Linkers & Loaders

by John R. Levine

J OHN R. LEVINE

Linkers

Loaclers

Table of Contents 1

Table of Contents

Chapter 0: Front Mattercccoovvviinneeee e 1
D =To [o= U1 o] o ISR SRR 1
INEFOTUCTION .. 1

WhO iS thisS DOOK TOIr? ..o 2
Chapter SUMMANIESccviieiiieie e 3
TRE PIOJECL et 4
ACKNOWIEAGEMENTS ... 5
(@70] o] r=Tox ST S ST ROPRPRPRS 6

Chapter 1: Linkingand Loadingccceveevciveneesiieeneesnene 7
What do linkers and 10aders do?cccocevveieiienn e 7
Address binding: a historical Perspectiveccccevevvvevieiiieieece e, 7
LinkKing VS. 102diNGcooiiiiiiiieeeseeee e 10

TWO-PaSS lINKING ...ooiiiii e 12
Object code lBrariesccooveiieiieicieece e 15
Relocation and code modificationcccccevveveiiiiinin i, 17
COMPIIET DIIVELS ..ot 18
Linker command 1anguagESccovevveeiereere e, 19
Linking: a true-life eXxample ..., 20
=] (o ST 1 SRS 25

Chapter 2: Architectural ISSUEScccceviiriirinrenieee e, 27
Application Binary INterfaces ... 27
MEMOIY AUAIESSES ...vvevievreireeiteeieseeste et e e re s steesae e e sreeaesraesne e, 28

Byte Order and AlIGNMENtccoiieiiiii e, 28
AdAress TOrmMAationcccoeieiiierieie e 30
INSErUCLION TOIMALSoiviiiiiiiiee e 31
Procedure Calls and Addressability ..o, 32

PrOCRAUIE CAIIS .ottt eeenans 33

o~

Table of Contents

Chapter 3: Object Files

Data and instruction references
IBM 370 et
SPARC s

SPARC V8 ...ttt e
SPARC VO e s
INTEL X8O ...t

Paging and Virtual Memoryccccceevevieieiiie e
The program address SPaCecccccereereereeiieneniieseenens
MaPPE TIES ...

Shared libraries and programs
Position-independent code

Intel 386 Segmentationccoovvvvvivieiiennenn

Embedded architeCturesccocovvviiiiniiinnn
Address Space QUITKSccceevereeriiieiienieesieee
Non-uniform memory

Memory alignment,

EXEICISES ..ooovvveiiieieiiesieeie e

What goes into an Object TINGL........... g eerveererrerrenieseene e

Table of Contents 3

IBM 360 0bject fOrmatccceveiieiiccsicce e 94
ESD FECOMAS ...veeueeiiieitieieee ettt 95

B I QI =10 o TSR 97
RLD FECOIUS ..ttt 97
END FECOIAS ..ottt 98
SUMMEIY .o 98
Microsoft Portable Executable formatccooovviiiiiiiiicen 99
PE Special SECIONSccoiieiiiieiieiese e e 105
Running a PE executable ..o, 107
PE aNd COFF ..o 107
PE SUMMATY ...eiiiiiieieie e 108
Intel/Microsoft OMF filesccoveiiiiiieceecr e 108
OMPF FECOITS ...ttt 110
Details of an OMF filecoovoiiiii e 111
SUMMary of OMFooiii e, 114
Comparison of object formatsccccccevvieieeii i, 114
o (0] [RSP ORR 115
EXEICISES .oivieiieeieetiesti ettt e st e e re et e e nneeneenneas 117
Chapter 4: Storage allocationcccoceeveeienieneenennienne 119
Segments and addreSSESccoverererirerieeeee e 119
Simple storage layoutccceevieiieiicie e 120
Multiple SEgMENT LYPES ..c.veeiieiieiiieieeie e 121
Segment and page alignmentc.cooeviiiienenes e 124
Common blocks and other special segmentsccccevvvevveieiienenn, 125
COMIMON ..t aeesnne s 125
C++ duplicate removal ..., 127
Initializers and fiNAHZErScoccoveiiiiie e 130
IBM PSEUAO-TEQISTEIS ...veivviiieiieie sttt 131
Special tableSccooviiiee 134
X86 segmented storage allocationcccccovevvereiieieece e, 134
Linker CONrol SCIIPLS ..o.voiveeieieiesiiecee e 136
Embedded system storage allocationcccccvevvvienneresiienneinnnn, 138
Storage allocation in PractiCecccevevieeieeviesiee e, 138

Storage allocation in Unix a.out liNKersccccccoevvinienieiiennnn, 139

g

4 Table of Contents

Storage allocation in ELF ..o, 141
Storage allocation in Windows lINKersccccoceviinnenieiiennnn, 144
EXEICISES .oivieieeiectie sttt ettt et re e neenneeneenneas 146
o 0] 1< RS 147

Chapter 5: Symbol management

Binding and name resolutioncccecveveiiieiicie e,

Symbol table fOrmats ..o
Module tablesccovvveiii e,

Global symbol tableccccoovviieiiiiiie,
Symbol resolution ...
Special symbols ...

Name Manglingccovviieiieieee e
Simple C and Fortran name mangli
C++ type encoding: types and s

Link-time type checking

BDErating SYSEMocveiiceciece e
Unix and WIindows Archive fileS ..o, 170

UNIX @rCNIVES ..o 170
BNSION 10 64 DILS ...cvveieieiice e 174

INtel OMPF HDFari€scoveiiiiiiiiiiiccc e 174
Creating lDraries ... 176
Searching lIDrariesccoveiieii i, 177

Table of Contents 5

PErfOrManCE ISSUEScceiuieieceiecie ettt 179
Weak external Symbols ..o 179
(S Lot =S 181
(0] = SO 181
Chapter 7: REIOCALIONcccuveiieeiieciee e 183
Hardware and software relocationcccceceeveeveveesecce e 183
Link time and load time rel0Cationc.cccoeeierieneeneniesee e 184
Symbol and segment reloCationcoceveverieeieienese e 185
SymbBOl TOOKUPS ...ccuveeieeicie e e 186
Basic relocation teChNIQUESccuereiieirieciiee e 186
INSLrUCioN rElOCALIONcevveeieeeeseee e e 188
X86 INStruction relOCatioNccccveieereeiee e 189
SPARC InStruction relOCationccooceevereeneriieneesesee e 189
ECOFF segment relOCationccoevererereenieniene s 191

[I = oo 1 o o S 193
OMPF relOCELIONcoviiiieiiieieeesee e 193
Relinkable and relocatable output fOrmatsccoceeeveneneneneenens 194
Other relocation fFOrmatscccovceeveeieieesece e 194
Chained refErenCeSooeeiieeeee e 195
BIt MAPS .o s 195
SpeCial SEGMENES ..o e 196
Rel0cation SPeCial CaSEScooeeriiriierieieeies e s 197
(S Lot 197
(0] = SR 198
Chapter 8: Loading and overlayscccccccevvervvvevencneenne 201
BasiC10a0INGccoivieieiiee e e 201
Basic loading, With reloCationcoccovervinenenin e 202
Position-independent COOEocoirerirerieieee e 203
TSS/360 position independent Codecoveeeeeeiieceesecrie e, 203
Per-routine pointer tables ... 206
Table Of CONLENLSccoeeieieerie e nae s 207

ELF position independent Codeccevvveeveececieceee e 208

6 Table of Contents

PIC costs and Benefitscoovveiiiiniiiieee e
BOOtStrap 10adiNgcooeieiiiiieee e
Tree structured OVErlaYs ...,

Defining OVErIaYScocovveicc e

Implementation of overlays

Overlay fine points

Data ..o
Duplicated code
Multiple regions

Overlay SUMMATYcccoovviieiieiece e
EXEICISES .eoivviiiiiiiieie e
PIOJECT ..o

Chapter 9: Shared libraries

Binding time ...
Shared libraries in practice
Address space management
Structure of shared libraries
Creating shared librarie

Creating the jump table @............

Creating the
\ersion na

pter 10: Dynamic Linking and Loading 247
ELFRIYNamic HINKINGoooveiiiieieeceec e 248
Contents of an ELF fileccooiiiiic e 248
Loading a dynamically linked programcccccoecevereninennniennnennnn 253

Starting the dynamic liNKErcccooovoveiieiececec e, 253

Table of Contents 7

Finding the TIDraries ..o 254
Shared library initializationccccooov i, 255
Lazy procedure linkage with the PLTccccoiiiiiiiiiniceeiee 256
Other peculiarities of dynamic linkingc.cccovevvive i, 258
Static INItIAHZALIONS ..o 258
LiDrary VEISIONScccocoiiiiiiiiiiieeee s 259
Dynamic loading at runtimecccoeoeiieve i 260
Microsoft Dynamic Link Libraries ..., 260
Imported and exported symbols in PE filesc.ccoovviviiinnnnn, 261
Lazy DIiNdiNgcovoeee e 266
DLLS and threadsccooviirieniiiierieie e e 267
OSF/1 pseudo-static shared librariesccoocvvvvvivevenienieeie e, 267
Making shared libraries fastccccccevieviiieii e, 268
Comparison of dynamic linking approachescccccecvvenieiennnnnn, 270
EXEICISES .oiviiiieiectie sttt ettt et e re e neenteeneenneas 271
o (0] 1< SRS 271
Chapter 11: Advanced teChNiqQUEScccceeveeecieecien e 273
Techniques fOr CH+ .o, 273
TrAl HNKING oo 274
Duplicate code eliminationccccooeviieninineniresseeeees 276
Database approachesccccvveveiieii e 278
Incremental linking and relinkingccooeveiiiiiiniene e, 278
Link time garbage collection ..o 281
Link time Optimizationccccooveiiiie e 282
Link time code generationc.cccceeeiienenieniene e 284
Link-time profiling and instrumentationccccoevvviiniiinnennn, 284
Link time assembBIErccocvieiiiiiiecee s 285
Load time code generationcccoceveerereenieenesiee e 285
The Java linking model ..., 287
L0ading Java ClaSSESccccveveeieiiieiiere e 288
EXEICISES ittt ettt bbb nneas 290

PIOJECT .ottt 291

8 Table of Contents

Chapter 12: Referencescccccvvveveenerciennee e 293

(2 S I 00 0 T 295

Front Matter 0-1

Chapter O
Front Matter
$Revision: 2.2 $
$Date: 1999/06/09 00:48:48 $
Dedication

To Tonia and Sarah, my women folk.
Introduction

Linkers and loaders have been part of the software toolkit almost as long
as there have been computers, since they are the critical tools that permit
programs to be built from modules rather than as one big monolith.

As early as 1947, programmers started to use primitive loaders that could
take program routines stored on separate tapes and combine and relocate
them into one program. By the early 1960s, these loaders had evolved into
full-fledged linkage editors. Since program memory remained expensive
and limited and computers were (by modern standards) slow, these linkers
contained complex features for creating complex memory overlay struc-
tures to cram large programs into small memory, and for re-editing previ-
ously linked programs to save the time needed to rebuild a program from
scratch.

During the 1970s and 1980s there was little progress in linking technolo-
gy. Linkers tended to become even simpler, as virtual memory moved
much of the job of storage management away from applications and over-
lays, into the operating system, and as computers became faster and disks
larger, it became easier to recreate a linked program from scratch to re-
place a few modules rather than to re-link just the changes. In the 1990s
linkers have again become more complex, adding support for modern fea-
tures including dynamically linked shared libraries and the unusual de-
mands of C++. Radical new processor architectures with wide instruction
words and compiler-scheduled memory accesses, such as the Intel 1A64,
will also put new demands on linkers to ensure that the complex require-
ments of the code are met in linked prograsm.

