2015 Mathematics

New Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely lllustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:
1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 One mark is available for each •. There are no half marks.
3 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.

6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve
Illustrative Scheme: $0^{5} x=2, x=-4$

- $\quad y=5, y=-7$

Markers should choose whichever method benefits the candidate, but not a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ should be simplified to 43
$\frac{15}{0.3}$ should be simplified to $50 \quad \frac{4 / 5}{3}$ should be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8 The square root of perfect squares up to and including 100 must be known.

9 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/ or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

10 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form (bad form only becomes bad form if subsequent working is correct), e.g.
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$
written as

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& 2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2 \\
& 2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \text { gains full credit; }
\end{aligned}
$$

- Repeated error within a question, but not between questions.

11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions.
All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Paper 2

Question	Generic Scheme	Illustrative Scheme	Max Mark
1(b)			
$-{ }^{5}$ calculate midpoint of AC - ${ }^{6}$ calculate gradient of median - ${ }^{7}$ determine equation of median		- ${ }^{5} \mathrm{M}_{\mathrm{AC}}=(4,5)$ - ${ }^{6} m_{\text {BM }}=2$ - ${ }^{7} y=2 x-3$	3

Notes:

4. ${ }^{6}$ and \cdot ' are not available to candidates who do not use a midpoint.
5..7 is only available as a consequence of using a non-perpendicular gradient and a midpoint.
5. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3 .
6. At \bullet^{7} accept $y-(-5)=2(x-(-1)), y-5=2(x-4), y-2 x+3=0$ or any other rearrangement of the equation.

Commonly Observed Responses:

Median through A

$\mathrm{M}_{B C}=(6,-1)$
$m_{A M}=\frac{-8}{11}$
$y+1=\frac{-8}{11}(x-6)$ or $y-7=\frac{-8}{11}(x+5)$
Award 1/3
1(c)
\bullet^{8} calculate x or y coordinate

- ${ }^{9}$ calculate remaining coordinate of the point of intersection

Median through C

$\mathrm{M}_{A B}=(-3,1)$
$m_{C M}=\frac{1}{8}$
$y-3=\frac{1}{8}(x-13)$ or $y-1=\frac{1}{8}(x+3)$
Award 1/3
$\bullet^{8} x=1$ or $y=-1$

- ${ }^{9} y=-1$ or $x=1$

2

Notes:

8. If the candidate's 'median' is either a vertical or horizontal line then award 1 out of 2 if both coordinates are correct, otherwise award 0 .

Commonly Observed Responses:
 For candidates who find the altitude through B in part (b)

$$
\begin{aligned}
& x=-\frac{1}{5} \\
& y=-\frac{7}{5}
\end{aligned}
$$

$\bullet^{9} \sqrt{1}$

Candidate A

(b) $\begin{aligned} & y-5=2(x-4) \quad \bullet^{7} \downarrow \\ & y=2 x-13 \quad \text {-error }\end{aligned}$
(c) $\begin{gathered}x-3 y=4 \\ y=2 x-13\end{gathered}$

Leading to $x=7$ and $y=1$

Question	Gener
$\mathbf{2}$ (a)	
$\bullet{ }^{1}$ interpret notation	
• ${ }^{2}$ state a correct expression	

Notes:

1. \bullet^{1} is not available for $g(f(x))=g(10+x)$ but \bullet^{2} may be awarded for $(1+10+x)(3-(10+x))+2$.

Commonly Observed Responses:

Candidate A

(b) $=-75-18 x-x^{2}$ or $-x^{2}-18 x-75$
$=-\left(x^{2}+18 x\right.$
$=-(x+9)^{2}$
$=-(x+9)^{2}+6$
(c) $\quad-(x+9)^{2}+6=0$

- ${ }^{6} \sqrt{1}$
$x=-9+\sqrt{6}$ or $-9-\sqrt{6}$
${ }^{6} \sqrt{ } 1$

Candidate B

$\begin{array}{ll}f(g(x)) \\ =10((1+x)-(3-x))+2 & \bullet^{\bullet^{2}} \wedge\end{array}$

2 (b)

