

Timber and Steel Design

Composite Construction 1

- Composite Steel-Concrete Beam
- Effective Flange Width
- Non-encased Composite Sections
- Shear Transfer
- Partially Composite Beams

Mongkol JIRAVACHARADET

SURANAREE

INSTITUTE OF ENGINEERING

UNIVERSITY OF TECHNOLOGY

SCHOOL OF CIVIL ENGINEERING

Composite Construction

การก่อสร้างแบบวัสดุผสม

- Composite construction refers to two load-carrying structural members that are integrally connected and deflect as a single unit
- An example of this is composite metal deck with concrete fill, steel filler beams, and girders made composite by using headed stud connectors

Composite Structural Elements in Buildings

Composite Beam in Bridge

Advantages of Composite Construction

- ☑ It is typical to have a reduced structural steel frame cost
- ✓ Weight of the structural steel frame may be decreased which may reduce foundation costs
- ☑ Reduced live load deflections
- Shallower beams may be used which might reduce building height
- Increased span lengths are possible

Disadvantages of Composite Construction

- The additional subcontractor needed for shear connector installation will increase field costs
- Installation of shear connectors is another operation to be included in the schedule
- A concrete flatwork contractor who has experience with elevated composite slabs should be secured for the job

Installation of Decking

- Metal decking is placed on the structural steel at predetermined points in the erection sequence
- Metal decking may be installed by the steel erection contractor or a separate decking contractor

Shear Connectors

- Depending on the welding process used, the tip of the shear connector may be placed in a ceramic ferrule (arc shield) during welding to retain the weld
- Shear connectors create a strong bond between the steel beam and the concrete floor slab which is poured on top of the metal decking
- This bond allows the concrete slab to work with the steel beams to reduce live load deflection

Installation of Shear Connectors

- The electrical arc process is commonly used for stud welding
 - An arc is drawn between the stud and the base metal
 - The stud is plunged into the molten steel which is contained by the ceramic ferrule
 - The metal solidifies and the weld is complete
- The ferrules are removed before the concrete is poured

Installation of Concrete

- Concrete is installed by a concrete contractor on top of the composite metal decking, shear connectors, and welded wire fabric or rebar grid (crack control reinforcing)
- Pumping is a typical installation method for concrete being placed on metal decking
- 1,000 to 1,500 m² of concrete slab may be installed per day depending on slab thickness and crew size (Ruddy 1986)

Composite Beams (คานวัสดุผสม)

Beam encased in concrete

คานเหล็กหุ้มคอนกรีต การส่งผ่านแรงเฉือนอาศัยแรงยึดเหนี่ยวที่ผิว ระหว่างเหล็กและคอนกรีต

Shear transfer made by bond and friction along top of W section and by the shearing strength of the concrete along the dotted lines

Concrete slab on steel beam

คานเหล็กยึดติดกับพื้นคอนกรีต การส่งผ่านแรงเฉือน อาศัยอุปกรณ์เชิงกล

Connecting the steel beam to the reinforced concrete slab it supports, causing the two parts to act as a unit.

Beam encased in concrete

ัว.ส.ท

(คานเหล็กหุ้มด้วยคอนกรีตโดยรอบ)

- คอนกรีตหุ้มด้านข้างและด้านล่างคานเหล็ก จะต้องหนาไม่น้อยกว่า 50 มม.
- คอนกรีตหุ้มเหนือปีกคานจะต้องหนาไม่น้อย
 กว่า 37.5 มม. และหุ้มใต้ปีกคานหนาไม่น้อย
 กว่า 50 มม.
- คานเหล็กหุ้มด้วยคอนกรีตจะต้องมีเหล็ก ตะแกรงหรือเหล็กเสริมรอบหน้าตัดเพื่อ ป้องกันการกระเทาะของคอนกรีต

Shored vs. Unshored Construction

Shored construction – the steel beam or steel deck (with formwork, wet concrete) is supported by shoring as shown below until the concrete has cured and the section acts compositely. → Lighter steel section

Unshored construction – the steel beam or steel deck supports formwork, concrete and its selfweight.

Nonencased Composite Sections

Modular ratio: $n = E_s/E_c$

 $E_s = 2.1 \times 10^6 \text{ kg/cm}^2$

For $w_c = 1.45\text{-}2.48$ ton/m³ (usually $w_c = 2.4$ ton/m³)

$$E_c = 4,270 \ w_c^{1.5} \sqrt{f_c'} \ \Rightarrow \ E_c = 15,100 \sqrt{f_c'}$$
 for normal wt. concrete

Before concrete hardens bending stress in steel beam from dead load of wet concrete and self-weight of beam must not exceed the allowable bending stress of beam

$$f_s = \frac{M_D}{S_s} \le F_b$$

where M_D = Dead load moment and S_s = Section modulus of steel beam

Flexural Strength of Composite Section

After concrete hardens Transformed section (concrete to steel)

