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 Econometrica, Vol. 30, No. 3 (July, 1962)

 EQUILIBRIUM IN A REINSURANCE MARKET

 By KARL BORCH

 This paper investigates the possibility of generalizing the classical theory of

 commodity markets to include uncertainty. It is shown that if uncertainty

 is considered as a commodity, it is possible to define a meaningful price con-

 cept, and to determine a price which makes supply equal to demand. How-

 ever, if each participant seeks to maximize his utility, taking this price as

 given, the market will not in general reach a Pareto optimal state. If the

 market shall reach a Pareto optimal state, there must be negotiations between

 the participants, and it seems that the problem can best be analysed as an

 n-person cooperative game.

 The paper is written ill the terminology of reinsurance markets. The theoreti-

 cal model studied should be applicable also to stock exchanges and other mar-

 kets where the participants seek to reach an optimal distribution of risk.

 1. INTRODUCTION

 1.1. THE WALRAS-CASSEL system of equations which determines a static

 equilibrium in a competitive economy is certainly one of the most beautiful

 constructions in mathematical econoiuics. The mathematical rigour which

 was lacking when the system was first presented has since been provided by

 Wald [10] and Arrow and Debreu [4]. For more than a generation one of the

 favourite occupations of economists has been to generalize the system to

 dynamic economies. The mere volume of the literature dealing with this

 subject gives ample evidence of its popularity.

 1.2. The present paper investigates the possibilities of generalizing the

 Walras-Cassel model in another direction. The model as presented by its

 authors assumes complete certainty, in the sense that all consumers and

 producers know exactly what will be the outcome of their actions. It will

 obviously be of interest to extend the model to markets where decisions are

 made under uncertainty as to what the outcome will be. This problem seems

 to have been studied systematically only by Allais [1] and Arrow [3] and

 to some extent by Debreu [7] who includes uncertainty in the last chapter

 of his recent book. It is surprising that a problem of such obvious and

 fundamental importance to economic theory has not received more attention.

 Allais ascribes this neglect of the subject to son extreme difficultt.

 1.3. The subject does not appear inherently difficult, however, at least

 not when presented in Allais' elegant manner. What seems to be forbiddingly

 difficult is to extend his relatively simple model to situations in the real

 world where uncertainty and attitude toward risk play a decisive part,

 for instance in the determination of interest rates, share prices, and supply

 424
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 A REINSURANCE MARKET 425

 and demand for risk capital. Debreu's abstract treatment also seems very

 remote from such familiar problems. There are further difficulties of which

 Allais, particularly, seems acutely aware, such as the psychological problems

 connected with the elusive concepts of "subjective probabilities" and

 "rational behaviour." In the present paper we shall put these latter diffi-

 culties aside. It then appears fairly simple to construct a model of a com-

 petitive market which seems reasonably close to the situations in real life

 where rational beings exchange risk and cash among themselves. The

 problem still remains difficult, but it seems that the difficulty is the familiar

 one of laying down assumptions which lead to a determinate solution of an

 n-person game.

 1.4. The reason why neither Allais nor Arrow has followed up his prelimi-

 nary study of the problem is probably that their relatively simple models

 appear too remote from any really interesting practical economic situation.

 However, the model they consider gives a fairly accurate description of a
 reinsurance market. The participants in this market are insurance companies,

 and the commodity they trade is risk. The purpose of the deals which the
 companies make in this market is to redistribute the risks which each

 company has accepted by its direct underwriting for the public. The com-
 panies which gain from this redistribution of risks are ready to pay com-
 pensation in cash to the other companies. This is a real life example of just
 the situation which Allais and Arrow have studied in rather artificial models.

 It seems indeed that the reinsurance market offers promising possibilities

 of studying how attitudes toward risk influence decision making and the
 interaction between the decisions made by the various participants. This

 problem has so far been studied mainly in the theory of investment and

 capital markets where one must expect that a large number of "disturbing
 factors" are at play. It is really surprising that economists have overlooked

 the fact that the problem can be studied, almost under laboratory conditions,
 in the reinsurance market.

 2. A MODEL OF THE REINSURANCE MARKET

 2.1. Consider n insurance companies, each holding a portfolio of insurance
 contracts.

 The risk situation of company i (i = 1, 2,..., n) is defined by the following
 two elements: (i) The risk distribution, Fi (xi), which is the probability that
 the total amount of claims to be paid under the contracts in the company's

 portfolio shall not exceed xi. (ii) The funds, Si, which the company has
 available to pay claims.

