

 Why are sorting algorithms required? Sorting finds application in following operations: Searching Minimum Maximum Duplicate deletion Frequency counting Uniqueness testing 	Bubble Sort 31 Concept – If we are given an array of n items, we can implement bubble sort as follows: 12 1. Compare pair of adjacent items 12 2. Swap if the items are out of order (non-ascending). 12 3. Repeat until the end of array. Largest item will 'bubbled' to the end of last position. 4.	Pass # 1 12 16 39 15 31 16 39 15 16 31 39 15 16 31 15 39 16 31 15 39 Pass # 2 12 16 31 15 39 12 16 31 15 39 12 16 31 15 39 12 16 31 15 39 12 16 31 39 39	
 Sorting can be accomplished using variety of techniques: Comparison Iterative Recursive Divide and conquer Randomized algorithms 	<pre>void BubbleSort (int array[], int n) { for (int i = 0; i < n - 1; i++) { for (int j = 0; j < n-i-1; j++) { if (a[j] > a[j+1]) swap(a[j], a[j + 1]); }}} Analysis:</pre>	<pre>void BubbleSort (int array[], int n) { for (int i = 0; i < n; i++) { bool is_sorted = true; for (int j = 0; j < n-i-1; j++) { if (a[j] > a[j+1]) swap(a[j], a[j + 1]); is_sorted = false;}</pre>	
 Iterative sorting algorithms (comparison based) Bubble sort Insertion sort Heap sort Recursive sorting algorithms (Comparison based/ Divide-and-conquer) Merge sort Quick sort 	if (is_sorted) return; if (is_sorted) return; if (is_sorted) return; At iteration i = 0, inner loop runs $n - 1 - 0 = n - 1$ times. At iteration i = 1, inner loop runs $n - 1 - 1$ times. At iteration i = n - 1, inner loop runs $n - 1 - (n - 1) = 0$ times. Total number of runs $= \sum_{i=0}^{n-1} (n - i - 1)$ $\sum_{i=0}^{n-1} (n - i - 1) = n^2 - n - \sum_{i=0}^{n-1} i$ $\sum_{i=0}^{m} (n - i - 1) = n^2 - n - \sum_{i=0}^{n-1} i$ $\sum_{i=0}^{n-1} (n - i - 1) = n^2 - n - \frac{(n-1)(n)}{2} = \frac{n^2}{2} - \frac{n}{2} = \frac{n(n-1)}{2} = 0(n^2)$ - Worst-case with input in descending order.		

Copyrighted Material © www.studyforfe.com

Sorting Algorithms

Insertion Sort

Concept – Similar to arranging a deck of card.

- Consider you have 5 cards (sorted already) out of a deck of cards.
- You are given another card and asked to insert it at the right spot.
- This will require going through all your cards.
- Once you find the right spot, you will insert the new card at correct spot.
- Process will have to be repeated for every new card.

Insertion sort works like this:

- 1. Start with second array element and make it **key**.
- 2. Compare key with the previous element.
- 3. Swap if previous element is larger than **key**.
- 4. Now make third array element as the **key**.
- 5. Continue until entire array is sorted.

0	1 🖌	2	3	4
6	5	3	1	8
	key = 5			
0	1 🕇	2	3	4
6 ┥	→ 5	3	1	8
key < 6? Yes, so swap				
0	1	2	3	4
5	6	3	1	8

0 5	1	2 🚽	2		
5		<u> </u>	3	4	
	6	3	1	8	
		key = 3			
0	1 🕇	2	3	4	
5	6 ┥	→ 3	1	8	
k	key < 6? Yes, so swap				
0 🕇	1	2	3	4	
5 ┥ 🕂	▶ 3	6	1	8	
key < 5? Yes	s, so swap)			
0	1	2	3	4	
3	5	6	1	8	
0	1	2	3 🕇	4	
3	5	6	1	8	
			key = 1		
0	1	2 🖌	3	4	
3	5	6 ┥	▶ 1	8	
	key < 6? Yes, so swap				
0	1 🔻	2	3	4	
3	5 ┥	▶ 1	6	0	
	key < 5? Yes, so swap				
k	ey < 5? Ye	es, so swap	-	8	
k 0	ey < 5? Ye 1	2	3	8	
0 🔸	1 1	2 5			
0 🕇	1 1	2 5	3	4	
0 🔶 3 ┥ key < 3? Yes 0	1 1 5, so swap 1	2 5 2	3 6 3	4	
0 🔸 3 ┥ key < 3? Yes	1 1 s, so swap	2 5	3 6	4 8	
0 🔶 3 < key < 3? Yes 0	1 1 5, so swap 1	2 5 2	3 6 3	4 8 4	
0 ¥ 3 4 key < 3? Yes 0 1	1 1 5, so swap 1 3	2 5 2 5	3 6 3 6	4 8 4 8	
0 + 3 + key < 3? Yes 0 1 0	1 1 5, so swap 1 3 1	2 5 2 5 2 2	3 6 3 6 3	4 8 4 8 4 ↓	
0 + 3 - key < 3? Yes 0 1 0	1 1 5, so swap 1 3 1	2 5 2 5 2 2	3 6 3 6 3	4 8 4 8 4 ↓ 8	
0 3 key < 3? Yes 0 1 0 1	1 1 5, so swap 1 3 1 3	2 5 2 5 2 5 5	3 6 3 6 3 6	4 8 4 8 4 ↓ 8 key = 8	
0 3 key < 3? Yes 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 3 1 3 1 3 1 3 1 3	2 5 2 5 2 5 5 2 2 5 2 2 2 2	3 6 3 6 3 6 3 6 3 ↓	4 8 4 8 4 ↓ 8 key = 8 4 8	

<pre>void insertionSort (int array[] , int n) {</pre>
for (int i = 1; i < n; i++) {
int key = a[i];
for (int j = i-1; j >= 0 && a[j] > key; j) {
a[j+1] = a[j];
a[j+1] = key;
}}

Analysis:

- Two nested loops.
- Outer-loop executes n-1 times.
- Best-case: array is already sorted i.e. a[j] > key is always false. O(n)
- Worst-case: array is reversely sorted i.e. a[j] > key is always true. $O(n^2)$