Stress in steel:
$$f_s = \frac{M_D}{S_s} + \frac{M_L}{S_{trbot}} \le 0.9 F_y$$
, $S_{trbot} = \frac{I_{tr}}{y_h}$

Stress in concrete:
$$f_c = \frac{M_L}{n \, S_{trtop}} \leq \, 0.45 \, f_c' \, , \qquad \, \, S_{trtop} \, = \, \frac{I_{tr}}{\overline{y}}$$

Composite Steel Beam - Concrete Slab Interaction

Shear Connectors Weld Spiral connectors Weld Channel connectors

Shear Connectors

Shear connectors are an essential component of composite beams.

They can be

- welded stud shear connectors (most common)
- · welded channels
- · high strength bolts

complete shear connection - the strength of the beam cross section is *not limited* by the strength of the shear connection

partial shear connection - the strength of the shear connection *limits* the section capacity

Horizontal Shear Transfer

Shear Stud

Shear connector spacings

melt both base of stud and workpiece.

AISC ASD-89

ว.ส.ท.

- ต้องมีระยะหุ้มคอนกรีตด้านข้างอย่างน้อย 2.5 ซม.
 ยกเว้นหมุดเฉือนที่ติดตั้งในร่องของพื้นเหล็กรีดลอน
- ถ้าไม่อยู่ตรงกับเอวคาน ขนาดหมุดต้องไม่เกิน 2.5 เท่า ความหนาปีกคาน
- ระยะห่างน้อยที่สุดตามแนวยาวคือ 6 เท่าขนาดหมุด
 และตามขวางคือ 4 เท่าขนาดหมุด
- ระยะห่างมากของหมุดต้องไม่เกิน 8 เท่าความหนาพื้น

ว.ส.ท.

For one connector (q), ton

CONNECTOR	f' _c , ksc		
CONNECTOR	210	245	≤ 280
12 x 50 mm hooked or headed stud	2.27	2.45	2.63
16 x 62.5 mm hooked or headed stud	3.57	3.84	4.11
19 x 75 mm hooked or headed stud	5.13	5.58	5.94
22 x 87.5 mm hooked or headed stud	6.96	7.5	8.04
Channel C75 x 6.92	0.78w	0.85w	0.91w
Channel C100 x 9.36	0.83w	0.91w	0.96w
Channel C125 x 13.4	0.90w	0.96w	1.02w

w = length of channel, cm

Shear Stud Sizes

Size	HD (mm)	HT (mm)	B (mm)	L (mm)
M19 × 65 mm	25	10	19	65
M19 × 85 mm	25	10	19	85
M19 × 105 mm	25	10	19	105
M19 × 125 mm	25	10	19	125
M19 × 150 mm	25	10	19	150
M19 × 200 mm	25	10	19	200

What is the allowable shear load (q)?

Allowable Horizontal Shear Load

AISC LRFD-93

Based on AISC-LRFD93 Eq.I5-1 with a safety factor of 2.

$$q \; = \; 0.25 \, A_{sc} \, \sqrt{\, f_c^{\prime} \, E_c^{}} \; \leq \; 0.5 \, A_{sc} \, F_u^{}$$

where A_{sc} = Cross-section area of shear stud, cm²

f'_c = Compressive strength of concrete, kg/cm²

E_c = Young's modulus of concrete, kg/cm²

 F_u = Tensile strength of shear stud, kg/cm²

Example: For M19×85mm with $f'_c = 240 \text{ kg/cm}^2$

$$A_{sc} = \frac{\pi}{4} \times 1.9^2 = 2.84 \text{ cm}^2$$

$$E_c = 15,100\sqrt{240} = 233,928 \text{ kg/cm}^2$$

q = 5.32 ton

$$q = 0.25 \times 2.84 \sqrt{240 \times 233,928} / 10^3$$

$$= 5.32 \text{ ton} < 0.5 \, A_{sc} \, F_{\mu} = 0.5 \times 2.84 \times 4.0 = 5.68 \text{ ton}$$

Design of Shear Connectors

Neutral axis in slab

$$V_h = \frac{A_s F_y}{2}$$

Neutral axis in beam

$$V_h = \frac{0.85 f_c' A_c}{2}$$

by using a smaller V_h

 N_1 = Number of connectors = V_h/q

Strength of one connector, ton

ตัวอย่างที่ 19-1 จงออกแบบหน้าตัดวัสดุผสมโดยใช้เหล็ก A36 และข้อกำหนด AISC สำหรับ คานในรูป ไม่มีการใช้ค้ำยัน คานไม่ถูกเฉือนมุม และเป็นคานช่วงเดี่ยว จงพิจารณาระยะแอ่นตัว จากน้ำหนักบรรทุกคงที่และน้ำหนักบรรทุกจร ใช้ข้อมูลดังนี้:

