 0	-					
$f_9 = 47 \cdot 998$	$t_9 = 48.096$					
	$t_{10} = 49 \cdot 072$					
	$t_{11} = 49 \cdot 804$					
	$t_{12} = 50 \cdot 353$					

Question	Generic Scheme	Illustrative Scheme	Max Mark
4 (a)			
• ² solve for :	ι.	$\bullet^2 x=2$	2
Notes:			
witho	ut working, (iii) arrive at $x = 2$ with	es who: (i) equate zeros, (ii) give a th erroneous working.	answer only
	bserved Responses:		
Candidate A		Candidate B	
$y = \frac{1}{4}x^2 - \frac{1}{2}x^2$	x+3	$\frac{1}{4}x^2 - \frac{1}{2}x = -3$	
$y = \frac{1}{4}x^2 - \frac{3}{2}x^2$	x+5 • ¹ ✓	$\frac{1}{4}x^2 - \frac{3}{2}x = -5$ • ¹ ×	
subtract to g	et		
0 = x - 2	2	$x=2$ $\bullet^2 \times$	
<i>x</i> = 2	• ² ✓	In this case the candidate has equated zeros	
Candidate C			
$f(x) = \frac{1}{4}x^2 - \frac{1}{2}x^2$	$\frac{1}{2}x+3$ $g(x) = \frac{1}{4}x^2 - \frac{3}{2}x+5$		
$f'(x) = \frac{1}{2}x - \frac{1}{2}$	$g'(x) = \frac{1}{2}x - \frac{3}{2}$		
x = 1	x = 3 $x = 3$		
	$\therefore x = 2$		

Que	stion	Generic Scheme	Illustrative Scheme	Max Mark		
4 (b)			4		
• ³ k	now to integ	rate	• ³ ∫			
• ⁴ i	• ⁴ interpret limits		$\bullet^4 \int_{-\infty}^{2}$			
• ⁵	use 'upper -	lower'	• 5			
			$\int_{0}^{1} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3\right) - \left(\frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$			
• 6	integrate		• $^{6} - \frac{1}{24}x^{3} + \frac{7}{8}x^{2}$ accept unsimplified integral			
• 7	substitute lin	nits	$\bullet^7 \left(-\frac{1}{24} \times 2^3 + \frac{7}{8} \times 2^2 \right) - 0$			
• ⁸ • ⁹	evaluate are state total a	a between $f(x)$ and $h(x)$ rea	• $8 \frac{19}{6}$ • $9 \frac{19}{3}$	7		
Not	es:			-		
		0 and $x = 2$ appear ex nihilo e differentiates at \bullet^6 then \bullet	b award \bullet^4 . ⁶ , \bullet^7 and \bullet^8 are not available. However,	• ⁹ is still		
	However, •	⁹ is still available.	t attempting to integrate at $ullet^6$, cannot ga	ain ● ⁶ , ● ⁷ or		
	• ⁹ is a strate		ded for correctly multiplying their solution	on at ● ⁸ , or		
_		r valid strategy applied to p				
			and the constant term must be dealt wit			
9.	equivalent d	ifficulty ie a polynomial of a	be gained for integrating an expression at least degree two. • ⁶ is unavailable for			
10.		 equivalent difficulty is a polynomial of at least degree two. •⁶ is unavailable for the integration of a linear expression. •⁸ must be as a consequence of substituting into a term where the power of x is not equal to 				