 We shall assume that xl,..., x. are stochastically independent. To this
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 426 KARL BORCH

 risk situation the company attaches a utility Ui (Si, Fi(x )). From the so-
 called "Bernoulli hypothesis" it follows that

 00 Uf (Se, Fs (xe) ) = fu (Sf - x~) dFf (xe).

 Here ui (S) = Ui (S, 8(x) ), where 8 (x) is the degenerate probability distri-
 bution defined by

 e (x) O 0 forx < O,
 e (x) 1 I forO < x.

 Hence u"(S) is the utility attached to a risk situation with funds S and

 probability of 1 that claims shall be zero. In the following we shall refer to

 the function ui (S) as the "utility of money to company i." We shall assume
 that ui (S) is continuous and that its first derivative is positive and decreases
 with increasing S.

 2.2. Von Neumann and Morgenstern [9] proved the Bernoulli hypothesis
 as a theorem, derived from a few simple axioms. Since then there has been
 considerable controversy over the plausibility of the various formulations
 which can be given to these axioms. There is no need to take up this question
 here, since it is almost trivial that the Bernoulli hypothesis must hold for a
 company in the insurance business.

 2.3. In the initial situation company i is committed to pay xi, the total
 amount of claims which occur in its own portfolio. The commitments of
 company i do not depend on the claims which occur in the portfolios of the
 other companies. In the reinsurance market the companies can conclude
 agreements, usually referred to as treaties which redistribute the commitments
 that the companies had in the initial situation.

 In general these treaties can be represented by a set of functions:

 Yi (xlj,X2) ... ., xn) (i = 1, 2, .. .,n

 where yi (Xl, X2, . . ., xn) is the amount company i has to pay if claims in the
 respective portfolios amount to Xl, X2,..., xn. Since all claims have to be paid,
 we must obviously have

 n n

 Sy (xi) ... ., Xn) =Exi.X

 These treaties will change the utility of company i from

 00 us (x) = uS i(Si -- x) dFj(xi)
 to

 Ui (y) = (Si yi (x)) d(x),
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 A REINSURANCE MARKET 427

 where F (x) is the joint probability distribution of xl,..., xn, and where R
 stands for the positive orthant in the n-dimensional x-space.

 For simplicity we have written x and y respectively for the vectors

 {xi, . . ., Xn} and {yi (X), . . ., yn (X) }

 2.4. If the companies act rationally, they will not conclude a set of treaties

 represented by a vector y if there exists another set of treaties with a

 corresponding vector y, such that

 Ui (y) < Ui (y) for all i,

 with at least one strict inequality. y will in this case clearly be inferior to -y.
 If there exists no vector y satisfying the above condition, the set of treaties

 represented by y will be referred to as Pareto optimal. If the companies act
 rationally, the treaties they conclude must obviously constitute a Pareto

 optimal set.

 2.5. It has been proved in a previous paper [6] that a necessary and suffi-
 cient condition that a vector y is Pareto optimal is that its elements, the

 functions y, (x),.. ., yn (x) satisfy the relations:

 (1) WU(Si- y(x)) k= i(Si y,(x)
 n n

 (2) =yi(x) z xi,

 where k2, k3,..., kn are positive constants which can be chosen arbitrarily.
 The proof is elementary. It will not be repeated here since a rigorous

 statement is lengthy and rather tedious. Heuristically it is almost self-
 evident that if the condition is fulfilled, a change in y cannot increase the
 utility of all the companies, i.e., that the condition is sufficient. The proof

 that it is necessary is slightly less transparent.

 2.6. Differentiation of the equations in the preceding paragraph with
 respect to x1 gives

 P a y(x)) = kiu"' (S1 - yi (x)) ayj
 and

 i=1 axj

 Dividing the first equation by u"' (Si - yi (x)) and summing over all i, we
 obtain

 ui' (S1-y1 (X) ) aXj i-1 ui (S-.-y (X )

 where k1 =1
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 428 KARL BORCH

 It then follows that for any i and j we must have

 ayl ayi

 This implies that the vector function yi (x) is a scalar function of one single
 variable

 n

 z E xi.

 It is easy to verify that in general we have

 ki

 dy, (z) u"' (S - yi (z))
 dz n k_

 J=1 Uj (S- yj (z))

 This means that the amount yi (z) which company i has to pay will depend

 only on z = xi + ... + x., i.e., on the total amount of claims made against
 the insurance industry. Hence any Pareto optimal set of treaties is equivalent

 to a pool arrangement, i.e., all companies hand their portfolios over to a pool,
 and agree on some rule as to how payment of claims against the pool shall
 be divided among the companies. In general there will be an infinity of such

 rules, since the n - 1 positive constants k2, k3, ..., k. can be chosen arbitrarily.
 In general the utility of company i will decrease with increasing ki (i # 1).
 Since the company will not be party to a set of treaties unless Ui (y) > Ui (x)
 there must be an upper limit to ki. We shall return to this question in
 Section 4.

