習題集 1

（對應 張旭微積分 微分應用篇重點一：均値定理）

1．Show that $|\cos x-\cos y| \leq|x-y|$ for all $x \in \mathbb{R}$ or all $x \in \mathbb{R}$ ．
2．Let $f(x)=x^{4}-x$ be defined on $[0,1]$ ．Verify the Mean Value Theorem and find $c \in(0,1)$ that guaranteed by the theorem．

3．Suppose that $f(0)=-3$ and $f^{\prime}(x) \leq 5$ for all values of x ．How large can $f(2)$ possibly be ？

4．Suppose that $f(x)$ is differentaible on $(0,1)$ and continuous on $[0,1]$ ． Given that $10 \geq f^{\prime}(x) \geq 0$ for all $x \in(0,1)$ ，show that

$$
10+f(0) \geq f(1) \geq f(0)
$$

5．Let $f(x)=1-\sqrt[3]{x^{2}}$ ．Show that $f(-1)=f(1)$ ．Is there any $c \in(-1,1)$ so that $f(1)-f(-1)=f^{\prime}(c)(1-0)$ ．Does this fact contradict the Mean Value Theorem？

6．At $2: 00 \mathrm{PM}$ a car is at the position of 40 KM on a highway．At $2: 30$ It arrives the position of 100 KM ．Does the ever exceed the speed limit of 100 KM per hour at any moment ？How if the speed limit is 120 KM per hour？

7．Show that for $x \geq 0, x-\frac{x^{3}}{3!} \leq \sin x \leq x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ ．
8．Show that for all $x \in \mathbb{R}, 1-\frac{x^{2}}{2!} \leq \cos x \leq 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ ．
9．Show that the equation $x^{3}+e^{x}=0$ has exactly one real root．
10．If $f^{\prime}(x)=0$ for all $x \in(a, b)$ then $f(x)$ is constant on (a, b) ．If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b) ，then $f(x)=g(x)+C$ for some constant C ．