Commonly Observed Responses:	
Candidate A - Valid Strategy	Candidate B - Invalid Strategy
Candidates who use the strategy:	For example, candidates who integrate each of
Total Area = Area A + Area B	the four functions separately within an invalid strategy
A B Then mark as follows:	strategy
y = h(x)	• ³ ✓
Mark Area A for \bullet^3 to \bullet^8 then	Gain \bullet^4 if limits correct on
mark Area B for \bullet^3 to \bullet^8 and	$\int f(x)$ and $\int h(x)$
award the higher of the two.	or
• ⁹ is available for correctly	
adding two equal areas.	$\int g(x)$ and $\int k(x)$
	• ⁵ is unavailable
	Gain \bullet^6 for calculating either
	$\int f(x)$ or $\int g(x)$
	and
	$\int h(x)$ or $\int k(x)$
	Gain • ⁷ for correctly substituting at least twice Gain • ⁸ for evaluating at least two integrals correctly • ⁹ is unavailable
Candidate C	Candidate D
$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$ $\int_{0}^{2} \left(-\frac{1}{8}x^{2} - \frac{11}{4}x\right) dx \bullet^{5} \checkmark$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x \right) dx \qquad \bullet^{5} \checkmark$	$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x + 6 \right) dx \qquad \bullet^{5} \times$
$\frac{-1}{24}x^3 - \frac{11}{8}x^2 \qquad \bullet^6 \times$	$-\frac{1}{24}x^3 - \frac{11}{8}x^2 + 6x \qquad \bullet^6 \checkmark 1$
Candidate E	Candidate F
$\int = -\frac{1}{3}$ cannot be negative so $= \frac{1}{3} \bullet^8 \times$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
$\int \dots = -\frac{1}{3} \text{ cannot be negative so} = \frac{1}{3} \bullet^8 \times$ however, $= -\frac{1}{3}$ so Area $= \frac{1}{3} \bullet^8 \checkmark$	$\int_{0}^{2} \left(-\frac{1}{8}x^{2} + \frac{7}{4}x \right) dx \qquad \bullet^{5} \checkmark$
	$-\frac{1}{24}x^3 + \frac{7}{8}x^2$ • ⁶

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			·
• ¹ state cent	re of C ₁	• 1 (-3,-5)	
• ² state radiu	us of C ₁	• ² 5	
• ³ calculate distance between centres of C_1 and C_2		• ³ 20	
• ⁴ calculate i	radius of C ₂	• ⁴ 15	4
Notes:			
1. For ● ⁴ to b	e awarded radius of C ₂ must be greate	r than the radius of C ₁ .	

For ●⁴ to be awarded radius of C₂ must be greater than the radius of C₁.
 Beware of candidates who arrive at the correct solution by finding the point of contact by an

invalid strategy.

3. •⁴ is for $Distance_{c1c2} - r_{c1}$ but only if the answer obtained is greater than r_{c1} . Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
5 (b)			
	b in which centre of C_3 divides line entres of C_1 and C_2	• ⁵ 3:1	
• ⁶ determin	e centre of C_3	• ⁶ (6,7)	
• ⁷ calculate	radius of C ₃	• $r = 20$ (answer must be consistent with distance between contract)	
• ⁸ state equ	ation of C_3	between centres) • ⁸ $(x-6)^2 + (y-7)^2 = 400$	4
Notes:			
4. For \bullet^5 ac	cept ratios ±3:±1, ±1:±3, ∓3:±1, ∓1:	± 3 (or the appearance of $\frac{3}{4}$).	
However 7. Do not ac	 andidates arrive at an incorrect centre ⁸ is not available if either centre or r ccept 20² for •⁸. idates finding the centre by 'stepping 	adius appear ex nihilo (see note 5)	evidence
	$\bullet^5 \checkmark$ $\bullet^6 \times$ ollow through' ratio 1:3 $\longrightarrow (0, -1)$	Correct answer using the ratio 3:1 \longrightarrow (6,7) 16 $^{5} \checkmark$ 16 $^{6} \checkmark$ 12	16
	(-3,-5) 3 4	(-3,-5) 9	
	Observed Responses:		
Candidate A	id point of contros:	Candidate B	. 20
	id-point of centres: $5 \times$	$C_1 = (-3, -5) C_2(9, 11)$	r = 20
centre $C_3 = ($			
radius of C ₃ $(x-3)^2 + (y)^2$	8 1	$C_{3} = \frac{1}{4} \begin{pmatrix} 0 \\ -4 \end{pmatrix} \qquad \qquad \bullet^{5} \checkmark n$	ote 4 2
		$C_3 = (0, -1)$ • ⁷	
		$x^{2} + (y+1)^{2} = 400$ • ⁸	
	C - touches C_1 internally only	Candidate D - touches C_2 interv	nally only
• ⁵ ×		• ⁵ ×	
• ⁶ centre ($C_3 = (3,3) \times$	• ⁶ centre $C_3 = (3,3) \times$	
• ⁷ radius $e^{8(x-3)^2}$	of $C_3 = \text{radius of } C_2 = 15 \checkmark 1$ + $(y-3)^2 = 225 \checkmark 1$	• ⁷ radius of C ₃ = radius of C ₁ = 5 • $(x-3)^2 + (y-3)^2 = 25$ 1	√1
Candidate E	E - centre C_3 collinear with C_1, C_2		
• ⁶ e.g. centre	$e C_3 = (21, 27) \times$		
	$C_3 = 45$ (touch C_1 internally only) $\checkmark 1$ $(y-27)^2 = 2025$ $\checkmark 1$		