 2.7. The results reached in the preceding paragraphs correspond very well

 to what one could expect on more intuitive grounds. If all companies are

 averse to risk, it was to be expected that the best arrangement would be
 to spread the risks as widely as possible. It was also to be expected that the
 solution should be indeterminate, since no assumptions were made as to
 how the companies should divide the gain resulting from the greater spread

 of risks.

 In the Walras-Cassel model there is a determinate equilibrium, i.e., unique
 Pareto optimal distribution of the goods in the market. The basic assumption
 required to reach this result is that each participant considers the market
 price as given, and then buys or sells quantities of the various goods so that

 his utility is maximized. In the following section we shall investigate the
 possibility of finding some equally simple assumptions which will bring a
 reinsurance market into an equilibrium.
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 A REINSURANCE MARKET 429

 3. THE PRICE CONCEPT IN A REINSURANCE MARKET

 3.1. In insurance circles it is generally assumed that there exists a well

 defined market price, at least for some particular forms of reinsurance. It
 is also generally believed that Lloyd's in London is willing to quote a price
 for any kind of reinsurance cover.

 If a market price exists, it must mean that it is possible to associate a
 number P(F) to any probability distribution F(x), so that an insurance

 company can receive the amount P (F) from the market by undertaking to
 pay the claims which occur in a portfolio with risk distribution F (x). It must
 also be possible for the company to be relieved of the responsibility for
 paying such claims by paying the amount P (F) to the market.

 3.2. Assume now that a company accepts responsibility for two portfolios
 with risk distributions F1 (xi) and F2 (X2). Assume further that xi and X2 are

 stochastically independent and that x = Xl + X2 has the probability dis-
 tribution F (x). It is natural to require that the company shall receive the

 same amount whether it accepts the two portfolios separately or in one
 single transaction. This means that we must have

 P(F) = P(F1) + P(F2) .

 This additivity condition is clearly a parallel to the assumption in the
 classical model that the price per unit is independent of the number of units
 included in a transaction.

 3.3. The additivity condition is obviously satisfied by a number of
 functionals. It is for instance satisfied by the cumulant generating function

 = (t) log (t)

 where p(t) is the characteristic function

 p(t) =x e"'txdF(x).

 As it is inconvenient to work with a complex valued function, we shall in the
 following use the corresponding real functions

 (t) JO e-tdF(x)
 and

 = log (t)

 which exist for any nonnegative value of t. The cumulants are then given
 by the expansion

 00

 wp(t) = ( 1) n-1 - tn.
 n=1 n 1ii
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 430 KARL BORCH

 3.4. It follows that for any nonnegative value of t, , (t) can be interpreted

 as a price which satisfies the additivity condition. The same will hold for any

 linear combination of the form:

 cl y(th) + c2 Y(t2) +

 where cl, C2,... are constants. Similar expressions containing derivatives of
 , (t) of any order will also satisfy the condition.

 It is obvious that any expression of this kind can be written as a sum of

 cumulants. Hence we can write

 P(F) = pnKn
 n=1

 where pi,..., P. are constants.
 It follows from a theorem by Lukacs [8] that this is the most general

 expression which satisfies the additivity condition.

 3.5. Let now 8(x) be the degenerate probability distribution defined in

 paragraph 2. 1.

 8 (x - m) can then be interpreted as a risk distribution according to which

 the amount m will be claimed with probability 1. The price associated with

 this distribution will be

 P(8(x- m)) pilm

 since Kn = 0 for 1 < n. We shall therefore require as a continuity condition
 that =l 1.

 3.6. We now assume that a market price of this form is given, and we
 consider a company in the risk situation (S, F (x)). The utility of the company

 in this situation is

 00

 U(S, F(x)) J u(S - x)dF(x).

 If the company undertakes to pay a claim y with probability distribution

 G (y), it will receive an amount P (G). If x andy are stochastically independent
 this transaction will change the company's utility to

 U(S +?P(G), H(x)) = f (s? P(G)-x)d { F(x-y)dG(y)}

 -J u (s + P (G) - x) dH (x)

 where H (x) is the convolution of F (x) and G (y).
 If the company acts rationally, it will select among the portfolios
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 A REINSURANCE MARKET 431

 available in the market one with a risk distribution Go (y) which maximizes

 U (S + P (G), H (x)). This function Go (y) can be considered as the amount

 of reinsurance cover which the company will sufpply at the given price.

 3.7. The nature of the maximization problem appears more clearly if we

 introduce the cumulants explicitly in the formula of the preceding para-

 graph.