0-2 Front Matter

Whoisthisbook for?
This book is intended for several overlapping audiences.

. Sudents. Courses in compiler construction and operating systems
have generally given scant treatment to linking and loading,
because the linking process seemed trivial or obvious.
this was arguably true when the languages of interest we
Pascal, and C, and operating systems didn’t use me
or shared libraries, it’s much less true now. C++,

tem, and an operating system designer diSrgs
his or her peril.

. Practicing programmers also n be aware of What linkers do,
again particularly for moder C++ places unique de-
mands on a linker, and large are prone to develop

ngs that happen at link

asn’t expecting.) Linker features such as
mic Ligking offer great flexibility and

the linker to handle the details. (Consider what
r has to do to get the equivalent of C++ templates in
g that the initialization routines in each of a hundred
es are called before the body of the program starts.)
Future languages will automate even more program-wide book-
keeping tasks, with more powerful linkers doing the work. Linkers

ill also be more involved in global program optimization, since
the linker is the only stage of the compiler process that handles the
entire program’s code together and can do transformations that af-
fect the entire program as a unit.

g

Front Matter 0-3

(The people who write linkers also all need this book, of course. But all
the linker writers in the world could probably fit in one room and half of
them already have copies because they reviewed the manuscript.)

Chapter summaries

Chapter 1, Linking and Loading, provides a short historical overview of
the linking process, and discusses the stages of the linking process. It ends
with a short but complete example of a linker run, from input object files
to runnable “Hello, world” program.

Chapter 2, Architectural Issues, reviews of computer architecture from the
point of view of linker design. It examines the SPARC, a representative
reduced instruction set architecture, the IBM 360/370, an old but still very
viable register-memory architecture. and the Intel x86, which is in a cate-
gory of its own. Important architectural aspects include memory architec-
ture, program addressing architecture, and the layout of address fields in
individual instructions.

Chapter 3, Object Files, examines the internal structure of object and ex-
ecutable files. It starts with the very simplest files, MS-DOS .COM files,
and goes on to examine progressively more complex files including, DOS
EXE, Windows COFF and PE (EXE and DLL), Unix a.out and ELF, and
Intel/Microsoft OMF.

Chapter 4, Sorage allocation, covers the first stage of linking, allocating
storage to the segments of the linked program, with examples from real
linkers.

Chapter 5, Symbol management, covers symbol binding and resolution,
the process in which a symbolic reference in one file to a name in a second
file is resolved to a machine address.

Chapter 6, Libraries, covers object code libraries, creation and use, with
issues of library structure and performance.

Chapter 7, Relocation, covers address relocation, the process of adjusting
the object code in a program to reflect the actual addresses at which it
runs. It also covers position independent code (PIC), code created in a
way that avoids the need for relocation, and the costs and benefits of doing

0-4 Front Matter

SO.

Chapter 8, Loading and overlays, covers the loading process, getting a
program from a file into the computer’s memory to run. It also covers
tree-structured overlays, a venerable but still effective technique to cgn-
serve address space.

Chapter 9, Shared libraries, looks at what’s required to share a sj
of a library’s code among many different programs. This ch
trates on static linked shared libraries.

Chapter 10, Dynamic Linking and Loading, continugg
Chapter 9 to dynamically linked shared libraries. |
detail, Windows32 dynamic link libraries (DLL
shared libraries.

Chapter 11, Advanced techniques, looks
cated modern linkers do. It covers neyffeatures that C++ requires, includ-
ing “name mangling™, global cons
pansion, and duplicate code eliminat her t@hniques include incre-
mental linking, link-time garbage collection, i me code generation and
optimization, load time c generation, profiling and instrumenta-
tion. It concludes with an view of e Java linking model, which is
considerably more sgasiil an any of the other linkers cov-
ered.

otated bibliography.

11 have a continuing project to develop a small but
fynctigmal linker ing®erl. Although perl is an unlikely implementation lan-
ion linker, it’s an excellent choice for a term project.
erl handTedll®Mny of the low-level programming chores that bog down
ramming in languages like C or C++, letting the student concentrate
Igorithms and data structures of the project at hand. Perl is avail-
0 charge on most current computers, including Windows 95/98
nd NT, Unix, and Linux, and many excellent books are available to teach
erl to new users. (See the bibliography in Chapter 12 for some sugges-
ions.)

Front Matter 0-5

The initial project in Chapter 3 builds a linker skeleton that can read and
write files in a simple but complete object format, and subsequent chapters
add functions to the linker until the final result is a full-fledged linker that
supports shared libraries and produces dynamically linkable objects.

Perl is quite able to handle arbitrary binary files and data structures, and
the project linker could if desired be adapted to handle native object for-
mats.

Acknowledgements

Many, many, people generously contributed their time to read and review
the manuscript of this book, both the publisher’s reviewers and the readers
of the comp.compilers usenet newsgroup who read and commented on an
on-line version of the manuscript. They include, in alphabetical order,
Mike Albaugh, Rod Bates, Gunnar Blomberg, Robert Bowdidge, Keith
Breinholt, Brad Brisco, Andreas Buschmann, David S. Cargo, John Carr,
David Chase, Ben Combee, Ralph Corderoy, Paul Curtis, Lars Duening,
Phil Edwards, Oisin Feeley, Mary Fernandez, Michael Lee Finney, Peter
H. Froehlich, Robert Goldberg, James Grosbach, Rohit Grover, Quinn
Tyler Jackson, Colin Jensen, Glenn Kasten, Louis Krupp, Terry Lambert,
Doug Landauer, Jim Larus, Len Lattanzi, Greg Lindahl, Peter Ludemann,
Steven D. Majewski, John McEnerney, Larry Meadows, Jason Merrill,
Carl Montgomery, Cyril Muerillon, Sameer Nanajkar, Jacob Navia, Simon
Peyton-Jones, Allan Porterfield, Charles Randall, Thomas David Rivers,
Ken Rose, Alex Rosenberg, Raymond Roth, Timur Safin, Kenneth G
Salter, Donn Seeley, Aaron F. Stanton, Harlan Stenn, Mark Stone, Robert
Strandh, Bjorn De Sutter, lan Taylor, Michael Trofimov, Hans Walheim,
and Roger Wong.

These people are responsible for most of the true statements in the book.
The false ones remain the author’s responsiblity. (If you find any of the
latter, please contact me at the address below so they can be fixed in subse-
quent printings.)

I particularly thank my editors at Morgan-Kaufmann Tim Cox and Sarah
Luger, for putting up with my interminable delays during the writing pro-
cess, and pulling all the pieces of this book together.

0-6 Front Matter

Contact us

This book has a supporting web site at htt p: // 1 i nker.iecc. com
It includes example chapters from the book, samples of perl code and ob-
ject files for the project, and updates and errata.

You can send e-mail to the author at | i nker @ ecc. com Thegau
reads all the mail, but because of the volume received may not
answer all questions promptly.

Linking and Loading 1-7

Chapter 1
Linking and L oading

$Revision: 2.3 $
$Date: 1999/06/30 01:02:35 $

What do linkers and loader s do?

The basic job of any linker or loader is smple: it binds more abstract
names to more concrete names, which permits programmers to write code
using the more abstract names. That is, it takes a name written by a pro-
grammer such as get | i ne and binds it to **the location 612 bytes from
the beginning of the executable code in modulei osys.” Or it may take a
more abstract numeric address such as *‘the location 450 bytes beyond the
beginning of the static data for this module” and bind it to a numeric ad-
dress.

Address binding: a historical perspective

A useful way to get some insight into what linkers and loaders do is to
look at their part in the development of computer programming systems.

The earliest computers were programmed entirely in machine language.
Programmers would write out the symbolic programs on sheets of paper,
hand assemble them into machine code and then toggle the machine code
into the computer, or perhaps punch it on paper tape or cards. (Real hot-
shots could compose code directly at the switches.) If the programmer
used symbolic addresses at all, the symbols were bound to addresses as the
programmer did his or her hand translation. If it turned out that an instruc-
tion had to be added or deleted, the entire program had to be hand-inspect-
ed and any addresses affected by the added or deleted instruction adjusted.

The problem was that the names were bound to addresses too early. As
semblers solved that problem by letting programmers write programs in
terms of symbolic names, with the assembler binding the names to ma-
chine addresses. If the program changed, the programmer had to reassem-
ble it, but the work of assigning the addresses is pushed off from the pro-
grammer to the compuiter.

* 0% % ¥ X X X X

g

1-8 Linking and Loading

Libraries of code compound the address assignment problem. Since the
basic operations that computers can perform are so simple, useful pro-
grams are composed of subprograms that perform higher level and more
complex operations. computer installations keep a library of pre-written
and debugged subprograms that programmers can draw upon to use i
programs they write, rather than requiring programmers to write
own subprograms. The programmer then loads the subprogra
the main program to form a complete working program.

Programmers were using libraries of subprograms even bef
assemblers. By 1947, John Mauchly, who led the EJ

pear to predate even assemblers, as
and subprograms to be written in ma
allowed the authors and users of th
gram as though it would start at locati
dress binding until the sulprograms wer
program.

expected b& the program
e. The relocating loader
to write each subpro-
to defer the actual ad-
with a particular main

elocating loaders separate from
. Before operating systems, each
program had the
could be assemb for fixed memory addresses, knowing that
ould be available. But with operating sys-
are the computer’s memory with the operating
even with other programs, This means that the actual

e program would be running weren’t known until the

to assign actual addresses.

Linking and Loading 1-9

As systems became more complex, they called upon linkers to do more
and more complex name management and address binding. Fortran pro-
grams used multiple subprograms and common blocks, areas of data
shared by multiple subprograms, and it was up to the linker to lay out stor-
age and assign the addresses both for the subprograms and the common
blocks. Linkers increasingly had to deal with object code libraries. in-
cluding both application libraries written in Fortran and other languages,
and compiler support libraries called implcitly from compiled code to han-
dle 1/0 and other high-level operations.

Programs quickly became larger than available memory, so linkers provid-
ed overlays, a technique that let programmers arrange for different parts of
a program to share the same memory, with each overlay loaded on demand
when another part of the program called into it. Overlays were widely
used on mainframes from the advent of disks around 1960 until the spread
of virtual memory in the mid-1970s, then reappeared on microcomputers
in the early 1980s in exactly the same form, and faded as virtual memory
appeared on PCs in the 1990s. They’re still used in memory limited em-
bedded environments, and may yet reappear in other places where precise
programmer or compiler control of memory usage improves performance.

With the advent of hardware relocation and virtual memory, linkers and
loaders actually got less complex, since each program could again have an
entire address space. Programs could be linked to be loaded at fixed ad-
dresses, with hardware rather than software relocation taking care of any
load-time relocation. But computers with hardware relocation invariably
run more than one program, frequently multiple copies of the same pro-
gram. When a computer runs multiple instances of one program, some
parts of the program are the same among all running instance (the ex-
ecutable code, in particular), while other parts are unique to each instance.
If the parts that don’t change can be separated out from the parts that do
change, the operating system can use a single copy of the unchanging part,
saving considerable storage. Compilers and assemblers were modified to
create object code in multiple sections, with one section for read only code
and another section for writable data, the linker had to be able to combine
all of sections of each type so that the linked program would have all the
code in one place and all of the data in another. This didn’t delay address

g

1-10 Linking and Loading

binding any more than it already was, since addresses were still assigned
at link time, but more work was deferred to the linker to assign addresses
for all the sections.

