
Sorting Algorithms

Copyrighted Material © www.studyforfe.com

Why are sorting algorithms required?
Sorting finds application in following
operations:
• Searching
• Minimum
• Maximum
• Duplicate deletion
• Frequency counting
• Uniqueness testing

Sorting can be accomplished using variety
of techniques:
• Comparison
• Iterative
• Recursive
• Divide and conquer
• Randomized algorithms

Iterative sorting algorithms (comparison
based)
• Bubble sort
• Insertion sort
• Heap sort

Recursive sorting algorithms (Comparison
based/ Divide-and-conquer)
• Merge sort
• Quick sort

Bubble Sort
Concept – If we are given an array of n items, we
can implement bubble sort as follows:
1. Compare pair of adjacent items
2. Swap if the items are out of order (non-

ascending).
3. Repeat until the end of array. Largest item

will ‘bubbled’ to the end of last position.
4. Reduce n by 1 and go to Step # 1.

void BubbleSort (int array[] , int n) {
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n-i-1; j++) {
 if (a[j] > a[j+1])
 swap(a[j] , a[j + 1]);
 }}}

Analysis:

• Two nested loops.
• At iteration i = 0, inner loop runs n – 1 – 0 = n – 1 times. At

iteration i = 1, inner loop runs n – 1 – 1 times.
• At iteration i = n – 1, inner loop runs n – 1 – (n – 1) = 0 times. Total

number of runs = σ𝑖=0
𝑛−1(𝑛 − 𝑖 − 1)

• σ𝑖=0
𝑛−1(𝑛 − 𝑖 − 1) = 𝑛2 − 𝑛 − σ𝑖=0

𝑛−1 𝑖 σ𝑖=1
𝑚 𝑗 =

𝑚 𝑚+1

2
 substitute 𝑚 = 𝑛 − 1 →

𝑛−1 𝑛

2

• σ𝑖=0
𝑛−1(𝑛 − 𝑖 − 1) = 𝑛2 − 𝑛 −

𝑛−1 𝑛

2
=

𝑛2

2
−

𝑛

2
=

𝑛 𝑛−1

2
= 𝑶(𝒏𝟐)

– Worst-case with input in descending order.

void BubbleSort (int array[] , int n) {
 for (int i = 0; i < n; i++) {
 bool is_sorted = true;
 for (int j = 0; j < n-i-1; j++) {
 if (a[j] > a[j+1])
 swap(a[j] , a[j + 1]);
 is_sorted = false;}
 if (is_sorted) return;}}

Analysis:

• Assume the array is sorted before inner loop
• Any swapping will invalidate the assumption
• If the flag remains true at the end of inner

loop, array is already sorted.
• Only n iterations were required 𝑶(𝒏) – Best-

case with input in ascending order.

Sorting Algorithms

Copyrighted Material © www.studyforfe.com

Insertion Sort

Concept – Similar to arranging a deck of card.
• Consider you have 5 cards (sorted already) out

of a deck of cards.
• You are given another card and asked to insert it

at the right spot.
• This will require going through all your cards.
• Once you find the right spot, you will insert the

new card at correct spot.
• Process will have to be repeated for every new

card.

Insertion sort works like this:
1. Start with second array element and make it

key.
2. Compare key with the previous element.
3. Swap if previous element is larger than key.
4. Now make third array element as the key.
5. Continue until entire array is sorted.

void insertionSort (int array[] , int n) {
 for (int i = 1; i < n; i++) {
 int key = a[i];
 for (int j = i-1; j >= 0 && a[j] > key; j--) {
 a[j+1] = a[j]; }
 a[j+1] = key;
 }}

Analysis:
• Two nested loops.
• Outer-loop executes n-1 times.
• Best-case: array is already sorted i.e. a[j] > key is

always false. 𝑶(𝒏)
• Worst-case: array is reversely sorted i.e. a[j] > key is

always true. 𝑶(𝒏𝟐)

	Slide 1: Sorting Algorithms
	Slide 2: Sorting Algorithms

