Indices

Skill: Writing one number as the power of another

Questions

Attempt these questions independently showing full solutions. Check each answer as you go.

1. Write the following in the form 5^n where n is a constant to be determined.

(a)125

 $(b)^{\frac{1}{25}}$

(c) $\sqrt{25}$

 $(d)^{\frac{1}{\sqrt[4]{125}}}$

(e) $5^{-60} \times 25^{-200}$

2. Write the following in the form 3^n where n is a constant to be determined.

(a)81

 $(b)\frac{1}{27}$

(c) $\sqrt{27}$

 $(d)^{\frac{1}{5\sqrt{3}}}$

(e) $3^{-7} \times 9^{-33} \times 27^{40}$

3. Write the following in the form 4^n where n is a constant to be determined.

(a)64

 $(b)^{\frac{1}{16}}$

(c) 8

(d) $\sqrt[3]{32}$

(e) $2^{180} \times 4^{-90}$

4. Write the following in the form 8^n where n is a constant to be determined.

(a)1

 $(b)^{\frac{1}{64}}$

(c) 4

(d) $\sqrt[3]{16}$

(e) $2^{-5} \times 4^{-6}$

5. Find the value of the unknown in each of the following examples. Answers that rely on calculator technology are not acceptable.

(a) $3^{2x} = 27$

(b) $25^x = 125$

(c) $\left(\frac{1}{9}\right)^x = 3$

 $(d)\left(\sqrt{2}\right)^{3x} = \frac{1}{64}$

(e) $2^{2x-1} = 8^{x-2}$

(f) $4^{2t-1} = \left(\frac{1}{8}\right)^{1-t}$

(f) $2^{x^2} = 4^{x+4}$

 $(g)9^{x^2-1} = 27^{x-1}$