 Let f(t) and g (t) be the characteristic functions of F (x) and G (y) respec-

 tively. The characteristic function of H (x) is then f(t) g (I), and if H (x) has a

 derivative, we have

 dHx = I _ e7" zf(t)g(t)dIt . +00 eitxe logft)+log g Mdt

 = 2 __exp - itx + E (in (kn + Kn) dt

 where kn and Kn are the nth cumulants of F(x) and G(y), respectively.

 Hence the problem becomes that of determining the values of K1, K2,...) Kn
 which maximize the expression

 fu(s-x? + exp { itx + nEL )-(kn + Kn) dtdx

 It is interesting to note that the cumulants of different order appear as

 different commodities, each with its particular price. The "quantities"

 Ki,..., Kn, however, must satisfy certain restraints in order to be the cumu-
 lants of a probability distribution. These restraints will be of a complicated

 nature. A sufficient set of restraints can be derived from the Liapounoff

 inequalities

 -log M. S log Mn.+

 where mn is the nth absolute moment about an arbitrary point. Since

 G (y) = 0 for y < 0, the inequalities must hold for the moments about zero

 of G (y). It is easy to see that the sign of equality will hold only in the degen-

 erate case when G (y) = e(y -n).
 The problem on the supply side of a reinsurance market thus appears to

 be similar to the problems of maximization under restraints which occur in
 some production models. It is clear that the problem will have a solution,
 at least under certain conditions.

 3.8. The problems on the demand side are more complicated. Assume that

 with a given price a company demands reinsurance cover corresponding to

 a probability distribution G (y). This means that in order to be relieved of an
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 432 KARL BORCH

 obligation to pay a claim with a probability distribution G (y), the company

 is willing to pay an amount

 00

 P (G (y)) = _PnKn
 n=l

 where K1,...., Ks., ... are the cumulants of G (y).
 Assume now that the company can buy its reinsurance cover in two

 transactions, for instance by placing two portfolios with risk distribution

 G (jy) with two different reinsurers. If the market price is applied to both
 transactions, the company will have to pay

 2P(G (y) ) = K
 =1 2n-1K

 for the reinsurance cover. 2P (G (by) ) will generally be different from P (G (y)).

 Hence the reinsurance arrangement which maximizes the company's
 utility will depend not only on the given price, but also on the number of
 reinsurers who are willing to deal at this price. This makes it doubtful if any

 meaning can be given to the term "market price" in a reinsurance market.

 We shall not at present discuss this problem in further detail. We shall,
 however, consider it again for a special case in Section 4.

 4. EXISTENCE OF AN EQUILIBRIUM PRICE

 4.1. In the preceding section we studied separately the demand and
 supply of reinsurance cover. It is fairly obvious, however, that if the com-
 panies shall reach the Pareto optimum which we found in Section 2.5, each

 company must act both as seller and buyer of reinsurance cover. In a previous
 paper [5] it was proved by a more direct approach that it will in general be

 to the advantage of a company to act in both capacities at the same time.
 In this section we shall study whether a price mechanism can bring

 supply and demand into an equilibrium which also represents a Pareto
 optimal distribution of the risks.

 4.2. Since the problem is rather complex, we shall analyse only a special

 case. We assume that the utility of money to all companies can be represented
 by a function of the form:

 ui (x) -aix2 + x. for i 1, 2,.. .,n.

 We assume that as is positive and so small that ui (x) is an increasing function
 over the whole range which enters into consideration.

 as can evidently be interpreted as a measure of the company's "risk

 aversion." If ai - 0, the company will be indifferent to risk. Its sole ob-
 jective will then be to maximize expected profits, ignoring all risk of devia-

This content downloaded from 161.200.69.48 on Tue, 29 Aug 2017 10:24:02 UTC
All use subject to http://about.jstor.org/terms



 A REINSURANCE MARKET 433

 tions from the expected value. The greater as is, the more concerned will the

 company be about the possibility of suffering great losses.

 From the formulae in section 2.6 we find

 dyi (z) kil/ai
 dz kja

 Hence the optimum arrangement is that company i shall pay a fixed quota

 qi of the amount of claims z made against the pool. It is easily verified that

 yi (z) = qiz + qi is) - (2 -s) =qiz+ qi Aj-Ai

 For z = 0 we find

 yi(O) = qi Ai- Ai.

 yi (0) is the amount (positive or negative) that company i has to pay if there
 are no claims. Hence yi (0) must be the difference between the amount the
 company pays for the reinsurance cover it buys and the amount the

 company receives for the reinsurance cover it sells.