Even when different programs are running on a computer, those differgnt
programs usually turn out to share a lot of common code. For exa
nearly every program written in C uses routines such as f o

Windows, or the Macintosh all use pieces of the GUI librar
tems now provide shared libraries for programs to usg :

at link time. Static li-
e programs potentially

ences to library routines to those sp
braries turn out to be inconveniently ,
have to be relinked every time any part of the |ig8ry changes, and the de-
tails of creating static shareglibraries turn be very tedious. Systems
added dynamically linked I| ies in whdch library sections and symbols
aren’t bound to act ij@fe program that uses the library
starts running. Sg#feti | P is delayed even farther than that;
with full-fledged@dynamic |Igking, the addresses of called procedures
aren’t bound unt
brarles 3

is provides a powerful and high-performance way to
pf programs. Microsoft Windows in particular makes
ime loading of shared libraries (known as DLLs, Dy-
ibraries) to construct and extend programs.

Linking and Loading 1-11

. Program loading: Copy a program from secondary storage (which
since about 1968 invariably means a disk) into main memory so
it’s ready to run. In some cases loading just involves copying the
data from disk to memory, in others it involves allocating storage,
setting protection bits, or arranging for virtual memory to map vir-
tual addresses to disk pages.

. Relocation: Compilers and assemblers generally create each file of
object code with the program addresses starting at zero, but few
computers let you load your program at location zero. If a pro-
gram is created from multiple subprograms, all the subprograms
have to be loaded at non-overlapping addresses. Relocation is the
process of assigning load addresses to the various parts of the pro-
gram, adjusting the code and data in the program to reflect the as-
signed addresses. In many systems, relocation happens more than
once. It’s quite common for a linker to create a program from mul-
tiple subprograms, and create one linked output program that starts
at zero, with the various subprograms relocated to locations within
the big program. Then when the program is loaded, the system
picks the actual load address and the linked program is relocated as
a whole to the load address.

. Symbol resolution: When a program is built from multiple subpro-
grams, the references from one subprogram to another are made
using symbols; a main program might use a square root routine
called sqr t, and the math library defines sqrt . A linker resolves
the symbol by noting the location assigned to sqrt in the library,
and patching the caller’s object code to so the call instruction refers
to that location.

Although there’s considerable overlap between linking and loading, it’s
reasonable to define a program that does program loading as a loader, and
one that does symbol resolution as a linker. Either can do relocation, and
there have been all-in-one linking loaders that do all three functions.

The line between relocation and symbol resolution can be fuzzy. Since
linkers already can resolve references to symbols, one way to handle code
relocation is to assign a symbol to the base address of each part of the pro-

1-12 Linking and Loading

gram, and treat relocatable addresses as references to the base address
symbols.

One important feature that linkers and loaders share is that they both patch
object code, the only widely used programs to do so other than perhaps de-
buggers. This is a uniquely powerful feature, albeit one that is extre

wrong.

Two-pass linking

Now we turn to the general structure of linkers. Linkigg
assembling, is fundamentally a two pass process.
put a set of input object files, libraries, and per
produces as its result an output object file, and perh3
tion such as a load map or a file containing debugger s

Figure 1-1: The linker proc

picture of linker taking input file cing output file,
maybe also other j

Linking and Loading 1-13

_shared |7
Ilbrar1q§_‘ /|
command-line | :‘&Iﬁeﬂt ,-"I p:m_fa"l“;...
arguments f files 1{ / illbrarle _
R —- 1 #Lh_“ PR
finker) e o]
control \L /
L fi les | B ﬁ\;,_ -
Imk&r ,.f‘
Thsaarid ekeeméble / link/load |
Skt Ltite | __map |
|_Lfile ‘~. ; —

------- " el

Each input file contains a set of segments, contiguous chunks of code or
data to be placed in the output file. Each input file also contains at least
one symbol table. Some symbols are exported, defined within the file for
use in other files, generally the names of routines within the file that can
be called from elsewhere. Other symbols are imported, used in the file but
not defined, generally the names of routines called from but not present in
the file.

T—

%

Iy

1Y

1-14 Linking and Loading

When a linker runs, it first has to scan the input files to find the sizes of the
segments and to collect the definitions and references of all of the symbols
It creates a segment table listing all of the segments defined in the input
files, and a symbol table with all of the symbols imported or exported.

Using the data from the first pass, the linker assigns numeric locatio

The second pass uses the information collected in the first
the actual linking process. It reads and relocates the object co
ing numeric addresses for symbol references, and
dresses in code and data to reflect relocated segmg
the relocated code to the output file. It then writes Xga

| general-
ly with header information, the relocated segments, & @l table in-
formation. If the program uses dynamic laing, the syngi##able contains

of code or data in the
in overlays or dynam-

cases, the linker itself will generate
output file, such as "glue code™ used
ically linked libraries, or an array of pointers t
need to be called at prograg@startup time.

linking, the file may also con-
gging that isn’t used by the pro-

put to a subsequent linker run. This requires that
a symbol table like one in an input file, as well as all
information present in an input file.

formats have provision for debugging symbols, so that
the program is run under the control of a debugger, the debugger can
se symbols to let the programmer control the program in terms of
numbers and names used in the source program. Depending on
e details of the object format, the debugging symbols may be intermixed

a single symbol table with symbols needed by the linker, or there may
e one table for the linker and a separate, somewhat redundant table for

Linking and Loading 1-15

the debugger.

A few linkers appear to work in one pass. They do that by buffering some
or all of the contents of the input file in memory or disk during the linking
process, then reading the buffered material later. Since this is an imple-
mentation trick that doesn’t fundamentally affect the two-pass nature of
linking, we don’t address it further here.

Object codelibraries

All linkers support object code libraries in one form or another, with most
also providing support for various kinds of shared libraries.

The basic principle of object code libraries is simple enough, Figure 2. A
library is little more than a set of object code files. (Indeed, on some sys-
tems you can literally catenate a bunch of object files together and use the
result as a link library.) After the linker processes all of the regular input
files, if any imported names remain undefined, it runs through the library
or libraries and links in any of the files in the library that export one or
more undefined names.

Figure 1-2: Object code libraries

Object files fed into the linker, with libraries containing lots
of files following along.

1-16 Linking and Loading

| ObjectA | & ?I'i-hnaryj!
| calls B,C, D)~ ?'

" objectB
| callsCG;E |\

e bound in when the program is loaded. See Chapters 9 and 10 for the
etails.

o~

Linking and Loading 1-17

Relocation and code modification

The heart of a linker or loader’s actions is relocation and code modifica-
tion. When a compiler or assembler generates and object file, it generates
the code using the unrelocated addresses of code and data defined within
the file, and usually zeros for code and data defined elsewhere. As part of
the linking process, the linker modifies the object code to reflect the actual
addresses assigned. For example, consider this snippet of x86 code that
moves the contents of variable a to variable b using the eax register.

nov a, %eax

nov %eax, b

If a is defined in the same file at location 1234 hex and b is imported from

somewhere else, the generated object code will be:
Al 34 12 00 00 nov a, Y%eax
A3 00 00 00 00 nov %ax, b

Each instruction contains a one-byte operation code followed by a four-
byte address. The first instruction has a reference to 1234 (byte reversed,
since the x86 uses a right to left byte order) and the second a reference to
zero since the location of b is unknown.

Now assume that the linker links this code so that the section in which a is
located is relocated by hex 10000 bytes, and b turns out to be at hex 9A12.
The linker modifies the code to be:

Al 34 12 01 00 nov a, %eax

A3 12 9A 00 00 npbv %ax, b

That is, it adds 10000 to the address in the first instruction so now it refers
to a’s relocated address which is 11234, and it patches in the address for
b. These adjustments affect instructions, but any pointers in the data part
of an object file have to be adjusted as well.

On older computers with small address spaces and direct addressing, the
modification process is fairly simple, since there are only only one or two
address formats that a linker has to handle. Modern computers, including
all RISCs, require considerably more complex code modification. No sin-
gle instruction contains enough bits to hold a direct address, so the compil-

g

1-18 Linking and Loading

er and linker have to use complicated addressing tricks to handle data at
arbitrary addresses. In some cases, it’s possible to concoct an address us-
ing two or three instructions, each of which contains part of the address,
and use bit manipulation to combine the parts into a full address. In this
case, the linker has to be prepared to modify each of the instruction
propriately, inserting some of the bits of the address into each ins
In other cases, all of the addresses used by a routine or group
are placed in an array used as an “address pool”, initializag

two parts to communicate. (See Chapt
Compiler Drivers

In most cases, the operali i invisible to the programmer or
s | | as part of the compilation pro-
; a compiler driver that automatically
invokes the phas biler as needed. For example, if the pro-
grammer hg ource files, the compiler driver will run a
s on a Unix system:

or on file A, creating preprocessed A
ompilg@On preprocessed A, creating assembler file A
noler on assembler file A, creating object file A

. C preprocceor on file B, creating preprocessed B

o C compiler on preprocessed B, creating assembler file B

Linking and Loading 1-19

. Assembler on assembler file B, creating object file B
. Linker on object files A and B, and system C library

That is, it compiles each source file to assembler and then object code, and
links the object code together, including any needed routines from the sys-
tem C library.

Compiler drivers are often much cleverer than this. They often compare
the creation dates of source and object files, and only recompile source
files that have changed. (The Unix make program is the classic example.)
Particularly when compiling C++ and other object oriented languages,
compiler drivers can play all sorts of tricks to work around limitations in
linkers or object formats. For example, C++ templates define a potentially
infinite set of related routines, so to find the finite set of template routines
that a program actually uses, a compiler driver can link the programs’ ob-
ject files together with no template code, read the error messages from the
linker to see what’s undefined, call the C++ compiler to generate object
code for the necessary template routines and re-link. We cover some of
these tricks in Chapter 11.

Linker command languages

Every linker has some sort of command language to control the linking
process. At the very least the linker needs the list of object files and li-
braries to link. Generally there is a long list of possible options: whether
to keep debugging symbols, whether to use shared or unshared libraries,
which of several possible output formats to use. Most linkers permit some
way to specify the address at which the linked code is to be bound, which
comes in handy when using a linker to link a system kernel or other pro-
gram that doesn’t run under control of an operating system. In linkers that
support multiple code and data segments, a linker command language can
specify the order in which segments are to be linked, special treatment for
certain kinds of segments, and other application-specific options.

There are four common techniques to pass commands to a linker:

. Command line: Most systems have a command line or the equiv-
alent, via which one can pass a mixture of file names and switches.
This is the usual approach for Unix and Windows linkers. On sys-

1-20

Linking and Loading

Linking: atr

tems with limited length command lines, there’s usually a way to
direct the linker to read commands from a file and treat them as
though they were on the command line.

Intermixed with object files: Some linkers, such as IBM mainfrgme
linkers, accept alternating object files and linker commands

single input file. This dates from the era of card decks,
would pile up object decks and hand-punched comma
card reader.

Embedded in object files: Some object forma

object file in the file itself. For example,
commands to search the standard C library.