LL = 500 ก.ก./ม.², ฐ้าหนักเพดาน = 50 ก.ก./ม.² น้ำหนักผนังกั้น = 75 กก./ม.², ฐ้าหนักคอนกรีต = 2,400 ก.ก./ม.³ $f_c' = 210$ กก./ชม.², $f_c' = 94.5$ กก./ชม.², n = 9

วิธีทำ คำนวณโมเมนต์และแรงเฉือน:

น้ำหนักบรรทุกขณะก่อสร้าง

พื้น = (0.10)(2,400)(3.0) = 720 ก.ก./เมตร

สมมุติน้ำหนักคาน(W400x66) = <u>66</u> ก.ก./เมตร

น้ำหนักทั้งหมด = 786 ก.ก./เมตร

 $M_D = (0.786)(9)^2/8$ = 7.96 ตัน-เมตร

น้ำหนักบรรทุกหลังคอนกรีตแข็งตัว

เพดาน = 3(50) = 150 ก.ก./เมตร

ผนังกั้น = 3(75) = 225 ก.ก./เมตร

LL = 3(500) = <u>1,500</u> ก.ก./เมตร

น้ำหนักทั้งหมด = 1,875 ก.ก./เมตร

 $M_{i} = (1.875)(9)^{2}/8$ = 18.98 ตัน-เมตร

โมเมนต์มากที่สุด $M_{max} = M_D + M_L = 7.96 + 18.98 = 26.94 ตัน-เมตร แรงเฉือนมากที่สุด <math>V_{max} = (9/2)(0.786 + 1.875) = 11.97$ ตัน ความกว้างประสิทธิผลของพื้น:

โมดูลัสหน้าตัดที่ต้องการ:

 S_{tr} สำหรับ M_{max} = (26.94)(100)/(0.66 x 2.5) = 1,633 ซม. 3 สมมุติว่ามีการยึดรั้งค้านข้างสำหรับปีกรับแรงอัค

$$S_s$$
 สำหรับ $M_D = (7.96)(100)/(0.66 \times 2.5) = 482 ซม.3$

ลองเลือกใช้หน้าตัด W400x66 ($A_s = 84.12 \text{ ซม.}^2, d = 400 \text{ ม.ม.},$ $t_w = 8 \text{ ม.ม.}, t_f = 13 \text{ ม.ม.}, t_s = 23,700 \text{ ซม.}^4, t_s = 1,190 \text{ ซม.}^3)$

คุณสมบัติของหน้าตัดวัสดุผสม

A = 84.12 +
$$(10)(225/9)$$
 = 334 $\mathfrak{V}\mathfrak{l}$.

$$y_b = (84.12x20 + 10x25x45)/334 = 38.7$$
 %1.

$$I_{tr} = 23,700+84.12(38.7-20)^2+(1/12)(25)(10)^3$$

$$S_{tr bot} = 65,122/38.7 = 1,683 \text{ M}.^3$$

$$S_{tr top} = 65,122/(50-34.7) = 5,763 \text{ M}.^3$$

ตรวจสอบหน่วยแรงที่เกิดขึ้นบนหน้าตัด:

ก่อนคอนกรีตแข็งตัว:

หลังคอนกรีตแข็งตัว:

$$f_{s2} = f_{s1} + M_L/S_{trbot} = 669 + 18.98(1,000)(100)/1,683$$
 $= 1,797$ กก./ชม. $^2 < 0.9F_y = 2,250$ กก./ชม. 2 OK
 $f_c = M_L/nS_{trtop} = 18.98(1,000)(100)/(9x5,763)$
 $= 36.6$ กก./ชม. $^2 < f_c = 94.5$ กก./ชม. 2 OK

คำนวณระยะแอ่นตัว:

ก่อนคอนกรีตแข็งตัว
$$\Delta_{\textit{DL}} = \frac{5}{384} \frac{7.86 \times 900^4}{(2.1 \times 10^6)(23,700)}$$

$$= 1.35~\text{ซม.} < [900/360 = 2.5~\text{ซม.}] ~~\text{OK}$$

หลังคอนกรีตแข็งตัว
$$\Delta_{\scriptscriptstyle LL} = \frac{5}{384} \frac{18.75 \times 900^4}{(2.1 \times 10^6)(65,122)}$$
 = 1.17 ซม. $<$ [900/360 = 2.5 ซม.] **OK**

อุปกรณ์ยึดรับแรงเฉือนสำหรับพฤติกรรมวัสคุผสมเต็มที่:

ลองใช้สลักเกลียว 19 ม.ม. ยาว 7.5 ซม.