 4.3. If u (x) ax2 + x, the utility of the company in the initial
 situation is

 00 00

 u(0) J (S - x)dF(x) = -a(S -X)2+ (S - x)}dF(x)
 -a (S- K1)2 + (S - K1) - aK2

 where K1 and K2 are the two first cumulants, i.e., the mean and the variance

 of F (x). We see that in this case the utility which the company attaches to

 a risk situation will depend only on the two first cumulants of the risk

 distribution. If the utility function u (x) is of the form - ax2 + x for all

 companies, the cumulants of higher order can have no effect of the optimal
 arrangement. They will appear as "free goods" in the market, i.e., with
 price zero. Hence, in the expression for price we must have pn = 0 for all

 n > 2. The amount paid for reinsurance cover of a risk distribution F (x) will
 then be

 P(F) = Kl+ P2K2 m= +fpV

 if we drop the index of P2, and write m and V for the mean and variance of
 F (x), respectively.

 4.4. We now consider two companies, i and j, with risk distributions

 Fi (xi) and F1 (x,) where xi and x1 are stochastically independent. In a
 Pareto optimal set of reinsurance treaties the two companies will have to
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 pay fixed quotas, qi and qj, of the claims made against the pool z - zj=t xj.
 It is evident that a Pareto optimal arrangement will result if every pair of

 companies concludes a reciprocal treaty, according to which company i

 undertakes to pay qix1 if claims against company j amount to xj, and com-
 pany j in return pays q;xi if claims xi are made against company i (i.e., qi
 is the same for every j).

 If mi and Vj are the mean and variance of Fi (xi), company i will receive
 an amount qimj + pq2 Vj for the reinsurance cover it gives company j.
 Similarly company i will have to pay out q1mi + jpqj Vi for the cover it
 receives from company j.

 Hence the net payment from company i to company j will be

 qjmi + p2 V2-wmypfV; _;uPqj Vi- qimj -_PqiV

 Summing this for all j # i, we obtain

 mi E qj - qi ?j V qE f-f i Vj}

 which is equal to

 mi- - m+ Vi qj -qi V}.

 This expression, however, must be equal to the total net payment of com-

 pany i, which according to Section 4.2 is

 n

 yi(O) =q i XAi- Ai.

 Hence we must have

 V{i qj -2 qi V;)- qi (Aj + m>) + (Ai + mi) O 0.

 This expression for i = 1, 2,..., n, together with SL1 qg - 1 gives a system
 of n + 1 equations for the determination of the n + 1 unknowns qi,..., qn

 and p.

 These equations are not independent, however, since the last one can be

 obtained by adding together the first n. Hence the system will give qj,..., qn
 as functions of p.

 Forp = we find

 qi,0) Aj +mj q(O) =

 Z(Ag + mj)

 Differentiating the equations with respect to p, we find

 [d E(p)j ? (Aj + =) V qj - qi 21. dP p=o= j=1 1=1
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 A REINSURANCE MARKET 435

 Hence it follows from considerations of continuity that qi (p) will be real
 and positive when p lies in some interval containing zero.

 4.5. We shall now assume that a price _p is given, and study how com-
 pany 1 can increase its utility by dealing in the market at this price.

 (i) The company can sell reinsurance cover, i.e., it can accept responsi-
 bility for paying a claim with mean mo and variance W1. For giving this

 cover the company will receive the amount mo + pW1.
 According to the formulae in Section 4.3, this transaction will change the

 utility of the company from

 al(Sl Ml)2 + (Si - ml) - aV -U(S- ml, VI) = Ul(R1, V1)
 to

 al (S Ml + pW1)2 + (S - ml + pW) - a, (Vi + W1)
 - Ul (Ri + pWi, V1 + W1)

 Here R1 = Si - ml, which in insurance terminology is called the "free
 reserves" of the company, i.e., funds in excess of expected amount of claims.

 We see that the utility does not depend on no, but only on free reserves and
 variance.

 (ii) The company can buy reinsurance cover from the n - 1 other com-

 panies, i.e. by paying the amounts pv2,..., Pvn of its free reserves to the
 other companies, it can "get rid of" variances v2,..., v,.

 These transactions will leave the company with a variance
 n

 lV, V E vi-2 z Cij
 i=2 ivij

 where Ci1 is the covariance between claims in the portfolios taken by com-
 panies i and j.

 Since the utility of company 1 will increase with decreasing vi, the com-
 pany will seek to arrange its purchases so that Cij is as great as possible, i.e.,
 so that

 C=j (vi vj) I.
 This clearly means that there must be perfect positive correlation between

 claims in the part of the original portfolio which the company retains and
 the parts which are reinsured. Hence we must have vi = qf V1 and
 Ej=l qi = 1. This is the same as the result which we in Section 4.2 derived
 from the general condition for Pareto optimality of Section 2.5.

 4.6. If the company buys and sells reinsurance cover in this way, its
 utility will become

 1 E -E (Rl + (W1- i) vs) , + (V,+ 1 v2 V,l
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 The company will then seek to determine W1, and v2,..., vn so that this
 expression is maximized.