Separate configuration langua ew linkers haW¥ a full fledged
configuration language to co | The GNU linker, which
can handle an enormous ran formats, machine ar-
chitectures, and address space has a complex control
language that lets

f other options. Other Ilnkers

ment addresses_3
g handle specific features such as

have less
program

igure 1-3: Source files

Source file m.c

tern void a(char *);

Linking and Loading 1-21

int main(int ac, char **av)

{

static char string[] = "Hello, world!'\n";

a(string);

}

Source file a.c
#i ncl ude <unistd. h>
#i ncl ude <string. h>

void a(char *s)

{

wite(l, s, strlen(s));

}

The main program m.c compiles, on my Pentium with GCC, into a 165
byte object file in the classic a.out object format, Figure 4. That object file
includes a fixed length header, 16 bytes of "text" segment, containing the
read only program code, and 16 bytes of "data" segment, containing the
string. Following that are two relocation entries, one that marks the pushl
instruction that puts the address of the string on the stack in preparation
for the call to a, and one that marks the call instruction that transfers con-
trol to a. The symbol table exports the definition of _rmai n, imports _a,
and contains a couple of other symbols for the debugger. (Each global
symbol is prefixed with an underscore, for reasons described in Chapter
5.) Note that the pushl instruction refers to location 10 hex, the tentative
address for the string, since it’s in the same object file, while the call refers
to location 0 since the address of _a is unknown.

Figure 1-4: Object code for m.o

Secti ons:
| dx Name Si ze VVA LMA File off Al gn

1-22

Linking and Loading

0
1

. text 00000010 00000000 00000000 00000020

2**3

.data 00000010 00000010 00000010 00000030 2**3
Di sassenbly of section .text:

00000000 <_rmmi n>:

0:
1
3:

o o

55 pushl %bp
89 e5 nmovl %esp, Yebp
68 10 00 00 00 pushl $0x10
4. 32 .data
e8 f3 ff ff ff call 0
9: DISP32 _a
c9 | eave
c3 ret

The subprogram file a.c compiles into
the header, a 28 byte text segment, and

ject file, Figure 5, with
. Two relocation entries

| dx

D

Size VIVA LMVA File off

0000001c 00000000 00000000 00000020

CONTENTS, ALLCC, LOAD, RELOC, CODE

.d 00000000 0000001c 0000001c 0000003c
CONTENTS, ALLOC, LOAD, DATA

sembly of section .text:

00000000 <_a>:

0:
1
3:

g

55 pushl %bp
89 e5 nmovl Y%esp, Yebp
53 pushl %bx

Al gn
2*%*2

2**2

Linking and Loading 1-23

4: 8b 5d 08 nmovl 0x8(%ebp) , ¥ebx
7: 53 pushl %bx
8: e8 f3 ff ff ff call 0
9: DISP32 strlen
d: 50 pushl %ax
e: 53 pushl %ebx
f: 6a 01 pushl $0x1
11: e8 ea ff ff ff call 0
12: DISP32 _wite
16: 8d 65 fc | eal -4(%bp), Yesp
19: 5b popl %ebx
la: c9 | eave
1b: c¢3 ret

To produce an executable program, the linker combines these two object
files with a standard startup initialization routine for C programs, and nec-
essary routines from the C library, producing an executable file displayed
in part in Figure 6.

Figure 1-6: Selected parts of executable

Sect i ons:

| dx Nane Size VNA LVA File off Algn
0 .text 00000f e0 00001020 00001020 00000020 2**3
1 .data 00001000 00002000 00002000 00001000 2**3
2 .Dbss 00000000 00003000 00003000 00000000 2**3

Di sassenbly of section .text:
00001020 <start-c>:
1092: e8 0d 00 00 00 call 10a4 <_nmmi n>

000010a4 <_rmai n>:

1-24 Linking and Loading

10a4: 55 pushl %bp
10a5: 89 e5 nov| Y%esp, Yebp
10a7: 68 24 20 00 00 pushl $0x2024
10ac: e8 03 00 00 00 call 10b4 < a>
10b1l: c9 | eave

10b2: c3 ret

000010b4 <_a>:

10b4: 55 pushl %bp

10b5: 89 e5 novl Y%esp, Yebp
10b7: 53 pushl %ebx

10b8: 8b 5d 08 nov| 0x8(%ebp
10bb: 53 pushl %bx

10bc: e8 37 00 00 00 call 10f8 < strl &

10cl1l: 50 push
10c2: 53 push
10c3: 6a 01 push
10c5: e8 a2 00 00 00 cal
10ca: 8d 65 fc | eal
10cd: 5b pop
10ce: c9 | eave
10cf: c3 {

000010f 8 <_str

0000116Cc <_wri W

he lin d corresponding segments from each input file, so there
ne combined text segment, one combined data segment and one bss
nt (zero-initialized data, which the two input files didn’t use). Each
is padded out to a 4K boundary to match the x86 page size, so the
text segment is 4K (minus a 20 byte a.out header present in the file but not
gically part of the segment), the data and bss segments are also each 4K.

Linking and Loading 1-25

The combined text segment contains the text of library startup code called
start - c, then text from m.o relocated to 10a4, a.o relocated to 10b4,
and routines linked from the C library, relocated to higher addresses in the
text segment. The data segment, not displayed here, contains the com-
bined data segments in the same order as the text segments. Since the
code for _mai n has been relocated to address 10a4 hex, that address is
patched into the call instruction in start-c. Within the main routine, the
reference to the string is relocated to 2024 hex, the string’s final location in
the data segment, and the call is patched to 10b4, the final address of _a.
Within _a, thecallsto _strlenand _writ e are patched to the final ad-
dresses for those two routines.

The executable also contains about a dozen other routines from the C li-
brary, not displayed here, that are called directly or indirectly from the
startup code or from _wri t e (error routines, in the latter case.) The ex-
ecutable contains no relocation data, since this file format is not relinkable
and the operating system loads it at a known fixed address. It contains a
symbol table for the benefit of a debugger, although the executable doesn’t
use the symbols and the symbol table can be stripped off to save space.

In this example, the code linked from the library is considerably larger
than the code for the program itself. That’s quite common, particularly
when programs use large graphics or windowing libraries, which provided
the impetus for shared libraries, Chapters 9 and 10. The linked program is
8K, but the identical program linked using shared libraries is only 264
bytes. This is a toy example, of course, but real programs often have
equally dramatic space savings.

Exercises

What is the advantage of separating a linker and loader into separate pro-
grams? Under what circumstances would a combined linking loader be
useful?

Nearly every programming system produced in the past 50 years includes
a linker. Why?

In this chapter we’ve discussed linking and loading assembled or compiled
machine code. Would a linker or loader be useful in a purely interpretive

1-26 Linking and Loading

system that directly interprets source language code? How about in ain-
terpretive system that turns the source into an intermediate representation
like P-code or the Java Virtual Machine?

Architectural Issues 2-27

Chapter 2
Architectural Issues

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Linkers and loaders, along with compilers and assemblers, are exquisitely
sensitive to the architectural details, both the hardware architecture and the
architecture conventions required by the operating system of their target
computers. In this chapter we cover enough computer architecture to un-
derstand the jobs that linkers have to do. The descriptions of all of the
computer architectures in this chapter are deliberately incomplete and
leave out the parts that don’t affect the linker such as floating point and
1/0.

Two aspects of hardware architecture affect linkers: program addressing
and instruction formats. One of the things that a linker does is to modify
addresses and offsets both in data memory and in instructions. In both
cases, the linker has to ensure that its modifications match the addressing
scheme that the computer uses; when modifying instructions it must fur-
ther ensure that the modifications don’t result in an invalid instruction.

At the end of the chapter, we also look at address space architecture, that
IS, what set of addresses a program has to work with.

Application Binary Interfaces

Every operating system presents an Application Binary Interface (ABI) to
programs that run under that system. The ABI consists of programming
conventions that applications have to follow to run under the operating
system. ABI’s invariably include a set of system calls and the technique to
invoke the system calls, as well as rules about what memory addresses a
program can use and often rules about usage of machine registers. From
the point of view of an application, the ABI is as much a part of the system
architecture as the underlying hardware architecture, since a program will
fail equally badly if it violates the constraints of either.

In many cases, the linker has to do a significant part of the work involved
in complying with the ABI. For example, if the ABI requires that each

Ok ok ok % % F

¥ X X X x X

g

2-28 Architectural Issues

program contains a table of all of the addresses of static data used by rou-
tines in the program, the linker often creates that table, by collecting ad-
dress information from all of the modules linked into the program. The
aspect of the ABI that most often affects the linker is the definition of a
standard procedure call, a topic we return to later in this chapter.

Memory Addresses

Every computer includes a main memory. The main me
appears as an array of storage locations, with each location
meric address. The addresses start at zero and run u
ber determined by the number of bits in an address

Byte Order and Alignment

years computers have been designed v iON® consisting of
as many as 64 bits and as few as 1
production addresses 8 bit bytes. Si e data that computers

8 bits, the computers

adjacent bytes grouped to r. On some computers, notably those from
IBM and Motorola, the i [
byte data is the mog ile others, notably DEC and Intel,
it’s the least sign} . In‘a nod to Gulliver’'s Travels the
IBM/Motorola b deeme is known as big-endian while the
DEC/Intel

Architectural Issues 2-29

{2 | 16bRtwords | (-
_ | 32-bitwords | Lo
big-endian little-endian

The relative merits of the two schemes have provoked vehement argu-
ments over the years. In practice the major issue determining the choice
of byte order is compatibility with older systems, since it is considerably
easier to port programs and data between two machines with the same byte
order than between machines with different byte orders. Many recent chip
designs can support either byte order, with the choice made either by the
way the chip iswired up, by programming at system boot time, or in afew
cases even selected per application. (On these switch-hitting chips, the
byte order of data handled by load and store instructions changes, but the
byte order of constants encoded in instructions doesn’t. This s the sort of
detail that keeps the life of the linker writer interesting.)

Multi-byte data must usually be aligned on a natural boundary. That is,
four byte data should be aligned on a four-byte boundary, two-byte on
two-byte, and so forth. Another way to think of it is that the address of
any N byte datum should have at least 10g2(N) low zero bits. On some
systems (Intel x86, DEC VAX, IBM 370/390), misaligned data references

2-30 Architectural Issues

work at the cost of reduced performance, while on others (most RISC
chips), misaligned data causes a program fault. Even on systems where
misaligned data don’t cause a fault, the performance loss is usually great
enough that it’s worth the effort to maintain alignment where possible.

Many processors also have alignment requirements for program in

boundaries.

Each architecture also defines registers, a small set of fixe
speed memory locations to which program instructions
The number of registers varies from one architectu
few as eight in the Intel architecture to 32 in sory
ters are almost invariably the same size as a progra
system with 32 bit addresses, the registers are 32 bits, ¥
64 bit addresses, the registers are 64 bits ell.

Address formation

As a computer program executes, i
memory, as determined by instructions in the
are themselves stored in ory, usually erent part of memory from
the program’s data. Instru s are logically executed in the sequence
they are stored, excgs j ins lons specify a new place in the

branch for some j ut we call them all jumps here.) Each in-
struction that ref '

ety of instruction formats and address formation
e to be able to handle as they relocate addresses in in-

at it’s hard to build a fast version of a complicated architecture,
nd compilers rarely make good use of complicated addressing features.)
e’ll use three architectures as examples:

Architectural Issues 2-31

. The IBM 360/370/390 (which we’ll refer to as the 370). Although
this is one of the oldest architectures still in use, its relatively clean
design has worn well despite 35 years of added features, and has
been implemented in chips comparable in performance to modern
RISCs.

. SPARC V8 and V9. A popular RISC architecture, with fairly sim-
ple addressing. V8 uses 32 bit registers and addresses, V9 adds 64
bit registers and addresses. The SPARC design is similar to other
RISC architectures such as MIPS and Alpha.

