MATHSFORNURSES

Drug Strength as a Ratio - Worked Solutions

Question 1

A patient is prescribed 500 mg of a drug that is available dissolved in a solution in a 1 in 1000 ratio. How much of the solution should the patient be given?

The drug is available in a 1 in 1000 ratio, which means that there is 1 g of the drug in 1000 ml of the solution. You can use this as your stock dose.

Because the prescribed dose is in milligrams, convert this 1 g into 1000 mg .
To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 500 mg . The stock dose is 1000 mg and it is in a volume of 1000 ml .

First, work out $500 \div 1000$. This will give you an answer of 0.5 .
Then work out $0.5 \times 1000 \mathrm{ml}$, which is 500 ml .

Answer: 500ml

Question 2

A patient is prescribed 35 mg of a drug that is available dissolved in a solution in a 1 in 100 ratio. How much of the solution should the patient be given?

The drug is available in a 1 in 100 ratio, which means that there is 1 g of the drug in 100 ml of the solution. You can use this as your stock dose.

Because the prescribed dose is in milligrams, convert this 1 g into 1000 mg .
To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 35 mg . The stock dose is 1000 mg and it is in a volume of 1000 ml .

First, work out $35 \div 1000$. This will give you an answer of 0.035 .
Then work out $0.035 \times 100 \mathrm{ml}$, which is 3.5 ml .
Answer: 3.5ml

MATHSFORNURSES

Drug Strength as a Ratio - Worked Solutions

Question 3

A patient is prescribed 25 mg of a drug that is available dissolved in a solution in a 1 in 10000 ratio. How much of the solution should the patient be given?

The drug is available in a 1 in 10000 ratio, which means that there is 1 g of the drug in 10000 ml of the solution. You can use this as your stock dose.

Because the prescribed dose is in milligrams, convert this 1 g into 1000 mg .
To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 25 mg . The stock dose is 1000 mg and it is in a volume of 10000 ml .

First, work out $25 \div 1000$. This will give you an answer of 0.025 .
Then work out $0.025 \times 10000 \mathrm{ml}$, which is 250 ml .
Answer: 250ml

Question 4

A patient is prescribed 400 mg of a drug that is available dissolved in a solution in a 1 in 500 ratio. How much of the solution should the patient be given?

The drug is available in a 1 in 500 ratio, which means that there is 1 g of the drug in 500 ml of the solution. You can use this as your stock dose.

Because the prescribed dose is in milligrams, convert this 1 g into 1000 mg .
To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 400 mg . The stock dose is 1000 mg and it is in a volume of 500 ml .

First, work out $400 \div 1000$. This will give you an answer of 0.4 .
Then work out $0.4 \times 500 \mathrm{ml}$, which is 200 ml .
Answer: 200ml

MATHSFORNURSES

Drug Strength as a Ratio - Worked Solutions

Question 5

A patient is prescribed 120 mg of a drug that is available dissolved in a solution in a $\mathbf{1}$ in $\mathbf{2 0 0 0}$ ratio. How much of the solution should the patient be given?

The drug is available in a 1 in 2000 ratio, which means that there is 1 g of the drug in 2000 ml of the solution. You can use this as your stock dose.

Because the prescribed dose is in milligrams, convert this 1 g into 1000 mg .
To work out the volume that you would give, divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in.

The prescribed dose is 120 mg . The stock dose is 1000 mg and it is in a volume of 2000 ml .

First, work out $120 \div 1000$. This will give you an answer of 0.12 .
Then work out $0.12 \times 2000 \mathrm{ml}$, which is 240 ml .
Answer: 240ml

