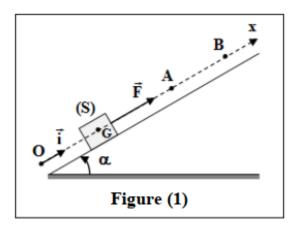
OFFRE DE COURS PHYSIQUE CHIMIE EN LIGNE 2BAC SM ET PC BIOF | P. ALAEDDINE ABIDA

TEL: 0696307274

INSTAGRAM: ALAEDDINE_PC

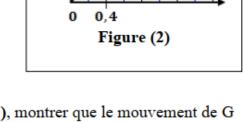

Devoir maison 7: Application des lois de Newton – Sc Exp et Sc tech,

Evolution d'un système mécanique

On considère un solide (S) de masse m susceptible de glisser selon la ligne de plus grande pente d'un plan incliné faisant un angle α avec l'horizontal.

Le solide (S) démarre sans vitesse initiale, à l'instant $t_0 = 0$ à partir de la position O sous l'action d'une force motrice \vec{F} constante.

Le solide (S) passe par la position A avec la vitesse v_A . On étudie le mouvement du centre d'inertie G du solide (S) dans un repère (O, \vec{i}) lié à la Terre supposé galiléen (figure 1).



L'abscisse de G à $t_0 = 0$ est $x_G = x_0 = 0$.

Données: m = 100 g; $g = 10 \text{ m.s}^{-2}$; $\alpha = 30^{\circ}$; $v_A = 2.4 \text{ m.s}^{-1}$

- 1. En appliquant la deuxième loi de Newton, montrer que l'équation différentielle vérifiée par x_G s'écrit : $\frac{d^2x_G}{dt^2} = \frac{F}{m} g.\sin\alpha$.
- **2.** La figure (2) donne l'évolution de la vitesse v(t).
- **2.1**. Déterminer graphiquement la valeur de l'accélération du mouvement de G.
- **2.2.** Calculer l'intensité de la force \vec{F} .
- 3. À partir de la position A, le solide (S) n'est plus soumis à la force motrice \vec{F} et s'arrête en une position B.

On choisit A comme nouvelle origine des abscisses et l'instant de passage de G par A comme nouvelle origine des dates.

- 3.1. En utilisant l'équation différentielle établie dans la question (1), montrer que le mouvement de G entre A et B est rectiligne uniformément varié.
- 3.2. Déterminer la distance AB.