. The Intel 386/486/Pentium (henceforth x86). One of the most ar-
cane and irregular architectures still in use, but undeniably the
most popular.

I nstruction formats

Each architecture has several different instruction formats. We’ll only ad-
dress the format details relative to program and data addressing, since
those are the main details that affect the linker. The 370 uses the same for-
mat for data references and jumps, while the SPARC has different formats
and the x86 has some common formats and some different.

Each instruction consists of an opcode, which determines what the instruc-
tion does, and operands. An operand may be encoded in the instruction it-
self (an immediate operand), or located in memory. The address of each
operand in memory has to be calculated somehow. Sometimes the address
is contained in the instruction (direct addressing.) More often the address
is found in one of the registers (register indirect), or calculated by adding a
constant in the instruction to the contents of a register. If the value in the
register is the address of a storage area, and the constant in the instruction
is the offset of the desired datum in the storage area, this scheme is known
as based addressing. If the roles are swapped and the register contains the
offset, the scheme is known as indexed addressing. The distinction be-
tween based and indexed addressing isn’t well-defined, and many architec-
tures combine them, e.g., the 370 has an addressing mode that adds togeth-
er two registers and a constant in the instruction, arbitrarily calling one of
the registers the base register and the other the index register, although the

2-32 Architectural Issues

two are treated the same.

Other more complicated address calculation schemes are still in use, but
for the most part the linker doesn’t have to worry about them since they
don’t contain any fields the linker has to adjust.

Some architectures use fixed length instructions, and some use
length instructions. All SPARC instructions are four bytes lo
on four byte boundaries. IBM 370 instructions can be 2,
long, with the first two bits of the first byte determining the
mat of the instruction. Intel x86 instructions can be anywhe
byte to 14 long. The encoding is quite complex, g
was originally designed for limited memory envirg
struction encoding, and partly because the new i
286, 386, and later chips had to be shoe-horned into
the existing instruction set. Fortunately,
writer, the address and offset fields t linker has to adjust all occur on
byte boundaries, so the linker genera
struction encoding.

Procedure Calls and Addressabilit

of still-precious memory. To solve this prob-
ects abandoned direct addressing in some or all of the
structions, using index and base registers to provide
ts used in addressing. This allowed instructions to be
of more complicated programming.

chitectures without direct addressing, including the IBM 370 and
programs have a “bootstrapping” problem for data addressing. A
routine uses base values in registers to calculate data addresses, but the

andard way to get a base value into a register is to load it from a memory
ocation which is in turn addressed from another base value in a register.

Architectural Issues 2-33

The bootstrap problem is to get the first base value into a register at the be-
ginning of the program, and subsequently to ensure that each routine has
the base values it needs to address the data it uses.

Procedurecalls

Every ABI defines a standard procedure call sequence, using a combina-
tion of hardware-defined call instructions and conventions about register
and memory use. A hardware call instruction saves the return address (the
address of the instruction after the call) and jumps to the procedure. On
architectures with a hardware stack such as the x86 the return address is
pushed on the stack, while on other architectures it’s saved in a register,
with software having the responsibility to save the register in memory if
necessary. Architectures with a stack generally have a hardware return in-
struction that pops the return address from the stack and jumps to that ad-
dress, while other architectures use a ““branch to address in register” in-
struction to return.

Within a procedure, data addressing falls into four categories:
. The caller can pass arguments to the procedure.

. Local variables are allocated withing procedure and freed before
the procedure returns.

. Local static data is stored in a fixed location in memory and is pri-
vate to the procedure.

. Global static data is stored in a fixed location in memory and can
be referenced from many different procedures.
The chunk of stack memory allocated for a single procedure call is
known as a stack frame. Figure 2 shows a typical stack frame.

Figure 2-2: Stack frame memory layout

Picture of a stack frame

2-34 Architectural Issues

\ | 1N
Unallocated Lower
- stack- addres
~Stack pointer S R
register — ©) |
iocekocal=< |

variables

Frame) pomter ..._%

“register i
| address A’Old
Incoming frame pointer
arguments

rguments and local variables are usually alocated on the stack. One of
e registers serves as a stack pointer which can be used as a base register.
In acommon variant of this scheme, used with SPARC and x86, a separate

Architectural Issues 2-35

frame pointer or base pointer register is loaded from the stack pointer at
the time a procedure starts. This makes it possible to push variable sized
objects on the stack, changing the value in the stack pointer register to a
hard-to-predict value, but still lets the procedure address arguments and lo-
cals at fixed offsets from the frame pointer which doesn’t change during a
procedure’s execution. Assuming the stack grows from higher to lower
addresses and that the frame pointer points to the address in memory
where the return address is stored, arguments are at small positive offsets
from the frame pointer, and local variables at negative offsets. The operat-
ing system usually sets the initial stack pointer register before a program
starts, so the program need only update the register as needed when it
pushes and pops data.

For local and global static data, a compiler can generate a table of pointers
to all of the static objects that a routine references. If one of the registers
contains a pointer to this table, the routine can address any desired static
object by loading the pointer to the object from the table using the table
pointer register into another register using the table pointer register as a
base register, then using that second register as the base register to address
the object. The trick, then, is to get the address of the table into the first
register. On SPARC, the routine can load the table address into the regis-
ter using a sequence of instructions with immediate operands, and on the
SPARC or 370 the routine can use a variant of a subroutine call instruction
to load the program counter (the register that keeps the address of the cur-
rent instruction) into a base register, though for reasons we discuss later,
those techniques cause problems in library code. A better solution is to
foist off the job of loading the table pointer on the routine’s caller, since
the caller will have its own table pointer already loaded and can get ad-
dress of the called routine’s table from its own table.

Figure 3 shows a typical routine calling sequence. Rf is the frame pointer,
Rt is the table pointer, and Rx is a temporary scratch register. The caller
saves its own table pointer in its own stack frame, then loads both the ad-
dress of the called routine and the called routine’s pointer table into regis-
ters, then makes the call. The called routine can then find all of its neces-
sary data using the table pointer in Rt, including addresses and table point-
ers for any routines that it in turn calls.

2-36 Architectural Issues

Figure 2-3: Idealized calling sequence

push argunments on the stack ...
store Rt - xxx(Rf) ; save caller’s table pointer in call
load Rx « MMW(Rt) ; |load address of called routine into
load Rt « NNN(Rt) ; load called routine’s table poi
call (Rx) ; call routine at address in Rx
load Rt « xxx(Rf) ; restore caller’s table point

b routines

nker, so the {®le pointer reg-
Calls within the same
““call”” instruction with

library shares a single table, created b
ister can remain unchanged in intra-
module can usually be made using a
the offset to the called routine encode

optimizations, the calling
duces to a single call ig

putine gets its table pointer loaded by the
gehe initial routine get its pointer? The an-

| at a Tixed address, or the initial pointer value may be
hble file so the operating system can load it before the
atter what the technique is, it invariably needs some

look more concretely at the way that programs in our three archi-
ctures address data values.

Architectural Issues 2-37

IBM 370

The 1960s vintage System/360 started with a very straightforward data ad-
dressing scheme, which has become someone more complicated over the
years as the 360 evolved into the 370 and 390. Every instruction that ref-
erences data memory calculates the address by adding a 12-bit unsigned
offset in the instruction to a base register and maybe an index register.
There are 16 general registers, each 32 bits, numbered from 0 to 15, all but
one of which can be used as index registers. If register 0 is specified in an
address calculation, the value 0 is used rather than the register contents.
(Register 0 exists and is usable for arithmetic, but not for addressing.) In
instructions that take the target address of a jump from a register, register 0
means don’t jump.

Figure 4 shows the major instruction formats. An RX instruction contains
a register operand and a single memory operand, whose address is calcu-
lated by adding the offset in the instruction to a base register and index
register. More often than not the index register is zero so the address is
just base plus offset. In the RS, SI and SS formats, the 12 bit offset is
added to a base register. An RS instruction has one memory operand, with
one or two other operands being in registers. An Sl instruction has one
memory operand, the other operand being an immediate 8 bit value in the
instruction An SS instruciton has two memory operands, storage to storage
operations. The RR format has two register operands and no memory
operands at all, although some RR instructions interpret one or both of the
registers as pointers to memory. The 370 and 390 added some minor vari-
ations on these formats, but none with different data addressing formats.

Figure 2-4: 1BM 370 instruction formats
Picture of IBM instruction formats RX, RS, SI, SS

o~

2-38 Architectural Issues

bytes
o oo e Y vy R @ MNote to artist: In all letter-digit pairs
RR - OP | R1R2 the digit should be a subscript, like

Rx | OP | [Rixz| p2| D2 |

Rs [op | [Riny B2 02

wir | p———— ey | e

-

st |epl[12 Bl b1

e}

ss |op [LiL2 BT PR

96 locations in memory by
is essential in low-level system

0 address offsets in object files without any ref-
formats, since the offset format is always the same.

rograms including OS/360, the most popular operating system,
gs or other data in the high byte of 32 bit address words in mem-
ry, so it wasn’t possible to extend the addressing to 32 bits in the obvious
ay and still support existing object code. Instead, the system has 24 bit
nd 31 bit modes, and at any moment a CPU interprets 24 bit addresses or

Architectural Issues 2-39

31 bit addresses. A convention enforced by a combination of hardware
and software states that an address word with the high bit set contains a 31
bit address in the rest of the word, while one with the high bit clear con-
tains a 24 bit address. As a result, a linker has to be able to handle both 24
bit and 31 bit addresses since programs can and do switch modes depend-
ing on how long ago a particular routine was written. For historical rea-
sons, 370 linkers also handle 16 bit addresses, since early small models in
the 360 line often had 64K or less of main memory and programs used
load and store halfword instructions to manipulate address values.

Later models of the 370 and 390 added segmented address spaces some-
what like those of the x86 series. These feature let the operating system
define multiple 31 bit address spaces that a program can address, with ex-
tremely complex rules defining access controls and address space switch-
ing. As far as | can tell, there is no compiler or linker support for these
features, which are primarily used by high-performace database systems,
so we won’t address them further.

Instruction addressing on the 370 is also relatively straightforward. In the
original 360, the jumps (always referred to as branch instructions) were all
RR or RX format. In RR jumps, the second register operand contained the
jump target, register 0 meaning don’t jump. In RX jumps, the memory
operand is the jump target. The procedure call is Branch and Link (sup-
planted by the later Branch and Store for 31 bit addressing), which stores
the return address in a specified register and then jumps to the address in
the second register in the RR form or to the second operand address in the
RX form.

For jJumping around within a routine, the routine has to establish “address-
ability’’, that is, a base register that points to (or at least close to) the be-
ginning of the routine that RX instructions can use. By convention, regis-
ter 15 contains the address of the entry point to a routine and can be used
as a base register. Alternatively an RR Branch and Link or Branch and
Store with a second register of zero stores the address of the subsequent
instruction in the first operand register but doesn’t jump, and can be use to
set up a base register if the prior register contents are unknown. Since RX
instructions have a 12 bit offset field, a single base register “covers” a 4K
chunk of code. If a routine is bigger than that, it has to use multiple base

g

2-40 Architectural Issues

registersto cover all of the routine’s code.

The 390 added relative forms of all of the jumps. In these new forms, the
instruction contains a signed 16 bit offset which is logically shifted left
one bit (since instructions are aligned on even bytes) and added to the
dress of the instruction to get the address of the jump target. These

tines.
SPARC

sions, the original ssimple design has grown somd
SPARC versions through V8 are 32 bit architectures.
the architecture to 64 bits.

