
MOLE CALCULATIONS

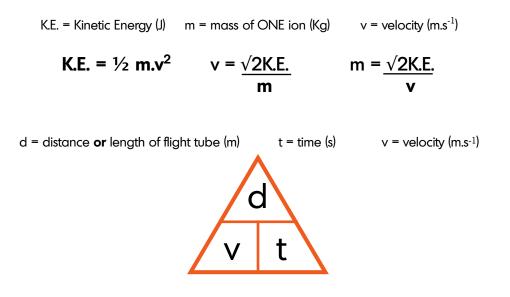
Avogadro's Constant = 6.02×10^{23} atoms or molecules = 1 mole

MOLAR GAS CONSTANT

1 mole of ANY gas occupies 24.0 dm³ at room temperature & pressure

IDEAL GAS EQUATION

\mathbf{P} = Pressure (pa)	\mathbf{V} = volume (m ³)	n = no. of moles
R = Gas Const	ant (8.314 J.K ⁻¹ .mol ⁻¹)	T = Temperature (K)


PV = nRT

P = <u>nRT</u>	V = <u>nRT</u>	n = <u>PV</u>	T = <u>PV</u>
V	Р	RT	nR
For changes in conditions:	$\frac{P_1V_1}{T_1} =$	$\frac{P_2V_2}{T_2}$	

Relative Atomic Mass = $\frac{\text{(mass isotope 1 x abundance)} + (\text{mass isotope 2 x abundance)} + ...}{(Ar)}$

OTHER EQUATIONS

% by mass = <u>mass of element in 1 mole</u> Mr

Empirical formula = <u>M1</u> : <u>M2</u> : <u>M3</u> Mr1 Mr2 Mr2

Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

% Atom Economy = mass of desired product x100 total mass of all products

You can use mass or number of moles here!

% Yield = <u>actual yield</u> x100 theoretical yield

You can replace masses with Mr values here too!

Copyright © tailored tutors limited 2019

ENTHALPY

Q = energy transferred (J)c = specific heat capacity $(J.K^{-1}.mol^{-1})$

m = mass of solution (g) $\triangle T$ = change in temperature (°C or K)

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for $\triangle H!$

Divide by 1000 for kJ.mol⁻¹

$\triangle H$ reaction =	\sum reactant mean bond e	enthalpies - \sum product mean bond enthalpies
(kJ.mol ⁻¹)	(kJ.mol⁻¹)	(kJ.mol ⁻¹)

(kJ.mol⁻¹)

EQUILIBRIA

 $aA + bB \Rightarrow cC + dD$

$$Kc = \begin{bmatrix} C \end{bmatrix}^{c} \begin{bmatrix} D \end{bmatrix}^{d} \\ \begin{bmatrix} A \end{bmatrix}^{a} \begin{bmatrix} B \end{bmatrix}^{b}$$

Where: [A] = concentration(mol.dm⁻³) a = no. of moles from equation

COMMON IONS

POSITIVE

NEGATIVE

GROUP 1 = +	GROUP 7 = -
GROUP 2 = 2+	GROUP 6 = 2-
H⁺	GROUP 5 = 3-
Ag⁺	
Zn ²⁺	
Pb ²⁺	
Al ³⁺	
(Transition metals are variable)	

e.g. Fe²⁺, Fe³⁺

MOLECULAR IONS

NH₄⁺	OH ⁻	NO3 ⁻	CN ⁻
ammonium	hydroxide	nitrate	cyanide
H₃O⁺	CO3 ²⁻	SO4 ²⁻	PO4 ³⁻
hydronium	carbonate	sulfate	phosphate

ACIDS & BASES

<u>ACIDS</u>

BASES

HCIhydrochloric acidHNO3nitric acidH2SO4sulphuric acidH3PO4phosphoric acidCH3COOHethanoic acid

NaOH KOH Ca(OH)2 CuO sodium hydroxide potassium hydroxide calcium hydroxide copper (II) oxide

COMMON OXIDATION STATES

POSITIVE	NEGATIVE
GROUP 1 = +I	F = -I
GROUP 2 = +II	O = -II
H = +I	CI = -I
Ag = +I	Br = -I
Zn = +II	I = -I Most common oxidation states, but may be positive
Pb = +II or +IV	N = -III when covalently bonded to
Al = + III	S = -II more highly electronegative elements.
(Transition metals are variable)	P = -III i.e. F or O
Fe = +II or +III	
Cu = +II (sometimes +I)	
C = +II or +IV	

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO3

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO₃)₂

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX₂

CO3 SALTS: ALL INSOLUBLE EXEPT GROUP 1

No.	Practical	Detail	Done?
la	Make a standard solution	Prepare a 250cm ³ sample of a solution (e.g. NaOH) to a known concentration using the standard method.	
lb	Perform a simple acid-base titration	Titrate an acid of known concentration against an alkali. Deduce the concentration of the alkali using a the mean titre. e.g. HCl + NaOH	
2a	Measure the enthalpy change of combustion of a fuel (<u>A</u> Hc)	Use a calorimeter to experimentally determine the energy released by a fuel and the Δ H for the reaction.	
2b	Measure the enthalpy change of neutralisation (Δ Hn)	Use a calorimeter to experimentally determine the energy released by a neutralisation reaction and the Δ H for the reaction.	
3	Measure temperature affects the rate of a reaction	Use the initial rate method to determine the effect of increasing temperature ion the rate of a reaction. e.g. HCl + Sodium Thiosufate	
4	Testing for ions in solution	Use chemical tests to identify Group 2, Group 7, OH ⁻ , CO3 ²⁻ and SO4 ²⁻ ions in solution	
5	Distillation of an organic product	Produce a liquid organic compound and use distillation to separate and purify. e.g. Aldehyde or Ester	
6	Testing for organic functional groups	Use chemical tests to identify a carboxylic acid, an alcohol and an aldehyde.	