 The first order conditions for a maximum are

 -P{2al(R + P(Wi - jV)) 1) -ai = 0,

 Adding the first of these equations to the one obtained by differentiating

 with respect to Vj, we obtain

 j=2

 Since this must hold for all i, we must have

 - P 2al 1 Awl vi) -V a, VI (i=2,3for all n.

 This means that regardless of what the price is, the company will seek to

 divide its portfolio into n identical parts, and reinsure n -1 of these with

 the other companies.

 Inserting the values of ve in the first equation, we find

 1- n2I V1 ? I 2

 4.7. In general we find that for a given price p, company i is willing to

 supply reinsurance cover for a variance

 +- 2p2ap-)

 The company will demand cover for a variance

 n-i

 regardless of what the price is, provided that this variance can be divided
 equally between the n 1 other companies.

 It is obvious that in this case we cannot determine p by simply requiring

 that total supply shall be equal to total demand, i.e., from the "market

 equation"

 n ~ ~~ n

 i=1 i=1
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 A REINSURANCE MARKET 437

 Instead we have the conditions that supply from company i must equal the
 sum of 1 /(n - 1) of the demand from the other n - 1 companies, i.e.,

 Is 1 W'F I V
 n -1 J:& W2>

 Hence p must satisfy the n equations

 2 i- Vl = 2p2 (i = 1,2, ..,n).

 This is clearly impossible, except for special values of ai, Ri and Vi.

 4.8. It is obvious from the preceding paragraph that unrestricted utility

 maximization with a given price has little meaning in our model. The

 procedure may, however, have some meaning if we introduce restrictions

 so that it necessarily leads to a Pareto optimal arrangement.

 These restrictions can be formulated as follows. For all i and j, j = ,
 company i can satisfy its demand for reinsurance cover only by placing a

 part q2 Vi of its variance with company j.
 Company i will then be willing to supply reinsurance cover for a variance

 2 1 Wi Vi qj + 22f

 The n market equations from Section 4.7 will then take the form

 2_2pQL- R) - 1
 qi V1-Vi z qj 2 R) (i = 1,2,..., n).

 It is easy to see that these n equations, which are linear in qi, have a deter-
 minant of rank n - 1. Hence the equations have a solution only if the sum

 of the right hand sides is zero. This condition is satisfied: (i) if the right
 hand sides all vanish, i.e., if p tends to infinity. The corresponding values of

 qi are then

 Vi

 VI
 j=l

 (ii) if

 n

 j=L 2ay )
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 This appears to be all that we can get, even from a diluted principle of
 utility maximization.

 The result is not very satisfactory. The general assumptions which lead
 to these "equilibrium prices" are rather artificial, and it is easy to construct
 numerical examples where the result becomes meaningless.

 From the formulae in Section 4.2 we see that the utility of company i will

 decrease with increasing qi. The price we have found may lead to values of qi
 which will give some companies a lower utility than they have in the initial
 situation. These companies will obviously refuse to trade at such a price.

 The conditions which qi must satisfy in order to give a meaningful
 solution are discussed in the paper [6] already referred to, and we shall not
 pursue the point further in the present paper.

 5. THE MODELS OF ALLAIS AND ARROW

 5.1. Both Allais [1] and Arrow [3] have proved that in models very
 similar to ours, there exists a price such that utility maximization, when
 this price is considered as given, will lead to a Pareto optimal situation. To
 explain the apparent contradiction with our result, we shall examine their
 models in some detail.

 5.2. Allais [1] studied a model which essentially is a market for lottery
 tickets. The prize of the tickets is a normally distributed random variable
 with mean equal to one unit of money, and a given standard deviation. Allais
 proves that in this model there exists a market price for lottery tickets which
 will lead to a uniquely determined, optimal distribution of the risks.

 The crucial assumption which Allais makes in order to reach this result
 is that lottery tickets can be bought and sold only in integral numbers, i.e.,
 one can buy one ticket, but not a 50 per cent interest in two tickets. It is
 obvious that when this assumption is given up, the Pareto optimum is no
 longer unique. The situation will be similar to the one we found in Section
 2.7, which is an example of the familiar problem that an n-person game has
 an indeterminate solution. To make it determined, one will have to make
 some assumptions about how the participants form coalitions to buy
 packages of lottery tickets.

 5.3. In the model of Alais there is only one kind of lottery ticket. If
 tickets are indivisible as Allais assumes, it is almost trivial that there must
 exist a price which leads to a Pareto optimal situation. The problem will
 change completely, however, if the model is generalized by the introduction
 of several kinds of tickets, i.e., tickets where the prize is drawn from different
 probability distributions. The problem can be handled as we did in the
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 preceding sections if one accepts the Bernoulli hypothesis. Allais [2] has

 emphatically rejected this hypothesis, however, and thus barred the most

 obvious, and probably the only way to generalize his model.