SPARC V8
SPARC has four major instruction formats and L minor instruction for-
mats, Figure 5, four jump fQrmats, and two, dressing modes.

In SPARC V8, there are 31 se registers, each 32 bits, num-
bered from 1 to 31 4 NRie do-register that always contains

eme attempts to minimize the amount of
procedure calls and returns. The windows
®'so we won't discuss them further. (Register
in the Berkeley RISC design from which SPARC is

adding the values in two registers together. (One of the reg-
can be r0 if the other register already contains the desired address.)
mode adds a 13 bit signed offset in the instruction to a base reg-

Architectural Issues 2-41

SPARC assemblers and linkers support a pseudo-direct addressing scheme
using a two-instruction sequence. The two instructions are SETHI, which
loads its 22 bit immediate value into the high 22 bits of aregister and ze-
ros the lower 10 bits, followed by OR Immediate, which ORsits 13 bit im-
mediate value into the low part of the register. The assembler and linker
arrange to put the high and low parts of the desired 32 bit address into the
two instructions.

Figure 2-5: SPARC

30 hit call 22 bit branch and SETHI 19 bit branch 16 bit
branch (V9 only) op R+R op R+113

Can or] displacement .

sethiorop/ | reg | OPZ: ~ | .immediate or displacement
branptreys ot L5 e ettt

brancht90p. @ cond . op2 | rc'p displacement

SR]

branch16 op| 1 conid = op2 | d-f;p P g Ty

Note: displacement is disphi [} displo

ir’ediat;;"p regdest | op2 ";:_’99_5"0 | i immediate:

-l

The procedure call instruction and most conditional jump instructions (re-
ferred to as branches in SPARC literature) use relative addressing with

2-42 Architectural |ssues

various size branch offsets ranging from 16 to 30 bits. Whatever the offset
size, the jJump shifts the offset two bits left, since al instructions have to
be at four-byte word addresses, sign extends the result to 32 or 64 bits, and
adds that value to the address of the jump or call instruction to get the tar-
get address. The call instruction uses a 30 bit offset, which means i
reach any address in a 32 bit V8 address space. Calls store ther
dressin register 15. Various kinds of jumps use a 16, 19, or 2
which is large enough to jump anywhere in any plausibly g
The 16 bit format breaks the offset into a two-bit high part
bit low part stored in different parts of the instructiog
doesn’t cause any great trouble for the linker.

SPARC aso has a"Jump and Link™ which comp
same way that data reference instructions do, by gk er either
two source registers or a source register and a consta '
store the the return address in atarget r

ore the return address
. Priedure return uses IMP
PARC calls and jumps
tion following the jump or

Procedure calls use Call or Jump an
in register 15, and jumps to the targ
8[r15], to return two instructions after the call
are "delayed" and optionaligaexecute the i
call before jJumping.)

SPARC V9

WWeither the 32 or 64 hit result of a previous instructions.
ew instructions for synthesizing full 64 bit addresses,
'QaLadl call instruction. Full addresses can be synthesized via
thy sequences that create the two 32 bit halves of the address in sepa-
isters using SETHI and OR, shift the high half 32 bits to the left,
the two parts together. In practice 64 bit addresses are |oaded
from a pointer table, and inter-module calls load the address of the target
utine from the table into a register and then use jump and link to make
ecall.

Architectural Issues 2-43

Intel x86

The Intel x86 architecture is by far the most complex of the three that we
discuss. It features an asymmetrical instruction set and segmented ad-
dresses. There are six 32 bit general purpose registers named EAX, EBX,
ECX, EDX, ESI, and EDI, as well as two registers used primarily for ad-
dressing, EBP and ESP, and six specialized 16 bit segment registers CS,
DS, ES, FS, GS, and SS. The low half of each of the 32 bit registers can
be used as 16 bit registers called AX, BX, CX, DX, SI, DI, BP, and SP.
and the low and high bytes of each of the AX through DX registers are
eight-bit registers called AL, AH, BL, BH, CL, CH, DL, and DH. On the
8086, 186, and 286, many instructions required its operands in specific
registers, but on the 386 and later chips, most but not all of the functions
that required specific registers have been generalized to use any register.
The ESP is the hardware stack pointer, and always contains the address of
the current stack. The EBP pointer is usually used as a frame register that
points to the base of the current stack frame. (The instruction set encour-
ages but doesn’t require this.)

At any moment an x86 is running in one of three modes: real mode which
emulates the original 16 bit 8086, 16 bit protected mode which was added
on the 286, or 32 bit protected mode which was added on the 386. Here
we primarily discuss 32 bit protected mode. Protected mode involves the
x86’s notorious segmentation, but we’ll disregard that for the moment.

Most instructions that address addresses of data in memory use a common
instruction format, Figure 6. (The ones that don’t use specific architecture
defined registers, e.g., the PUSH and POP instructions always use ESP to
address the stack.) Addresses are calculated by adding together any or all
of a signed 1, 2, or 4 byte displacement value in the instruction, a base reg-
ister which can be any of the 32 bit registers, and an optional index regis-
ter which can be any of the 32 bit registers except ESP. The index can be
logically shifted left O, 1, 2, or 3 bits to make it easier to index arrays of
multi-byte values.

Figure 2-6: Generalized x86 instruction format

2-44 Architectural |ssues

one or two opcode bytes, optional mod R/M byte, optional
s-i-b byte, optional 1, 2, or 4 byte displacement

& L ovtion | [pteenty | dptonIT |
opcode . mod rim - o -ssib aord
one ortwo one one

“bytes byte “byte

isplacement

Mod rim specifies address format
S-I-B'specifies scaled index and/, e register

Address may be absolute or refiitive t and/or index

uction to include all of displace-
32 bit displacement, which provides
h a one or two byte displacement, which

onditional jumps and subroutine calls al use relative
mp instruction can have a1, 2, or 4 byte offset whichis

ion containing the target address. This permits jumps and calls any-
here in the current 32 bit address space. Unconditional jumps and calls
S0 can compute the target address using the full data address calculation

o~

Architectural Issues 2-45

described above, most often used to jump or call to an address stored in a
register. Call instructions push the return address on the stack pointed to
by ESP.

Unconditional jJumps and calls can also have a full six byte segment/offset
address in the instruction, or calculate the address at which the seg-
ment/offset target address is stored. These call instructions push both the
return address and the caller’s segment number, to permit intersegment
calls and returns.

Paging and Virtual Memory

On most modern computers, each program can potentially address a vast
amount of memory, four gigabytes on a typical 32 bit machine. Few com-
puters actually have that much memory, and even the ones that do need to
share it among multiple programs. Paging hardware divides a program’s
address space into fixed size pages, typically 2K or 4K bytes in size, and
divides the physical memory of the computer into page frames of the same
size. The hardware conatins page tables with an entry for each page in the
address space, as shown in Figure 7.

Figure 2-7: Page mapping

Picture of pages mapped through a big page table to real
page frames

2-46 Architectural Issues

Virtual

address ko
space Page table
& -
e X
& [x -
8K page

A page table entry can contain the real memory page frame for the page,
r flag bits to mark the page ““not present.”” When an application program
ttempts to use a page that is not present, hardware generates a page fault

which is handled by the operating system. The operating system can load

Architectural Issues 2-47

a copy of the contents page from disk into a free page frame, then let the
application continue. By moving pages back and forth between main
memory and disk as needed, the operating system can provide virtual
memory which appears to the application to be far larger than the real
memory in use.

Virtual memory comes at a cost, though. Individual instructions execute
in a fraction of a microsecond, but a page fault and consequent page in or
page out (transfer from disk to main memory or vice versa) takes several
milliseconds since it requires a disk transfer. The more page faults a pro-
gram generates, the slower it runs, with the worst case being thrashing, all
page faults with no useful work getting done. The fewer pages a program
needs, the fewer page faults it will generate. If the linker can pack related
routines into a single page or a small group of pages, paging performance
improves.

If pages can be marked as read-only, performace also improves. Read-on-
ly pages don’t need to be paged out since they can be reloaded from wher-
ever they came from originally. If identical pages logically appear in mul-
tiple address spaces, which often happens when multiple copies of the
same program are running, a single physical page suffices for all of the ad-
dress spaces.

An x86 with 32 bit addressing and 4K pages would need a page table with
220 entries to map an entire address space. Since each page table entry is
usually four bytes, this would make the page tables an impractical 4
megabytes long. As a result, paged architectures page the page tables,
with upper level page tables that point to the lower level page tables that
point to the actual page frames corresponding to virtual addresses. On the
370, each entry in the upper level page table (called the segment table)
maps 1MB of address space, so the segment table in 31 bit address mode
may contain up to 2048 entries. Each entry in the segment table may be
empty, in which case the entire segment is not present, or may point to a
lower level page table that maps the pages in that segment. Each lower
level page table has up to 256 entries, one for each 4K chunk of address
space in the segment. The x86 divides up its page tables similarly, al-
though the boundaries are different. Each upper level page table (called a
page directory) maps 4MB of address space, so the upper level page table

2-48 Architectural Issues

contains 1024 entries. Each lower level page table also contains 1024 en-
tries to map the 1024 4K pages in the 4MB of address space correspond-
ing to that page table. The SPARC architecture defines the page size as
4K, and has three levels of page tables rather than two.

The two- or three-level nature of page tables are invisible to applica

level page table, so for efficiency reasons the address space I
aged in chunks of that size by replacing individual secg)

tion of the computer’s hardware and o
er needs to create a runnable progra

g system. TrWMinker or load-
that address space.

ro, with the read-write da-
pages, so the data starts on the

ta following the code. The
) grows downward, starting at

8K boundary after

to the PDP-11, uS@ a similagcheme. The first two bytes of every VAX

all-zero pointer was always valid, and if a C pro-
lue as a string pointer, the zero byte at location zero
string. As a result, a generation of Unix programs in

nix systems put each application program in a separate address space,
d the operating system in an address space logically separate from the
applications. Other systems put multiple programs in the same address

Architectural Issues 2-49

space, making the linker and particularly the loader’s job more complex
because a program’s actual load address isn’t known until the program’s
about to be run.

MS-DOS on x86 systems uses no hardware protection, so the system and
running applications share the same address space. When the system runs
a program, it finds the largest chunk of free memory, which can be any-
where in the address space, loads the program into it, and starts it. IBM
mainframe operating systems do roughly the same thing, loading a pro-
gram into an available chunk of available address space. In both cases, ei-
ther the program loader or in some cases the program itself has to adjust to
the location where the program is loaded.

MS Windows has an unusual loading scheme. Each program is linked to
load at a standard starting address, but the executable program file contains
relocation information. When Windows loads the program, it places the
program at that starting address if possible, but may load it somewhere
else if the preferred address isn’t available.

Mapped files

Virtual memory systems move data back and forth between real memory
and disk, paging data to disk when it doesn’t fit in real memory. Original-
ly, paging all went to “anonymous” disk space separate from the named
files in the file system. Soon after the invention of paging, though, design-
ers noticed that it was possible to unify the paging system and the file sys-
tem by using the paging system to read and write named disk files. When
a program maps a file to a part of the program’s address space, the operat-
ing system marks all of the pages in that part of the address space not pre-
sent, and uses the file as the paging disk for that part of the address space,
as in Figure 8. The program can read the file merely by referencing that
part of the address space, at which point the paging system loads the nec-
essary pages from disk.