${ }^{3}$ write $f(g(x))$ in quadratic form

Method 1

- ${ }^{4}$ identify common factor
- ${ }^{5}$ complete the square

Method 2

- ${ }^{4}$ expand completed square form and equate coefficients
${ }^{-}$process for q and r and write in required form
$\bullet^{3} 15+2 x-x^{2}$ or $-x^{2}+2 x+15$

Method 1

- ${ }^{4}-1\left(x^{2}-2 x\right.$ stated or implied by ${ }^{5}$
- ${ }^{5}-1(x-1)^{2}+16$

Method 2

- ${ }^{4} p x^{2}+2 p q x+p q^{2}+r$ and $p=-1$,
- ${ }^{5} q=-1$ and $r=16$

Note if $p=1 \bullet^{5}$ is not available

Notes:

2. Accept $16-(x-1)^{2}$ or $-\left[(x-1)^{2}-16\right]$ at \bullet^{5}.

Commonly Observed Responses:

Candidate A	
$-\left(x^{2}-2 x-15\right)$	$\bullet^{4} \checkmark$
$-\left(x^{2}-2 x+1-1-15\right)$	
$-(x-1)^{2}-16$	
Candidate D	
$15+2 x-x^{2}$	
$x^{2}-2 x-15$	$\bullet^{3} \checkmark$
$(x-1)^{2}-16$	$\bullet^{5} \times$
Eased, unitary coefficient of x^{2}	
(lower level skill)	

Candidate B	
$15+2 x-x^{2}$	\checkmark
$x^{2}-2 x-15$	
$p x^{2}+2 p q x+p$	r and $p=1$
$q=-1 \quad r=-1$	-5 \square^{2} eas

Candidate E

$$
\begin{array}{ll}
15+2 x-x^{2} & \bullet^{3} \checkmark \\
x^{2}-2 x-15 & \bullet{ }^{4} \checkmark \\
(x-1)^{2}-16
\end{array}
$$

Candidate C	
$-x^{2}+2 x+15$	$\bullet^{3} \checkmark$
$-(x+1)^{2} \ldots$	$\bullet^{4} \times$
$-(x+1)^{2}+14$	$\bullet^{5} x$

Candidate F

$-x^{2}+2 x+15$	$\bullet^{3} \checkmark$
$-(x+1)^{2} \ldots$	$\bullet^{4} \times$
$-(x+1)^{2}+16$	$\bullet^{5} \sqrt{ }$

2(c)

$\cdot{ }^{6}$ identify critical condition

- ${ }^{7}$ identify critical values

$$
\begin{gathered}
\bullet^{6}-1(x-1)^{2}+16=0 \\
\text { or } f((g(x)))=0
\end{gathered}
$$

Notes:

3. Any communication indicating that the denominator cannot be zero gains \bullet^{6}.
4. Accept $x=5$ and $x=-3$ or $x \neq 5$ and $x \neq-3$ at \bullet.
5. If $x=5$ and $x=-3$ appear without working award $1 / 2$.

Commonly Observed Responses:

Candidate A

$\frac{1}{-(x-1)^{2}+16}$	$\bullet{ }^{6} \downarrow$
$x \neq 5$	

Candidate B

$$
\begin{array}{ll}
\frac{1}{f(g(x))} & \\
f(g(x))>0 & \bullet^{6} \times \\
x=-3, x=5 & \bullet^{7} \checkmark \\
-3<x \quad x<5 &
\end{array}
$$

3(a)
$\cdot{ }^{1}$ determine the value of the required term

- $122 \frac{3}{4}$ or $\frac{91}{4}$ or $22 \cdot 75$

Notes:

1. Do not penalise the inclusion of incorrect units.
2. Accept rounded and unsimplified answers following evidence of correct substitution.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
3 (b)			
Method 1 (Considering both limits) - ${ }^{2}$ know how to calculate limit - ${ }^{3}$ know how to calculate limit - ${ }^{4}$ calculate limit - ${ }^{5}$ calculate limit - ${ }^{6}$ interpret limits and state conclusion Method 2 (Frog first then numerical for toad) - ${ }^{2}$ know how to calculate limit - ${ }^{3}$ calculate limit - ${ }^{4}$ determine the value of the highest term less than 50 $\cdot{ }^{5}$ determine the value of the lowest term greater than 50 - ${ }^{6}$ interpret information and state conclusion Method 3 (Numerical method for toad only) - ${ }^{2}$ continues numerical strategy ${ }^{-3}$ exact value $\bullet{ }^{4}$ determine the value of the highest term less than 50 $\cdot{ }^{5}$ determine the value of the lowest term greater than 50 - ${ }^{6}$ interpret information and state conclusion Method 4 (Limit method for toad only) $\bullet^{2} \& \bullet^{3}$ know how to calculate limit - ${ }^{4} \& \bullet^{5}$ calculate limit - ${ }^{6}$ interpret limit and state conclusion		Method 1 -2 $\frac{32}{1-\frac{1}{3}}$ or $\mathrm{L}=\frac{1}{3} \mathrm{~L}+32$ - $\frac{13}{1-\frac{3}{4}}$ or $\mathrm{L}=\frac{3}{4} \mathrm{~L}+13$ - ${ }^{4} 48$ ${ }^{5} 52$ - ${ }^{6} 52>50 \therefore$ toad will escape Method 2 - ${ }^{2} \frac{32}{1-\frac{1}{3}}$ or $\mathrm{L}=\frac{1}{3} \mathrm{~L}+32$ - 38 - ${ }^{4} 49 \cdot 803 \ldots$ - ${ }^{5} 50 \cdot 352 \ldots$ - ${ }^{6} 50 \cdot 352>50 \therefore$ toad will escape Method 3 - ${ }^{2}$ numerical strategy - ${ }^{3} 30 \cdot 0625$ - ${ }^{4}$ 49-803... - ${ }^{5} 50 \cdot 352 \ldots$ - ${ }^{6} 50 \cdot 352>50 \therefore$ toad will escape Method 4 - $2 \& \cdot \frac{13}{1-\frac{3}{4}}$ or $L=\frac{3}{4} \mathrm{~L}+13$ - ${ }^{4} \& \bullet^{5} 52$ - ${ }^{6} 52>50 \therefore$ toad will escape	

Notes:

3. \cdot^{6} is unavailable for candidates who do not consider the toad in their conclusion.
4. For candidates who only consider the frog numerically award $1 / 5$ for the strategy.

Commonly Observed Responses:

Error with frogs limit - Frog Only	Using Method 3 Toad Only	Toad Only	Only
			$\bullet \checkmark$
$\mathrm{L}_{\mathrm{F}}=\frac{3}{1-\frac{1}{3}} \quad 0^{3} \times$	$\bullet^{3} \checkmark$	${ }^{2}$	$\bullet \checkmark$
3	issing		${ }^{4} 49 \cdot 7 .$. roundin
$\mathrm{L}_{\mathrm{F}}=51 \quad{ }^{5}$	-352...	\times	error \times
50	. 352	$\cdot 1 . . r$ rounding error \times	${ }^{5} 50 \cdot 1 \ldots$
\therefore frog will escape.	so the toad escapes. \downarrow	so the toad escapes.	${ }^{-6} 50.1>50$ so the toad escapes.

Toad Conclusions

Limit $=52$
This is greater than the height of the well and so the toad will escape - award \bullet^{6}.

However

Limit $=52$ and so the toad escapes - $\bullet^{6 \wedge}$.

Iterations	$t_{1}=13$	
$f_{1}=32$		
$f_{2}=42 \cdot 667$	$t_{2}=22 \cdot 75$	
$f_{3}=46 \cdot 222$	$t_{3}=30 \cdot 0625$	
$f_{4}=47.407$	$t_{4}=35 \cdot 547$	
$f_{5}=47.802$	$t_{5}=39.660$	
$f_{6}=47.934$	$t_{6}=42.745$	
$f_{7}=47.978$	$t_{7}=45.059$	
$f_{8}=47.993$	$t_{8}=46 \cdot 794$	
$f_{9}=47.998$	$t_{9}=48.096$	
	$t_{10}=49.072$	
	$t_{11}=49.804$	
	$t_{12}=50.353$	

Commonly Observed Responses:

Candidate A - Valid Strategy
Candidates who use the strategy:

Then mark as follows:

adding two equal areas.