Question	Generic Scheme	Illustrative Scheme Max Mar				
6 (a)		•				
• ¹ Expands		• $\mathbf{p} \cdot \mathbf{q} + \mathbf{p} \cdot \mathbf{r}$				
• ² Evaluate	p.q	• $4\frac{1}{2}$				
• ³ Complete	es evaluation	• $4\frac{1}{2}$ • $+0=4\frac{1}{2}$	3			
Notes:						
1. For p .(q	$(+\mathbf{r}) = \mathbf{pq} + \mathbf{pr}$ with no other working \mathbf{q}	¹ is not available.				
Commonly	Observed Responses:					
6 (b)						
• ⁴ correct e	expression	• \mathbf{e}^{4} - q + p + r or equivalent	1			
6 (c)						
● ⁵ correct s	ubstitution	• ⁵ - q.q + q.p + q.r				
 ⁶ start eva 	luation	• ⁶ -9++3 $ \mathbf{r} \cos 30^\circ = 9\sqrt{3} - \frac{9}{2}$				
 ⁷ find expr 	ression for $ {f r} $	$\bullet^7 \mathbf{r} = \frac{3\sqrt{3}}{\cos 30}$	3			
Notes:		00000	<u> </u>			
	for -q ² +q.p+q.r					
	Observed Responses:					
Candidate /	· · · · · · · · · · · · · · · · · · ·	Candidate B				
$\begin{vmatrix} -\mathbf{q} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{p} + \mathbf{q} \cdot \mathbf{r} = 9\sqrt{3} - \frac{9}{2} & \bullet^{5} \checkmark \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 150^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{6} \times \\ \bullet^{7} \checkmark 1 & -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \checkmark 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2} & \bullet^{7} \land 1 \\ -9 + \frac{9}{2} + \frac{9}$			√ √ √			
$ \mathbf{r} =$	$\frac{3\sqrt{3}}{\cos 150}$	$\begin{vmatrix} \mathbf{r} \\ 2 \end{vmatrix} = 6$				

Question	Generic Scheme	Illustrative Scheme Max Mar				
7 (a)						
 ¹ integrate a term ² complete integration with constant 		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2			
Notes:						
Commonly O	bserved Responses:					
7 (b)						
 ³ substitute ⁴ substitute 	for cos 2 <i>x</i> for 1 and complete	$ \begin{array}{c} 3 3(\cos^2 x - \sin^2 x) \dots \\ or \ \dots (\sin^2 x + \cos^2 x) \\ \bullet^4 \\ \dots (\sin^2 x + \cos^2 x) = 4\cos^2 x - 2\sin^2 x \end{array} $				
Notes:			2			
 Candidate Candidate the questi 	substitution for $\cos 2x$ is acceptable s who show that $4\cos^2 x - 2\sin^2 x = 3$ s who quote the formula for $\cos 2x$ on cannot gain \bullet^3 .	$3\cos 2x + 1$ may gain both marks.	context of			
	bserved Responses:					
Candidate A $3\cos 2x + 1 =$	$(2\cos^2 x - 1) + (2\cos^2 x - 1) + (1 - 2\sin^2 x - 1)$	$x^{2}x)+1$ a^{3}				
Candidate B	$=4\cos^2 x - 2\sin^2 x$					
	$n^2 x = 2(\cos 2x + 1) - (1 - \cos 2x) \bullet^3 \checkmark$	/				
	$= 3\cos 2x + 1$ • ⁴	/				
7 (c)	- 50052x + 1					
● ⁵ interpret I	ink	$\bullet^5 -\frac{1}{2}\int \dots$				
• ⁶ state resul	t	• ⁶ $-\frac{3}{4}\sin 2x - \frac{1}{2}x + c$	2			
Notes:						
Commonly O Candidate A	bserved Responses:					
$\int \sin^2 x - 2\cos^2 x$	$s^2 x dx$					
$=\int (3\cos 2x +$						
$\frac{3}{2}\sin 2x + x +$	$c \bullet^{6} \times$					