 5.4. The model studied by Arrow [3] is far more general. He considers n
 different commodities, and he assumes that each participant in the market
 may have his own subjective probabilities. In this paper we shall disregard

 both these refinements. The generalization to n commodities appears

 inessential when our main objective is to study the interplay of different
 attitudes toward risk and uncertainty. The subj ective probabilities play a key

 part in Arrow's model, but it seems unnecessary to introduce them in a study of

 a reinsurance market. When a reinsurance treaty is concluded, both parties

 will survey all information relevant to the risks concerned. To hide infor-

 mation from the other party is plain fraud. Whether two rational persons on

 the basis of the same information can arrive at different evaluations of the

 probability of a specific event, is a question of semantics. That they may act

 differently on the same information is well known, but this can usually be
 explained assuming that the two persons attach different utilities to the event.

 In some situations, for instance in stock markets, it may be useful to resort both
 to subjective probabilities and different utility functions to explain observed

 behaviour. This seems, however, to be an unnecessary complication in a
 first study of reinsurance markets.

 5.5. When simplified as indicated in the preceding paragraph, Arrow's

 model can be described as follows: (i) Company i has a utility of money

 Ui (x), i= 1, 2, . . ., I.
 (ii) As a result of its direct underwriting the company is committed to

 pay an amount xis if "state of the world" s occurs, s = 1, 2,..., S .

 (iii) The company has funds amounting to Si available for meeting the
 commitments.

 (iv) The probability that state of the world s shall occur is ps (Esi= ps = 1).
 The utility of company i in the initial situation is then

 s

 Ui (O) = Ei8 ui (Si - Xi8)
 8=1

 where xi8 may be zero for some s.

 5.6. It is then assumed that there exists a price vector gi,..., gs,..., gs, so
 that the company can pay an amount g8yi8, and then be assured of receiving

 the amount yi8 if state of the world s occurs. This means that should this
 state occur, the company will have to make a net payment of xi8 - yi8. If
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 the company makes a series of such contracts, its utility will change to

 S s

 U1 (y) = ((P s - gsy8 }) (Xis - yts))
 8=1

 where yi8 may be positive or negative.
 Differentiating with respect to yit we find:

 aDUi (y)
 =? - gt EPsu{iSi - 2 g8yi8} - xi- + yus)

 ? ptf( (Si -E gSytS - Xtt ?yit)

 Since we have placed no restrictions on yit, the first order conditions for a
 maximum will be

 gt E psu(i i - g8yiS - Xis + yi3) = ptui Si- E gyS- Xit + yu)

 (t 1, 2,...,YS).

 5.7. We now assume that the utility function is of the same simple form
 as in Section 4, i.e., that

 ui (x)--aix2 + x (i = I, 2, .. .,I.

 The first order conditions for a maximum will then become

 S s

 2aigt 8 P(St - E g -s - xi, + yi8) - gt

 2aipt(S - 8 g8yis - Xit + Yit) - Pt

 By some rearrangement this system of equations can be written

 I s
 (gt -Pt)( - s ) + gt EA xq- Ptxit -

 s s

 gt zPsys - ptyit - (gt - Pt) Igsyis

 (t- 1,2,,S and i= 1,2,..,I).

 yts is the amount (positive or negative) which company i will receive if state
 of the world s occurs. Since this amount necessarily must be paid out by the
 other companies, we must have

 lyis O 0 for alls .
 i=1
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 Hence if we sum the equations over all i, the right hand side will disappear,
 so that we get the system

 I 1 S I I

 (gt (2at) ) S + 9t sI Ps E x,s -.pt E xit = 1, 2 = ...2IS)
 From this we obtain

 Xt+ A
 gt= Pt X+A

 where

 A - Ai= Si 2a

 I s

 X8= EXj8 and X= 2pX8.
 i=1 8=1

 The complete solution of the system is given by

 Xit - y=t = qiXt
 and

 s

 Ai?+ Ig8xi8
 8=1

 A + 2g8X8
 8=1

 where

 I qi
 =1

 5.8. This solution implies that company i (i = 1, 2,..., I) shall pay a
 fixed quota qi of the total claim payment, regardless of which state of the
 world may occur. Hence the solution belongs to the set of Pareto optimal
 arrangements that we found in Section 4.2.

 Since

 s s X8 [-A 1

 8 Xi8= z8 X?A X ?A zP8(Axi8 +X8xj8)

 1 X +A (AX + X X + A 8=
 s~~~~~

 E ps (Xs - X) (x 8 X - m 8 X C

 X+A = m+X+A

 where m = Es=1 P8xi8, and since X =El=1 Mi,
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 we have

 Ai + mi + XC+i

 var X,
 (Aj + mn>) + X+.

