Why are sorting algorithms required?
Sorting finds application in following
operations:

* Searching

e Minimum

e Maximum

* Duplicate deletion

* Frequency counting

* Uniqueness testing

Sorting can be accomplished using variety
of techniques:

* Comparison

* lterative

* Recursive

* Divide and conquer

* Randomized algorithms

Iterative sorting algorithms (comparison
based)

* Bubble sort

* Insertion sort

* Heap sort

Recursive sorting algorithms (Comparison
based/ Divide-and-conquer)

* Merge sort

* Quick sort

Sorting Algorithms

STUDY FOR FE

void BubbleSort (int array[] , int n) {
for(inti=0;i<n-1;i++){
for (intj=0; j < n-i-1; j++) {
if (afj] > a[j+1])
swap(alj], alj + 1]);
31
Analysis:

Two nested loops.

At iterationi=0, inner loop runsn—1-0=n -1 times. At

iteration i =1, inner loop runs n —1 — 1 times.

At iterationi=n -1, inner loop runsn—1—(n—1) = 0 times. Total

number of runs = Y t(n —i — 1)
Yrom—i—-1)=n*—n-Yi

m(m+1) substitutem=n—1 - =)@

_ , (n-1)(n) n?
Yrim—i—1) =n’—n-——=——2

— Worst-case with input in descending order.

m L
i=1J] =

2

n _ n(n-1)

= 0(n?)

Pass#1
Bubble Sort 31 12 16 39 15
Concept — If we are given an array of n items, we 12 31 16 39 15
can implement bubble sort as follows: 12 16 31 39 15
1. Compare pair of adjacent items 12 16 31 39 15
2. Swap if the items are out of order (non- 12 16 31 15 39 s i 2
ascending). 12 16 31 15 39
3. Repeat until the end of array. Largest item 12 e 31 15 39
will ‘bubbled’ to the end of last position. 12 16 31 15 39
4. Reduce n by 1 and go to Step # 1. 12 16 15 31 39

void BubbleSort (int array[] , int n) {
for (inti=0;i<n;i++){
bool is_sorted = true;
for (intj=0;j < n-i-1; j++) {
if (afj] > a[j+1])
swap(a[j] , afj + 1]);
is_sorted = false;}
if (is_sorted) return;}}
Analysis:

* Assume the array is sorted before inner loop

* Any swapping will invalidate the assumption

. If the flag remains true at the end of inner
loop, array is already sorted.

* Only n iterations were required O(n) — Best-
case with input in ascending order.

Copyrighted Material © www.studyforfe.com

Sorting Algorithms g@

Insertion Sort 0 1 2y 3 4
L s [e [3 [1 | & |
— . key =3
Concept - Similar to arranging a deck of card. 0 1v) 3 4
* Consider you have 5 cards (sorted already) out [5 [6«f»3 | 1 [& |
of a deck of cards. key < 6? Yes, so swap
* You are given another card and asked to insert it 0 v 1 2 3 4
at the right spot. [s+ >3 B g | . _ ' _
+ This will require going through all your cards. key <05? Yes, solswap 5 , void msertanprt (|'nt arr.ay[] ,intn) {
« Once you find the right spot, you will insert the T T 5 T 6 1 1 | &] for (|nt.| =Li< n;."f"") {
new card at correct spot. S ; R o ; Int kgy = a[|],. ' . B
* Process will have to be repeated for every new T3 T 5 [& [1 | & | for (int | = -1;] >= 0 && a[j] > key; j-) {
card. — alj+1] = a'[J]; }
0 1 2 ¥ 3 4 alj+1] = key;
3 5 6 1 8 1
Insertion sort works like this: | | |key p 6_:1—5:0 swap| |
1. Start with second array element and make it 0 1v 2 3 4 Analysis:
key.)) [3 |k f;?j_’ L | e [8 | * Two nested loops.
2. Comp,.are keY with the preylous element. oy ey N &s, 5025‘”39 ; . . Outer-loop executes n-1 times.
3. Swap if previous element is larger than key. [3<f»1 | 5 | & | 8 | « Best-case: array is already sorted i.e. a[j] > key is
4. Now make third array element as the key. key < 37 Yes, so swap always false. O(1)
3. Continue until entire array is sorted. 0 1 2 3 4 « Worst-case: array is reversely sorted i.e. a[j] > key is
0 1y 2 3 4 Lt [3 [s | & | 8 | always true. 0(n?)
L s [s [3 [1 | 8 | 0 1 2 3 4y
key =5 I 3 | s 6 | 8 |
0 1y 2 3 key=8
| e<«f»5s5 | 3 | 1 | & | 0 1 2 3y 4
key < 67 Yes, so swap | 1 ‘ 3 | 5 ‘ 6 | 8 |
0 1 2 3 4 key < 67 No, all values to left are smaller - sorted!
[s [& [3 | 1 [8] L 2 | 3 [s | & | 8 |

Copyrighted Material © www.studyforfe.com

	Slide 1: Sorting Algorithms
	Slide 2: Sorting Algorithms

