

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie de l'espace	3 points	
Exercice 2	Nombres complexes	3 points	
Exercice 3	Calcul des probabilités	3 points	
Exercice 4	Equations différentielles et calcul intégral	2.5 points	
Problème	Etude de fonctions numériques et suites numériques	8.5 points	

- On désigne par \overline{z} le conjugué du nombre complexe z et |z| son module
- ✓ In désigne la fonction logarithme népérien

0,5

0,5

0,5

0,25

0,5

0,25

Exercice 1 (3points):

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points A(0,1,1), B(1,2,0) et C(-1,1,2)

- 0,5 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{k}$
- 0,25 b) En déduire que x+z-1=0 est une équation cartésienne du plan (ABC)
- 0.5 2) Soit (S) la sphère de centre $\Omega(1,1,2)$ et de rayon $R = \sqrt{2}$ Déterminer une équation de la sphère (S)
- 0,5 3) Montrer que le plan (ABC) est tangent à la sphère (S) au point A
 - 4) On considère la droite (Δ) passant par le point Cet perpendiculaire au plan (ABC)
- 0,25 a) Déterminer une représentation paramétrique de la droite (Δ)
- b) Montrer que la droite (Δ) est tangente à la sphère (S) en un point D dont on déterminera les coordonnées
 - c) Calculer le produit scalaire $\overline{AC} \cdot (\overline{i} + \overline{k})$, puis en déduire la distance $d(\Lambda, (\Delta))$

Exercice 2 (3points):

Dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) , on considère le point A d'affixe $a = -1 - i\sqrt{3}$, le point B d'affixe $b = -1 + i\sqrt{3}$ et la translation t de vecteur \overrightarrow{OA}

- 1) Prouver que l'affixe du point D image du point B par la translation t est d=-2
 - 2) On considère la rotation R de centre Det d'angle $\left(\frac{2\pi}{3}\right)$.
- 0.5 Montrer que l'affixe du point C image du point B par la rotation R est c = -4
- 0,5 3) a) Ecrire le nombre $\frac{b-c}{a-c}$ sous forme trigonométrique
 - b) En déduire que $\left(\frac{b-c}{a-c}\right)^2 = \frac{c-d}{b-d}$
 - 4) Soient (Γ) le cercle de centre D et de rayon 2, (Γ') le cercle de centre O et de rayon 4 et M un point d'affixe z appartenant aux deux cercles (Γ) et (Γ')
 - a) Vérifier que |z+2|=2
 - b) Prouver que $z + \overline{z} = -8$ (remarquer que |z| = 4)
 - c) En déduire que les cercles (Γ) et (Γ') se coupent en un point unique qu'on déterminera

4	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2022 – الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية					
	Exercice 3 (3points):					
	Une urne contient dix boules : trois boules blanches, trois boules vertes et quatre boules rouges					
	indiscernables au toucher. On tire au hasard simultanément trois boules de l'urne.					
0,75	 Montrer que p(A) = 1/6 ; où A est l'évènement "N'obtenir aucune boule rouge " Calculer p(B) ; où B est l'évènement "Obtenir trois boules blanches ou trois boules verte 					
0,75						
0,75	3) Montrer que $p(C) = \frac{1}{2}$; où C est l'évènement "Obtenir exactement une boule rouge "					
0,75	4) Calculer $p(D)$; où D est l'évènement "Obtenir au moins deux boules rouges "					
	Exercice 4 (2.5points):					
	On considère la fonction h définie sur \mathbb{R} par $h(x) = (x+1)e^x$					
0,75	1) a) Vérifier que $x \mapsto xe^x$ est une primitive de la fonction h sur \mathbb{R} ; puis calculer $I = \int_{-1}^{0} h(x) dx$					
0,75	b) A l'aide d'une intégration par parties calculer $J = \int_{-1}^{0} (x+1)^2 e^x dx$					
0,5	2) a) Résoudre l'équation différentielle $(E): y'' - 2y' + y = 0$					
0,5	b) Montrer que la fonction h est la solution de (E) qui vérifie les conditions $h(0) = 1$ et $h'(0) = 1$					
	Problème (8.5points):					
	On considère la fonction numérique f définie sur \mathbb{R} par $f(x) = x(e^{\frac{x}{2}} - 1)^2$.					
0,5	Soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité : lcm) 1) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$					
0,5 ,5 75	2) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter géométriquement le résultat					
,5	3) a) Montrer que la droite (Δ) d'équation $y = x$ est asymptote à la courbe (C) au voisinage de -					
75	b) Etudier le signe de $(f(x)-x)$ pour tout x de \mathbb{R} et en déduire la position relative de					
	la courbe (C) et la droite (Δ)					
5	4) a) Montrer que $f'(x) = (e^{\frac{1}{2}} - 1)^2 + xe^{\frac{1}{2}}(e^{\frac{1}{2}} - 1)$ pour tout $x \text{ de } \mathbb{R}$ b) Vérifier que $x(e^{\frac{1}{2}} - 1) \ge 0$ pour tout $x \text{ de } \mathbb{R}$ puis en déduire le signe de la fonction dérivée					
5	b) Vérifier que $x(e^{\frac{1}{2}}-1) \ge 0$ pour tout x de \mathbb{R} puis en déduire le signe de la fonction déduire					
	f' sur R 2 ∧ 2 m4					
5	c) Dresser le tableau des variations de la fonction f sur $\mathbb R$					

0,5	5) a) Montrer que $f''(x) = \frac{1}{2}e^{\frac{x}{2}}g(x)$; où							
	$g(x) = (2x+4)e^{\frac{x}{2}} - x - 4 \text{ pour tout } x \text{ de } \mathbb{R}$		•	1 1		-		
0,5	 b) A partir de la courbe ci-contre de la fonction g , 					7		
	déterminer le signe de $g(x)$ sur \mathbb{R} (Remarque : $g(\alpha) = 0$)	17.5	-	,				
0,5	c) Etudier la concavité de la courbe (C) et déterminer les		11 -			→ //-		
	abscisses des deux points d'inflexions.	1	# .	3	9 . 4	<i>y</i>		
	 Construire la courbe (C) dans le repère (O;i,j) 	- \	1	111	1			
v	(On prend: $\ln(4) = 1,4$, $\alpha = -4,5$ et $f(\alpha) = -3,5$)	1	-	1	1			
,5	7) a) Montrer que la fonction f admet une fonction	****						
	réciproque f^{-1} définie sur \mathbb{R}							
0,25	b) Calculer $(f^{-1})'(\ln 4)$							
	8) Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$							
,5	a) Montrer par récurrence que $0 < u_n < \ln 4$ pour tout $n \in \mathbb{N}$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
,5	b) Montrer que la suite (u _n) est décroissante.							
,25	c) En déduire que la suite (u_n) est convergente.							
0,5	d) Calculer la limite de la suite (u_n) .							

. .