 It is interesting to compare this with the expression which we found in
 Section 4.4 for the case p 0.

 5.9. The difference between Arrow's model and ours obviously lies in the

 price concept. In Arrow's model there is a price associated with every state
 of the world. The price will be the same for all states which lead to the same

 amount of total claim payment.

 Our model is essentially a drastic simplification. Instead of the really
 infinite number of prices considered by Arrow, we have introduced one
 single price, a specific price of risk. We found that this price would have to be
 a vector with an infinite number of elements. If the utility function has the
 simple form studied in Section 4, the number of elements is reduced to two.
 However, in this case a cQmpetitive equilibrium cannot in general be a
 Pareto optimal distribution of risks.

 5.10. The price in Arrow's model increases with the probability of a
 particular state of the world, and with the total amount to be paid if this
 state occurs. In insurance this means that a reinsurer who is asked to cover

 a modest amount if a certain person dies, will quote a price increasing with
 the total amount which is payable on the death of this person.

 Such considerations are not unknown in insurance practice. It is well

 known that it can be difficult, i.e., expensive to arrange satisfactory rein-

 surance of particularly large risks. Practice seems here to be ahead of in-

 surance theory, however, which still is firmly based on the principle of

 equivalence, i.e., that "net premiums" should be equal to the expected value
 of claim payments.

 To apply Arrow's theory to stock market speculation we just have to

 reverse the signs of the formulae in this section.

 We then find that the price of a certain share will depend not only on its
 "intrinsic value," but also on the number of such shares in the market. This

 may seem reasonable, although it implies that one pays more for a chance of

 getting rich alone, than for an identical chance of getting equally rich
 together with a lot of other speculators. The implication is that even in a
 model using essentially classical assumptions, there is a positive price
 attached to "getting ahead of the Joneses," and this may be a little unex-
 pected.
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 6. THE PROBLEM SEEN AS AN n-PERSON GAME

 6.1. We noted in Section 2.6 that a Pareto optimal set of reinsurance

 treaties was equivalent to a pool arrangement. Once the pool was established,

 the companies had to agree on some rule as to how each company should

 contribute to the payment of claims against the pool. In the special case which

 we considered in Section 4, this rule was that each company should pay a
 fixed proportion of these claims, regardless of its size. The quotas which each

 company should pay remained to be fixed, however.

 When the problem is presented in this way, it seems natural to consider
 it as a problem of bargaining and negotiation which logically should be

 analysed in the terms of the theory of games. A priori it appears unlikely

 that there should exist some price mechanism which automatically will lead

 the companies to such a rather special arrangement as a Pareto optimal set
 of treaties.

 6.2. In general an n-person game has an indeterminate solution. To get

 a determinate solution we must make additional assumptions about how the
 companies negotiate their way to an agreement.

 The point is brought out clearly by the special case studied in Section 4.

 The usual assumptions of game theory leave the quotas ql,..., qn undeter-
 mined, except for the restriction q== 1. The solution has, so to speak, n- I
 "degrees of freedom." During the negotiations each company will try to
 get the smallest possible quota for itself.

 We then lay down the additional rule that the same price must be applied
 to all the reciprocal treaties which constitute a Pareto optimal set. This

 amounts really to a ban on "price discrimination" or a partial ban on
 coalitions. The rule leaves only the price p to be determined by negotiation,
 so that the number of degrees of freedom is reduced to one.

 6.3. From the expressions in Section 4.4 we can conjecture that a given
 price p will divide the companies in two groups or coalitions. One group will

 benefit from a higher price, the other from a lower one. The higher the
 price, the more companies will be in the latter group. The "equilibrium

 price" must then be determined so that it divides the companies in two

 groups, which in some unspecified manner are equal in strength. There are

 obviously a number of possible ways in which the concept "strength" can
 be defined, and hence a number of possible determinate solutions. We shall,
 however, not explore these possibilities in the present paper.

 6.4. In real life reinsurance treaties are concluded after lengthy negotia-
 tions, often with brokers acting as intermediaries. The concept of prevailing
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 444 KARL BORCH

 market prices plays a part in the background of these negotiations, but the

 whole situation is more similar to an n-person game than to a classical
 market with utility maximization when the price is considered as given.

 Little is known about the laws and customs ruling such negotiations in

 the reinsurance market. It seems, however, that further studies of this

 subject should be a promising, if not the most promising, way of gaining

 deeper knowledge of attitudes toward risk and the decisions which rational
 people make under uncertainty.

 The Norwegian School of Economics and Business Administration
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