Candidate C
$\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$
$\int_{0}^{2}\left(-\frac{1}{8} x^{2}-\frac{11}{4} x\right) d x$
$\frac{-1}{2} x^{3}-\frac{11}{8} x^{2}$
\bullet^{5}

$\bullet^{6} \times$
Candidate E
$\int \ldots=-\frac{1}{3}$ cannot be negative so $=\frac{1}{3} \bullet^{8} \times$
however, $=-\frac{1}{3}$ so Area $=\frac{1}{3}$
$\bullet 8 \checkmark$

Candidate B - Invalid Strategy

For example, candidates who integrate each of the four functions separately within an invalid strategy
$\bullet^{3} \checkmark$
Gain \bullet^{4} if limits correct on

$$
\begin{aligned}
& \int f(x) \text { and } \int h(x) \\
& \text { or } \\
& \int g(x) \text { and } \int k(x)
\end{aligned}
$$

${ }^{5}$ is unavailable
Gain \bullet^{6} for calculating either

$$
\begin{gathered}
\int f(x) \text { or } \int g(x) \\
\text { and } \\
\int h(x) \text { or } \int k(x)
\end{gathered}
$$

Gain \bullet^{7} for correctly substituting at least twice
Gain \bullet^{8} for evaluating at least two integrals correctly

- ${ }^{9}$ is unavailable

Candidate D

$\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$
$\int_{0}^{2}\left(-\frac{1}{8} x^{2}-\frac{11}{4} x+6\right) d x \quad \bullet^{5} \times$
$-\frac{1}{24} x^{3}-\frac{11}{8} x^{2}+6 x \quad \bullet^{6} \sqrt{ } 1$

Candidate F

$\int_{0}^{2}\left(\frac{1}{4} x^{2}-\frac{1}{2} x+3-\frac{3}{8} x^{2}-\frac{9}{4} x+3\right) d x$
$\int_{0}^{2}\left(-\frac{1}{8} x^{2}+\frac{7}{4} x\right) d x$

$-\frac{1}{24} x^{3}+\frac{7}{8} x^{2}$

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			
\cdot^{1} state centre of C_{1}		$\bullet^{1}(-3,-5)$	
${ }^{2}{ }^{2}$ state radius of C_{1}		$\bullet^{2} 5$	
- ${ }^{3}$ calculate distance between centres of C_{1} and C_{2}		$\bullet^{3} 20$	
- ${ }^{4}$ calculate radius of C_{2}		- ${ }^{4} 15$	4
Notes:			
1. For \bullet^{4} to be awarded radius of C_{2} must be greater than the radius of C_{1}. 2. Beware of candidates who arrive at the correct solution by finding the point of contact by an invalid strategy. 3. \bullet^{4} is for Distance ${ }_{c 1 c 2}-r_{c 1}$ but only if the answer obtained is greater than $r_{c 1}$.			
Commonly Observed Responses:			