เส้นผ่าศูนย์กลางสลักเกลียวมากที่สุด
$$= 2.5 t_f = 2.5(1.3)$$

แรงเฉือนมากที่สุดในแนวนอน:

$$V_{h} \; = \; \frac{0.85 f_{c}^{\, \prime} A_{c}}{2} \; = \; \frac{0.85 (0.21) (225 \times 10)}{2} \; = \; 201 \; ton \;$$

$$V_h = \frac{A_s F_y}{2} = \frac{84.12 \times 2.5}{2} = 105 \text{ ton} \leftarrow \text{Control}$$

จากตารางที่ 16-1 ค่า q = 5.13 ตัน∕จุดต่อ

จำนวนจุดต่อที่ต้องการ = $N = V_h / q = 105/5.13$

= 20.47 ตัวในแต่ละด้านของจุดโมเมนต์บวกมากที่สุด

ใช้สลักเกลียว 19 มม. ยาว 7.5 ซม. 41 ตัว วางห่างเท่าๆกัน 20 ตัวในแต่ละด้าน และหนึ่งตัวที่กลางช่วงคานหน้าตัด W400×66

Partial Composite Beams

คานวัสดุผสมที่มีพฤติกรรมไม่สมบูรณ์

Partial Interaction

ในกรณีที่รอยต่อรับแรงเฉือนไม่สามารถรับแรงเฉือนทั้งหมดที่ เกิดขึ้นได้ หน้าตัดคานวัสดุผสมจะมีพฤติกรรมเสมือนมีค่า โมดูลัสหน้าตัดประสิทธิผลลดลง

$$S_{eff} = S_s + \sqrt{\frac{V_h'}{V_h}} (S_{tr} - S_s)$$

เมื่อ $V_h' = q N \ge 0.25 V_h$

N = จำนวนสลักเฉือนที่ใช้ระหว่างจุดที่โมเมนต์มาก ที่สุดถึงจุดที่โมเมนต์เป็นศูนย์

โมดูลัสหน้าตัดประสิทธิผล:

$$I_{eff} = I_s + \sqrt{\frac{V_h'}{V_h}} (I_{tr} - I_s)$$

Partial Composite Beams

When allowable moment more than the requirement, no need for shear connectors of full composite action. The number of shear connectors can be reduced to save the **cost**.

Reduced Shear Force:

$$V_h' = V_h \left(\frac{S_{reqd} - S_s}{S_{tr} - S_s} \right)^2$$

$$V_h' = q N \ge 0.25 V_h$$

Effective Moment of Inertia: $I_{eff} = I_s + \sqrt{\frac{V_h'}{V_h}} (I_{tr} - I_s)$

Live load deflection:

 Δ_{LL} partially composite $= \left(\frac{I_{\text{tr}}}{I_{\text{eff}}}\right) \times \Delta_{\text{LL}}$ fully composite

ตัวอย่างที่ 19-2 ออกแบบจุดต่อในตัวอย่าง **19-1** ใหม่ให้มีกำลังเพียงพอสำหรับโมเมนต์มาก ที่สุดที่มากระทำ และคำนวณระยะแอ่นตัวจากน้ำหนักบรรทุกจรใหม่ด้วย

วิธีทำ จากตัวอย่างที่ **19-1** โมดูลัสหน้าตัด $S_{eff} = S_{tr}$ ที่ต้องการ = 1,633 ซม. 3 เมื่อเลือกหน้าตัด $W400\times66$ แล้วคำนวณค่า S_{tr} bot = 1,683 ซม. 3

แรงเฉือนแนวราบที่ต้องการสำหรับคานวัสดุผสมเต็มที่ $\,V_{h}\,=\,105\,$ ตัน

$$V_h' = V_h \left(\frac{S_{reqd} - S_s}{S_{tr} - S_s} \right)^2 = 105 \left(\frac{1633 - 1190}{1683 - 1190} \right)^2 = 84.8 \text{ ton}$$

$$0.25 \ V_h = 0.25(105) = 26.3 \
m m$$
ัน $< 84.8 \
m m$ ัน

OK

จำนวนจุดต่อที่ต้องการ = N = V'_h / q = 84.8/5.13 = 16.53 ตัว (แต่ละด้านของ M_{max})

ใช้สลักเกลียว 19 มม. ยาว 7.5 ซม. จำนวน 33 ตัว

คำนวณระยะแอ่นตัว:

$$V'_h = (5.13)(17) = 87.21$$
 ตัน
$$I_{eff} = I_s + \sqrt{\frac{V'_h}{V_h}}(I_{tr} - I_s)$$

$$= 23,700 + \sqrt{\frac{87.21}{105}}(65,122 - 23,700)$$

$$= 61,450 \text{ cm}^4$$

$$\Delta_{LL} = (65,122/61,450)(1.17)$$

$$= 1.24 ซม. < [900/360 = 2.5 ซม.] OK$$