FUNCTION
- one to one (invertible function)
- one to many (non-invertible function)
- many to one (non-function)

DOMAIN
Set of 'allowed' values of \(x\)

RANGE
Set of \(y\) values associated with a domain.

DOMAIN & RANGE

(a) What is the range of \(f(x) = \frac{3}{x+1} + 2\), domain \(x \neq -1\)?

(b) If \(f(x) = (x+3)^2 - 2\), domain \(x \in \mathbb{R}\), what is the domain of \(f^{-1}(x)\)? Fact: domain of \(f^{-1}(x) = \text{range of } f(x)\)

Parent graph: \(f(x) = x^2\)

\[\begin{align*}
\text{parent graph: } f(x) = x^2 \\
x &\rightarrow \\
&\rightarrow \\
&\rightarrow \\
\end{align*}\]

\(x\) coords change, \(y\) coords change

\[
\begin{align*}
\text{range of } f(x) : \\
\text{domain of } f^{-1}(x) : \\
\end{align*}
\]
Composite Functions

Function
A mapping of one or more objects in one set to a unique object in another set.

Composite Function
A combination of functions formed by making the output of one function become the input of another function.

Algebraically

\[f(x) = \frac{x-1}{2-x}, \quad x \in \mathbb{R}, \quad x \neq 2 \]

(a) Find & simplify \(f^2(x) \)

\[g(x) = \sqrt{x}, \quad x \in \mathbb{R}, \quad x > 0 \]

(b) Find the range of \(gf(x) \)

\[f^2(x) = \text{[Expression]} \]

Common exam Q:
(a) \(\text{solve } g(x) = f^{-1}(x) \)
(b) \(\text{solve } fg(a) = a \) (1 mark)

Notation Alert!
\(f^2(x) \) does not mean \([f(x)]^2\), it means \(ff(x)\)

- Sketch \(f(x) \) to find range
 - \(2-x=0 \)
 - \(x \) intercept
 - \(y \) intercept
 - *Key point*
 - Range

- Sketch \(g(x) \) to find range
Inverse Functions

1. Find the inverse of \(f(x) = \frac{3x+1}{x-2} \) \(x \in \mathbb{R}, x \neq 2 \)

2. Sketch the inverse of \(f(x) = (x-1)^2 + 4 \) and state its domain.

The inverse only exists if the function is not a function.

\[
\begin{align*}
y &= \quad \quad \\
x &= \quad \quad \\
\end{align*}
\]
Translation of \(y = mx + c \)
- Track both axis intercepts as they are translated
- Draw \(y = mx + c \) and label the axis intercepts
- Reflect the negative part of the line up over the x-axis
- Sketch of \(a' \) parallel to the y-axis about the x-axis (may involve reflection if \(a \) is negative)
- Translate by 'b' up/down

Translation of \(y = |mx + c| + b \)
- Track the origin as it is translated
- Build the journey of \(x \), draw \(y = |x| \)
- Translate \(y = |x| \) by c left/right

Sketch the graph of \(y = 4 - 3|x-1| \), \(x \in \mathbb{R} \)

Translate \(y = 2x - 1 \)

Translate \(y = |x| \)
WARNING

| ax + b | doesn't mean (ax+b) and -(ax+b)

It's not that simple!

The algebra will think graphs meet when actually the mod graph doesn't intersect the other graph.

WHAT TO DO

Sketch both graphs, look for intersections, then form equations.

MODULUS EQUATIONS & INEQUALITIES

\[f(x) = |x-4| + 6 \]

- \(f(x) = g(x) \) has no real solutions
- Find the range of possible values of \(k \)

Domain of both functions is \(x \in \mathbb{R} \)

\[g(x) = 2x + k \]

- Solve \(f(x) < 4x + 6 \)

ANS:

\[y = x - 4 \]

\[y = 2x + k \]

\[6 = 2(4) + k \]

\[k = -2 \]

ANS:

\[f(x) < 4x + 6 \]

\[3(-x + 4) + 6 = 4x + 6 \]
The line $2x-y-k=0$ is tangent to the curve $x=2t-t^3$, $y=2-t^2$ at the point where $t=1$. Prove that the tangent intersects the curve when $t=\frac{-2-k}{2}$ and at no other point.

Finding intersections of a cartesian curve & a parametric curve.

Range
All new y values coming from the permitted t values
ie) range of $y(t)$

Domain
All the x values coming from the permitted t values
ie) range of $x(t)$

Tangent
$m(x-a)=y-b$

KEY IDEA
About a tangent

$2(2t-t^3)-(2-t^2)-k=0$

$4t-2t^3-2+t^2-k=0$

$2t^3-t^2-4t+2+k=0$

$(t-1)(\quad)=0$

We know $(t-1)$ is a factor because...

$(t-1)^2(\quad)=0$

$(t^2-2t+1)(2t+2+k)=0$
Find the Cartesian equation of each of these functions

(a) \[\begin{align*}
 x &= t - \frac{1}{t} \\
 y &= t + \frac{1}{t}
\end{align*} \]

(b) \[\begin{align*}
 x &= 3 \cos\theta \\
 y &= 4 \sec\theta + 1
\end{align*} \]

(c) \[\begin{align*}
 x &= \tan\theta \\
 y &= \cot^2\theta
\end{align*} \]

Clever Tricks

- **Trig (angles match)**
 - Circle the trig functions in the equations, and their reciprocals.
 - Choose 3 write down the Pythagorean formulae.
 - Sub into the trig formula.

- **Trig (angles don't match)**
 - Make angles match using trig identities.

NOT Trig

- Make one say \(t = \ldots \) and sub into the other one.
- \(\sin^2 \theta + \cos^2 \theta = 1 \) and \(\sec^2 \theta - \tan^2 \theta = 1 \)
- Use the Pythagorean hexagon.