Figure 2-8: Mapping a file

Program points to set of page frames that map to disk file or

o~

2-50 Architectural Issues

local RAM

Mapped | | i
address) NS WU M i
mnge

om-file'on reference

prent approaches to handling writes to mapped files.
ap a file read-only (RO), so that any attempts to store
Wregion fail, usually causing the program to abort. The
nd is to map the file read-write (RW), so that changes to the memory
f the file are paged back to the disk by the time the file is un-
» The third is to map the file copy-on-write (COW, not the most
elicitous acronym). This maps the page read-only until the program at-

mpts to store into the page. At that time, the operating system makes a
copy of the page which is then treated as a private page not mapped from a

Architectural Issues 2-51

file. From the program’s point of view, mapping a file COW is very simi-
lar to allocating a fresh area of anonymous memory and reading the file’s
contents into that area, since changes the program makes are visible to that
program but not to any other program that might have mapped the same
file.

Shared librariesand programs

In nearly every system that handles multiple programs simultaneously,
each program has a separate set of page tables, giving each program a log-
ically separate address space. This makes a system considerably more ro-
bust, since buggy or malicious programs can’t damage or spy on each oth-
er, but it potentially could cause performance problems. If a single pro-
gram or single program library is in use in more than one address space,
the system can save a great deal of memory if all of the address spaces
share a single physical copy of the program or library. This is relatively
straightforward for the operating system to implement — just map the ex-
ecutable file into each program’s address space. Unrelocated code and
read only data are mapped RO, writable data are mapped COW. The oper-
ating system can use the same physical page frames for RO and unwritten
COW data in all the processes that map the file. (If the code has to be re-
located at load time, the relocation process changes the code pages and
they have to be treated as COW, not RO.)

Considerable linker support is needed to make this sharing work. In the
executable program, the linker needs to group all of the executable code
into one part of the file that can be mapped RO, and the data into another
part that can be mapped COW. Each section has to start on a page bound-
ary, both logically in the address space and physically in the file. When
several different programs use a shared library, the linker needs to mark
the each program so that when each starts, the library is mapped into the
program’s address space.

Position-independent code

When a program is in use in several different address spaces, the operating
system can usually load the program at the same place in each of the ad-
dress spaces in which it appears. This makes the linker’s job much easier,

2-52 Architectural Issues

since it can bind all of the addresses in the program to fixed locations, and
no relocation need be done at the time the program is loaded.

Shared libraries complicate this situation considerably. In some simple
shared library designs, each library is assigned a globally unique memgry
address either at system boot time or at the time the libraries are cre
This puts the each library at a fixed address, but at the cost of i
serious bottleneck to shared library administration, since the
library memory addresses has to be maintained by the sy
Furthermore, if a new version of a library appears that |s la
previous ver3|on and doesn’t fit |nto the address space

compiler, and linker, and program lo
brary will work regardless of wher
pears.

One simple approach is to include standard tion information with the
library, and when the libra
can fix up any relocat e a

library’s code a
shared, if they’re

s that the pages will no longer be
| or the program will crash if the pages are

, snared libraries use Position Independent Code
ill work regardless of where in memory it is loaded.
td libraries is usually PIC, so the code can be mapped

discussed in this chapter use relative jumps, so that jJump instruc-
jons within the routines need no relocation. References to local data on

e stack use based addressing relative to a base register, which doesn’t
need any relocation, either. The only challenges are calls to routines not in

Architectural Issues 2-53

the shared library, and references to global data. Direct data addressing
and the SPARC high/low register loading trick won’t work, because they
both require run-time relocation. Fortunately, there are a variety of tricks
one can use to let PIC code handle inter-library calls and global data. We
discuss them when we cover shared libraries in detail in Chapter 9 and 10.

Intel 386 Segmentation

The final topic in this chapter is the notorious Intel architecture segmenta-
tion system. The x86 series is the only segmented architecture still in
common use, other than some legacy ex-Burroughs Unisys mainframes,
but since it’s so popular, we have to deal with it. Although, as we’ll short-
ly discuss, 32 bit operating systems don’t make any significant use of seg-
mentation, older systems and the very popular 16-bit embedded versions
of the x86 series use it extensively.

The original 8086 was intended as a follow-on to Intel’s quite popular
8-bit 8080 and 8085 microprocessors. The 8080 has a 16 bit address
space, and the 8086 designers were torn between keeping the 16 bit ad-
dress space, which made translation of 8085 easier and permitted more
compact code, and providing a larger address space to give “headroom”
for future applications in larger programs. They compromised, by provid-
ing multiple 16 bit address spaces. Each 16 bit address space was known
as a segment.

A running x86 program has four active segments defined by the four seg-
ment registers. The CS register defines the code segment, from which in-
structions are fetched. The DS register defines the data segment, from
which most data are loaded and stored. The SS register defines the stack
segment, used for the operands of push and pop instructions, the program
address values pushed and popped by call and return instructions, and any
data reference made using the EBP or ESP as a base register. The ES reg-
ister defines the extra segment, used by a few string manipulation instruc-
tions. The 386 and later chips define two more segment registers FS and
GS. Any data reference can be directed into a specific segment by using a
segment override. For example, the instruction MOV EAX,CS:TEMP
fetches a data value from the location TEMP in code segment rather than
the data segment. The FS and GS segments are only used via segment

2-54 Architectural Issues

overrides.

The segment values need not all be different. Most programs set the DS
and SS values the same, so that pointers to stack variables and global vari-
ables can be used interchangably. Some small programs set all four
ment registers the same, providing a single address space known as
model.

On the 8086 and 186, the architecture defined a fixed mappj
ment numbers to memory addresses by shifting the segmen
bits to the left. Segment number 0x123 would start at

grammers often refer informally to paragraphs,
that a segment number can address.

present, providing segment based vi . Each segment can be
marked executable, readable, or rea ing segment-level pro-
tection. The 386 extended protected bit addressing, so that

each segment can be up to 4GB in size rath only 64K.

With 16 bit addressing, all t programs have to handle seg-
mented addresses.) s of a segment register is quite
slow, 9 clock cyc

go great lengths
avoid hayd

groups” that can collect related code or data in-
Code and data pointers can be either near, with an

model code has multiple code segments (one per program source
ile) using far calls, but a single default data segment. Large model code
as multiple code and data segments and all pointers are far by default.

riting efficient segmented code is very tricky, and has been well docu-

Architectural Issues 2-55

mented elsewhere.

Segmented addressing places significant demands on the linker. Every ad-
dress in a program has both a segment and an offset. Object files consist
of multiple chunks of code which the linker packs into segments. Exe-
cutable programs to be run in real mode have to mark all of the segment
numbers that occur in the program so they can be relocated to the actual
segments where the program is loaded. Executable programs to be run in
protected mode further have to mark what data is to be loaded into what
segment and the protection (code, read-only data, read-write data) for each
segment.

Although the 386 supports all of the 16 bit segmentation features of the
286, as well as 32 bit versions of all of the segmentation features, most 32
bit programs don’t use segmentation at all. Paging, also added in the 386,
provides most of the practical benefits of segmentation without the perfor-
mance cost and the extra complications of writing segment manipulation
code. Most 386 operating systems run applications in the tiny model,
more often known as the flat model since a segment on a 386 is no longer
tiny. They create a single code segment and a single data segment each
4GB long and mapping them both to the full 32 bit paged address space.
Even though the program’s only using a single segment, that segment can
be the full size of the address space.

The 386 makes it possible to use both 16 bit and 32 bit segments in the
same program and a few operating systems, notably Windows 95 and 98,
take advantage of that ability. Windows 95 and 98 run a lot of legacy Win-
dows 3.1 code in 16 bit segments in a shared address space, while each
new 32 bit program runs in its own tiny model address space, with the
16-bit programs’ address space mapped in to permit calls back and forth.

Embedded architectures

Linking for embedded systems poses a variety of problems that rarely oc-
cur in other environments. Embedded chips have limited amounts of
memory and limited performance, but since an embedded program may be
built into chips in thousands or millions of devices, there are great incen-
tives to make programs run as fast as possible in as little memory as possi-
ble. Some embedded systems use low-cost versions of general-purpose

2-56 Architectural Issues

chips, such as the Intel 80186, while others use specialized processors
such as the Motorola 56000 series of digital signal processors (DSPs).

Address space quirks

Embededed systems have small address spaces with quirky layout
64K address space can contain combinations of fast on-chip R

The 56000 has three address spaces of 64K 24-bit words, e
binations of RAM, ROM, and peripherals.

Embedded chip development uses system boards {4
sor chip along with supporting logic and chips.

effort to sq(W€ze a program
iNg a more expensive ver-

ROM, so programmers have to trade
into a smaller memory versus the ext
sion of the chip with more memory.

References to o
system with both

go in th

coae Into the fast memory at link time. Other times it
copy code or data from slow memory to fast memory
routines can share the same fast memory at different
K, it’s very useful to be able to tell a linker "put this

Architectural Issues 2-57

Memory alignment

DSPs frequently have stringent memory alignment requirements for cer-
tain kinds of data structures. The 56000 series, for example, has an ad-
dressing mode to handle circular buffers very efficiently, so long as the
base address of the buffer is aligned on a power-of-two boundary at least
as large as the buffer size (so a 50 word buffer would need to be aligned on
a 64 word boundary, for example.) The Fast Fourier Transform (FFT), an
extremely important calculation for signal processing, depends on address
bit manipulations that also require that the data on which an FFT operates
be power-of-two aligned. Unlike on conventional architectures, The align-
ment requirements depend on the sizes of the data arrays, so that packing
them efficiently into available memory can be tricky and tedious.

Exercises

1. A SPARC program contains these instructions. (These aren’t intended
as a useful program, just as some instruction format examples.)

Loc Hex Symbol i c

1000 40 00 03 00 CALL X

1004 01 00 00 00 NOP; no operation, for delay

1008 7F FF FE ED CALL Y

100C 01 00 00 00 NOP

1010 40 00 00 02 CALL Z

1014 01 00 00 00 NOP

1018 03 37 AB 6F SETHI r1, 3648367 ; set high 22 bits of rl
101C 82 10 62 EF ORI r1,r1,751; ORin low 10 bits of r1

la. In a CALL instruction the high two bits are the instruction code, and
the low 30 bits a signed word (not byte) offset. What are the hex address-
es for X, Y, and Z?

1b. What does the call to Z at location 1010 accomplish?

1c. The two instructions at 1018 and 101C load a 32 bit address into reg-
ister 1. The SETHI loads the low 22 bits of the instruction into the high
22 bits of the register, and the ORI logically or’s the low 13 bits of the in-
struction into the register. What address will register 1 contain?

g

2-58 Architectural Issues

1d. If the linker moves X to be at location 2504(hex) but doesn’t change
the location of the code in the example, to what will it change the instruc-
tion at location 1000 so it still refers to X ?

2. A Pentium program contains these instructions. Don’t forget that the
x86 is little-endian.

Loc Hex Synbol i c

1000 E8 12 34 00 00 CALL A

1005 E8 ?? ?? ?? ?? CALL B

100A Al 12 34 00 00 MOV %EAX, P
100F 03 05 ?? ?? ?? ??ADD %EAX, Q

instruction.) 2b. If routine B is located at address O
is located at address 3456, what are the byte values of Yga.2#P0ytes in the
example? 3. Does a linker or loader “understand¥ every instruc-
tion in the target architecture’s instr a new model of the tar-
get adds new instructions, will the be changed to support
them? What if it adds new addressing modes togKisting instructions, like

when programmers worked in
e only time they could get com-
puter time, rather
used word rather psses. The PDP-6 and 10, for example had

sing, with each instruction being a word

specifi®parts of the source code for the linker? How about a multi-target
inker, that could handle code for a variety of different architectures (al-
ough not in the same linker job)?