Question \quad Generic Scheme	Illustrative Scheme	Max Mark
5 (b)		
- 5 find ratio in which centre of C_{3} divides line joining centres of C_{1} and C_{2} - ${ }^{6}$ determine centre of C_{3} - ${ }^{7}$ calculate radius of C_{3} ${ }^{8}{ }^{8}$ state equation of C_{3}	- ${ }^{5} 3: 1$ - ${ }^{6}(6,7)$ - ${ }^{7} r=20$ (answer must be consistent with distance between centres) - ${ }^{8}(x-6)^{2}+(y-7)^{2}=400$	4
Notes:		
4. For ${ }^{5}$ accept ratios $\pm 3: \pm 1, \pm 1: \pm 3, \mp 3: \pm 1, \mp 1$: 5. \bullet^{7} is for $r_{c 2}+r_{c 1}$. 6. Where candidates arrive at an incorrect centre However \bullet^{8} is not available if either centre or r 7. Do not accept 20^{2} for \bullet^{8}. 8. For candidates finding the centre by 'stepping for \bullet^{5} and \bullet^{\bullet} : Correct 'follow through' using the ratio 1:3 $\longrightarrow(0,-1)$ $(-3,-5)$	± 3 (or the appearance of $\frac{3}{4}$). or radius from working then \bullet^{8} is a radius appear ex nihilo (see note 5) out' the following is the minimum Correct answer using the ratio 3:1 16 $\begin{aligned} & \bullet^{5} \checkmark \\ & \bullet^{6} \checkmark \end{aligned}$ $(-3,-5)$	ailable. vidence
Commonly Observed Responses:		
Candidate A using the mid-point of centres: centre $\mathrm{C}_{3}=(3,3)$ radius of $\mathrm{C}_{3}=20$ $(x-3)^{2}+(y-3)^{2}=400$	Candidate B $\begin{aligned} & \mathrm{C}_{1}=(-3,-5) \underbrace{}_{1: 3} \rightarrow \mathrm{C}_{2}(9,11) \\ & C_{3}=\frac{1}{4}\binom{0}{-4} \\ & C_{3}=(0,-1) \\ & x^{2}+(y+1)^{2}=400 \end{aligned}$	$\mathrm{r}=20$ 4
Candidate C - touches C_{1} internally only - ${ }^{5} \times$ - ${ }^{6}$ centre $\mathrm{C}_{3}=(3,3) \times$ ${ }^{-7}$ radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{2}=15 \square 1$. $8(x-3)^{2}+(y-3)^{2}=225$	Candidate D - touches C_{2} inte - ${ }^{5} \times$ - ${ }^{6}$ centre $\mathrm{C}_{3}=(3,3) \times$ ${ }^{7}$ radius of $\mathrm{C}_{3}=$ radius of $\mathrm{C}_{1}=$. $8(x-3)^{2}+(y-3)^{2}=25$	ally only
Candidate \mathbf{E} - centre C_{3} collinear with $\mathrm{C}_{1}, \mathrm{C}_{2}$ $-{ }^{5} \times$ - ${ }^{6}$ e.g. centre $C_{3}=(21,27) \times$ ${ }^{7}$ radius of $\mathrm{C}_{3}=45$ (touch C_{1} internally only) $\sqrt{ } 1$ - $8(x-21)^{2}+(y-27)^{2}=2025$		

Question	Illustrative Scheme	Max Mark
8 (a) (i)		
- ${ }^{1}$ calculate T when $x=20$	- ${ }^{1} 10 \cdot 4$ or 104	1
8 (a) (ii)		
- ${ }^{2}$ calculate T when $\mathrm{x}=0$	- ${ }^{2} 11$ or 110	1
Notes:		
1. Accept correct answers with no units. 2. Accept $5 \sqrt{436}$ or $10 \sqrt{109}$ or equivalent for $T(20)$. 3. For correct substitution alone, with no calculation \bullet^{1} and \bullet^{2} are not available. 4. For candidates who calculate T when $x=0$ at \bullet^{1} then \bullet^{2} is available as follow through for calculating T when $x=20$ in part(ii).		
Commonly Observed Responses:		
a) (i) $10 \cdot 4 \quad \bullet^{1} \checkmark$ See note 1 (ii) 110 b) leading to 9.8 seconds ${ }^{\bullet 0} \times$ See note 7		

Question \quad Generic Scheme	Illustrative Scheme	Max Mark
9.		
- ${ }^{1}$ use compound angle formula - ${ }^{2}$ compare coefficients - ${ }^{3}$ process for k - ${ }^{4}$ process for a - ${ }^{5}$ equates expression for h to 100 - 6 write in standard format and attempt to solve -7 solve equation for $1.5 t$ - 8 process solutions for t	$\bullet^{1} k \sin 1 \cdot 5 t \cos a-k \cos 1 \cdot 5 t \sin a$ - ${ }^{2} k \cos a=36, k \sin a=15$ stated explicitly - $^{3} k=39$ -4 $a=0 \cdot 39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$ $\cdot{ }^{5}$$\begin{aligned} & 39 \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)+65=100 \\ & .6 \sin (1 \cdot 5 t-0 \cdot 39479 \ldots)=\frac{35}{39} \\ & \quad \Rightarrow 1 \cdot 5 t-0 \cdot 39479 \ldots=\sin ^{-1}\left(\frac{35}{39}\right) \end{aligned}$ \bullet^{7} \bullet^{8} \bullet^{7} $1.5 t=1.508$ and 2.422 \bullet^{8} $t=1.006$ and 1.615	8

Notes:

1. Treat $k \sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a$ as bad form only if the equations at the \bullet^{2} stage both contain k.
2. $39 \sin 1 \cdot 5 t \cos a-39 \cos 1 \cdot 5 t \sin a$ or $39(\sin 1 \cdot 5 t \cos a-\cos 1 \cdot 5 t \sin a)$ is acceptable for \bullet^{1} and ${ }^{3}$.
3. Accept $k \cos a=36$ and $-k \sin a=-15$ for \bullet^{2}.
4. \bullet^{2} is not available for $k \cos 1 \cdot 5 t=36$ and $k \sin 1 \cdot 5 t=15$, however, \bullet^{4} is still available.
5. \bullet^{3} is only available for a single value of $k, k>0$.
6. \bullet^{4} is only available for a single value of a.
7. The angle at \bullet^{4} must be consistent with the equations at \bullet^{2} even when this leads to an angle outwith the required range.
8. Candidates who identify and use any form of the wave equation may gain \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \sin (1 \cdot 5 t-a)$.
9. Candidates who work consistently in degrees cannot gain \bullet^{8}.
10. Do not penalise additional solutions at \bullet^{8}.
11. On this occasion accept any answers which round to 1.0 and 1.6 (2 significant figures required).

Commonly Observed Responses:		
Response 1: Missing information in working.		
$$	Candidate B $\cos a=36$ $\sin a=15$ $\tan a=\frac{15}{36}$ $a=0 \cdot 39479 \ldots$ rad or $22 \cdot 6^{\circ} \times$ Does not satisfy equations at \bullet^{2}	Candidate C $k \sin 1 \cdot 5 t \cos a-k \cos 1 \cdot 5 t \sin a$ $k \cos a=36, \quad k \sin a=15$ $k=39$ or -39 $\tan a=\frac{15}{36} \quad \bullet^{1} \checkmark$ $a=0 \cdot 39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$ or $a=3 \cdot 53638 \ldots$ rad or $202 \cdot 6^{\circ}$
Response 2: Correct expansion of $k \sin (x+a)^{\circ}$ and possible errors for \bullet^{2} and \bullet^{4}		
Candidate D $k \cos a=36$ $k \sin a=15$ $\tan a=\frac{36}{15}$ $a=1 \cdot 176 \ldots \mathrm{rad}$ or $67 \cdot 4^{\circ}$	Candidate E $k \cos a=15 \quad \bullet^{2} \times$ $k \sin a=36 \quad$ $\tan a=\frac{36}{15} \quad \bullet \sqrt{ }$ $a=1 \cdot 176 \ldots \mathrm{rad}$ or $67 \cdot 4^{\circ}$	$$
Response 3: Labelling incorrect, $\sin (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}$ from formula list.		
Candidate G $k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B}$ $k \cos a=36$ $k \sin a=15$ $\tan a=\frac{15}{36}$ $a=0.39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$	Candidate H $k \sin \mathrm{~A} \cos \mathrm{~B}-k \cos \mathrm{~A} \sin \mathrm{~B}$ $k \cos 1 \cdot 5 t=36$ $k \sin 1 \cdot 5 t=15$ $\tan 1 \cdot 5 t=\frac{15}{36}$ $1 \cdot 5 t=0 \cdot 39479 \ldots \mathrm{rad}$ or $22 \cdot 6^{\circ}$	Candidate I $k \sin A \cos B$ $k \cos \mathrm{~B}=36$ $k \sin \mathrm{~B}=15$ $\tan \mathrm{~B}=\frac{15}{36}$ $\mathrm{~B}=0.39479 \ldots \mathrm{sad} B$
Candidate J $\begin{aligned} & 39 \sin (1 \cdot 5 t-0 \cdot 395)=100 \\ & \sin (1 \cdot 5 t-0 \cdot 395)=\frac{100}{39} \\ & 1 \cdot 5 t-0 \cdot 395=\sin ^{-1} \frac{100}{39} \end{aligned}$		$\begin{array}{ll} & \begin{array}{ll} \text { 395 }=100 & \bullet^{6} \times \\ & \bullet^{7} \times \\ \text { in }^{-1} \frac{39}{100} & \bullet^{8} \times \end{array} \end{array}$