Quest	tion	Generic Scheme	Illustrative Scheme	Max Mark	
8 (a) (i)					
• ¹ calculate T when $x = 20$		when $x = 20$	• ¹ 10·4 or 104	1	
8 (a) (ii)					
• ² calculate T when $x = 0$		when $x = 0$	• ² 11 or 110	1	
 Accept correct answers with no units. Accept 5√436 or 10√109 or equivalent for T(20). For correct substitution alone, with no calculation •¹ and •² are not available. For candidates who calculate T when x = 0 at •¹ then •² is available as follow through for calculating T when x = 20 in part(ii). 					
Commonly Observed Responses:					
a)		$\begin{array}{ccc} 10 \cdot 4 & \bullet^1 \checkmark \text{See note 1} \\ 110 & \bullet^2 \checkmark \end{array}$			
b)		econds $\bullet^{10} \times$ See note 7			

Question	Generic Scheme	Illustrative Scheme	Max Mark
8 (b)		•	
	• ³ write function in differential form	$\bullet^3 5(36 + x^2)^{\frac{1}{2}} + \dots$	
	 ⁴ start differentiation of first term 	• $^{4} 5 \times \frac{1}{2} ()^{-\frac{1}{2}} \dots$	
	 ⁵ complete differentiation of first term 		
	 ⁶ complete differentiation and set candidate's derivative = 0 	• $_{6} 5x(36 + x^{2})^{-\frac{1}{2}} - 4 = 0$ $5x = 4(36 + x^{2})^{\frac{1}{2}}$	
	• ⁷ start to solve	• ⁷ Or $\frac{5x}{(36 + x^2)^{\frac{1}{2}}} = 4$	
	 ⁸ know to square both sides 	$25x^{2} = 16(36 + x^{2})$ or $\frac{25x^{2}}{(36 + x^{2})} = 16$	
	• ⁹ find value of x	$\bullet^9 x = 8$	
	 ¹⁰ calculate minimum time 	• 10 T = 9.8 or 98 no units required	8
Notes:			
	rrect expansion of $()^{\frac{1}{2}}$ at stage \bullet^3 onl	5	0
7. When cons	rrect expansion of $()^{\frac{1}{2}}$ at stage \bullet^7 on re candidates have omitted units, the istent throughout their solution.	en \bullet^{10} is only available if the imp	lied units are
	only available as a follow through for he two extremes.	a value which is less than the va	lues obtained
Commonly	Observed Responses:		

Question	Generic Scheme	Illustrative Scheme				Max Mark	
9.							
 •¹ use compound angle formula •² compare coefficients 		• $k \sin 1 \cdot 5t \cos a - k \cos 1 \cdot 5t \sin a$ • $k \cos a = 36, k \sin a = 15$ stated explicitly					
 ³ process for ⁴ process for ⁵ equates exp 	•			• ³ $k = 39$ •4 $a = 0.39479rad or 22.6^{\circ}$ • ⁵			
 ⁶ write in standard format and attempt to solve ⁷ solve equation for 1.5<i>t</i> ⁸ process solutions for <i>t</i> 		$39\sin(1.5t - 0.39479) + 65 = 100$ • $\sin(1.5t - 0.39479) = \frac{35}{39}$ $\Rightarrow 1.5t - 0.39479 = \sin^{-1}\left(\frac{35}{39}\right)$					
		• ⁷		and	• ⁸ 2·422 1·615	8	
Notes:							

1. Treat $k \sin 1.5t \cos a - \cos 1.5t \sin a$ as bad form only if the equations at the \bullet^2 stage both contain *k*.

- 2. $39\sin 1.5t\cos a 39\cos 1.5t\sin a$ or $39(\sin 1.5t\cos a \cos 1.5t\sin a)$ is acceptable for \bullet^1 and \bullet^3 .
- 3. Accept $k\cos a = 36$ and $-k\sin a = -15$ for \bullet^2 .
- 4. •² is not available for $k \cos 1.5t = 36$ and $k \sin 1.5t = 15$, however, •⁴ is still available.
- 5. •³ is only available for a single value of k, k > 0.
- 6. •⁴ is only available for a single value of a.
- 7. The angle at \bullet^4 must be consistent with the equations at \bullet^2 even when this leads to an angle outwith the required range.
- 8. Candidates who identify and use any form of the wave equation may gain \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted for the form $k \sin(1 \cdot 5t a)$.
- 9. Candidates who work consistently in degrees cannot gain •⁸.
- 10. Do not penalise additional solutions at \bullet^8 .
- 11. On this occasion accept any answers which round to 1.0 and 1.6 (2 significant figures required).

[END OF MARKING INSTRUCTIONS]