Obiject Files 3-59

Chapter 3
Object Files

$Revision: 2.6 $
$Date: 1999/06/29 04:21:48 $

Compilers and assemblers create object files containing the generated bi-
nary code and data for a source file. Linkers combine multiple object files
into one, loaders take object files and load them into memory. (In an inte-
grated programming environment, the compilers, assemblers, and linkers
are run implicitly when the user tells it to build a program, but they’re
there under the covers.) In this chapter we delve into the details of object
file formats and contents.

What goes into an object file?

An object file contains five kinds of information.

Header information: overall information about the file, such as the
size of the code, name of the source file it was translated from, and
creation date.

Object code: Binary instructions and data generated by a compiler
or assembler.

Relocation: A list of the places in the object code that have to be
fixed up when the linker changes the addresses of the object code.

Symbols: Global symbols defined in this module, symbols to be
imported from other modules or defined by the linker.

Debugging information: Other information about the object code
not needed for linking but of use to a debugger. This includes
source file and line number information, local symbols, descrip-
tions of data structures used by the object code such as C structure
definitions.

(Some object files contain even more than this, but these are plenty
to keep us occupied in this chapter.)

* Ok ok ok ok k%

3-60 Obiject Files

Not all object formats contain all of these kinds of information, and it’s
possible to have quite useful formats with little or no information beyond
the object code.

Designing an object for mat

The design of an object format is a compromise driven by the vari

vided up into many small logical seg
by the linker. An executable file
aligned to permit the file to be mapp

ress space, but doesn’t
ic linking), and needs
little or no relocation information. The ohg de is a single large seg-
ment or a small set of segQts that reflect the hardware execution envi-
ronment, most often read
details of a systerg) ent, a loadable file may consist
solely of object complete symbol and relocation in-
formation to per bolic linking.

cgments rarely matches the hardware oriented
ple segments. Particularly on smaller computers, link-

is most obvious in the completely different MS-DOS linkable OMF
t and executable EXE format.

ur a series of popular formats, starting with the simplest, and
orking up to the most complicated.

Object Files 3-61

The null object format: MS-DOS .COM files

It’s quite possible to have a usable object file with no information in it
whatsoever other than the runnable binary code. The MS-DOS .COM for-
mat is the best-known example. A .COM file literally consists of nothing
other than binary code. When the operating system runs a .COM file, it
merely loads the contents of the file into a chunk of free memory starting
at offset 0x100, (O-FF are the, PSP, Program Segment Prefix with com-
mand line arguments and other parameters), sets the x86 segment registers
all to point to the PSP, the SP (stack pointer) register to the end of the seg-
ment, since the stack grows downward, and jumps to the beginning of the
loaded program.

The segmented architecture of the x86 makes this work. Since all x86
program addresses are interpreted relative to the base of the current seg-
ment and the segment registers all point to base of the segment, the pro-
gram is always loaded at segment-relative location 0x100. Hence, for a
program that fits in a single segment, no fixups are needed since segment-
relative addresses can be determined at link time.

For programs that don’t fit in a single segment, the fixups are the program-
mer’s problem, and there are indeed programs that start out by fetching
one of their segment registers, and adding its contents to stored segment
values elsewhere in the program. Of course, this is exactly the sort of tedi-
um that linkers and loaders are intended to automate, and MS-DOS does
that with .EXE files, described later in this chapter.

Code sections: Unix a.out files

Computers with hardware memory relocation (nearly all of them, these
days) usually create a new process with an empty address space for each
newly run program, in which case programs can be linked to start at a
fixed address and require no relocation at load time. The Unix a.out object
format handles this situation.

In the simplest case, an a.out file consisted of a small header followed by
the executable code (called the text section for historical reasons) and the
initial values for static data, Figure 1. The PDP-11 had only 16 bit ad-
dressing, which limited programs to a total of 64K. This limit quickly be-

3-62 Obiject Files

came too small, so later models in the PDP-11 line provided separate ad-
dress spaces for code (I for Instruction space) and data (D space), so a sin-
gle program could contain both 64K of code and 64K of data. To support
this feature, the compilers, assembler, and linker were modified to create
two-section object files, with the code in the first section and the daj@ng
the second section, and the program loader loaded the first sectio
process’ | space and the second into the D space.

in

Figure 3-1: Smplifed a.out

a.out header
text section
data section

other sections

Object Files 3-63

a:out header

text section

. data section
_ other'sections

g l.-T.-\. -
|

3-64 Obiject Files

Separate | and D space had another performance advantage: since a pro-
gram couldn’t change its own | space, multiple copies of a single program
could share a single copy of a program’s code, while keeping separate
copies of the program’s data. On a time-shared system like Unix, multiple
copies of the shell (the command interpreter) and network daemon
common, and shared program code saves considerable real memor

for code and data is the 286 (or 386 in 16 bit protected m
more modern machines with large address spaces, the oper
can handle shared read-only code pages in virtual megg)

write sections. In practice, most linker formats havs
as read-only data, symbols and relocation for subseq
ging symbols, and shared library info n. (Unix co®ntion confus-
ingly calls the file sections segments, 40 we u at term in discussions of
Unix file formats.)

a.out headers

The header varies somewh om one version of Unix to another, but the

In the examples in this chapter,

ext segnent size
initialized data size
uninitialized data size
a_syns; /1l synmbol table size
entry; // entry point

size; /] text relocation size
_drsize; // data relocation size

Object Files 3-65

The magic number a_nmagi ¢ indicates what kind of executable file this is.
(Make this a footnote: Historically, the magic number on the original
PDP-11 was octal 407, which was a branch instruction that would jump
over the next seven words of the header to the beginning of the text seg-
ment. That permitted a primitive form of position independent code. A
bootstrap loader could load the entire executable including the file header
to be loaded by into memory, usually at location zero, and then jump to the
beginning of the loaded file to start the program. Only a few standalone
programs ever used this ability, but the 407 magic number is still with us
25 years later.) Different magic numbers tell the operating system pro-
gram loader to load the file in to memory differently; we discuss these
variations below. The text and data segment sizes a_t ext and a_dat a
are the sizes in bytes of the read-only code and read-write data that follow
the header. Since Unix automatically initializes newly allocated memory
to zero, any data with an initial contents of zero or whose contents don’t
matter need not be present in the a.out file. The uninitialized size a_bss
says how much uninitialized data (really zero-initialized) data logically
follows the data in the a.out file.

The a_entry field gives the starting address of the program, while
a_syns, a_trsize, and a_dr si ze say how much symbol table and
relocation information follow the data segment in the file. Programs that
have been linked and are ready to run need no symbol nor relocation info,
so these fields are zero in runnable files unless the linker has included
symbols for the debugger.

I nteractions with virtual memory

The process involved when the operating system loads and starts a simple
two-segment file is straightforward, Figure 3:

Figure 3-3: Loading an a.out into a process

picture of file and segments with arrows pointing out data
flows

3-66

Object Files

bss size
from a.out
header

'''''

Object Files 3-67

. Read the a.out header to get the segment sizes.

. Check to see if there’s already a sharable code segment for this file.
If so, map that segment into the process’ address space. If not, cre-
ate one, map it into the address space, and read the text segment
from the file into the new memory segment.

. Create a private data segment large enough for the combined data
and BSS, map it into the process, and read the data segment from
the file into the data segment. Zero out the BSS segment.

. Create and map in a stack segment (usually separate from the data
segment, since the data heap and stack grow separately.) Place ar-
guments from the command line or calling program on the stack.

. Set registers appropriately and jump to the starting address.

This scheme (known as NMAGIC, where the N means new, as of about
1975) works quite well, and PDP-11 and early VAX Unix systems used it
for years for all object files, and linkable files used it throughout the life of
the a.out format into the 1990s. When Unix systems gained virtual memo-
ry, several improvements to this simple scheme sped up program loading
and saved considerable real memory.

On a paging system, the simple scheme above allocates fresh virtual mem-
ory for each text segment and data segment. Since the a.out file is already
stored on the disk, the object file itself can be mapped into the process’ ad-
dress space. This saves disk space, since new disk space for virtual mem-
ory need only be allocated for pages that the program writes into, and can
speed program startup, since the virtual memory system need only load in
from disk the pages that the program’s actually using, not the whole file.

A few changes to the a.out format make this possible, Figure 4,. and cre-
ate what’s known as ZMAGIC format. These changes align the segments
in the object file on page boundaries. On systems with 4K pages, the a.out
header is expanded to 4K, and the text segment’s size is rounded up to the
next 4K boundary. There’s no need to round up the size of the data seg-

3-68 Obiject Files

ment, since the BSS segment logically follows the data segment, and is ze-
roed by the program loader anyway.

Figure 3-4: Mapping an a.out into a process

Picture of file and segments, with page frames mappingg4
to segments

Object Files 3-69

pagable
7 (notmapped)

En {7 N edonle T e atiales 0
. | [mappedpages] | - text
R¥gES | 1 i (00 GJE . segment
= (read-only)
ages | | | 2 p
i t -~ r copyonwrite = | - |
| ~ | mappedpages~ | - ~data . -
bss read
: - write
‘heap |
stack. "®2d
153 write

ZMAGIC files reduce unneeded paging, but at the cost of wasting a lot of
disk space. The a.out header is only 32 bytes long, yet an entire 4K of
disk space is allocated. The gap between the text and data also wastes 2K,
half a 4K page, on average. Both of these are fixed in the compact pagable

3-70 Obiject Files

format known as QMAGIC.

Compact pagable files consider the a.out header to be part of the text seg-
ment, since there’s no particular reason that the code in the text segment
has to start at location zero. Indeed, program zero is a particularly pad
place to load a program since uninitialized pointer variables often co
zero. The code actually starts immediately after the header, and
page is mapped into the second page of the process, leaving t
unmapped so that pointer references to location zero will
This has the harmless side-effect of mapping the header into t
well.

Figure 3-5: Mapping a compact a.out into ap

Picture of file and segments, wj e frames ma@ing in-
to segments

Object Files

371

pagable
a.outfile o ierinfirst

[:”;—:—."‘*‘" text-page 7

process

R page 0 not valid
Aerr— ‘address 0x1000
& text

| i B readonly’ . B8 ' segment
! . mapped pages 7 l (read-only)
.2,--—---.--#-1 last text/first data P o
T mmmmmm -4 double mapped et F
_ __copy'oh write) } ;
f.f’ ~* /mapped pages <, Herbar
i e ; P ' r." i [i | ~ ;
7 84y {F .1 read
i B ‘x.:- :t o L ' f
IS ' bss | write
| heap
% |
H \
] i
i i . '
| write

Note: this figure is supposed to be

almost the same as 3-4, so I've put the

different stuff in red.

3-72 Obiject Files

The text and data segments in a QMAGIC executable are each rounded up
to a full page, so the system can easily map file pages to address space
pages. The last page of the data segment is padded out with zeros for BSS
data; if there is more BSS data than fits in the padding area, the a.out head-
er contains the size of the remaining BSS area to allocate.

Although BSD Unix loads programs at location zero (or O
QMAGIC), other versions of Unix load programs at other ad
example, System V for the Motorola 68K series loads at 0x
for the 386 loads at 0x8048000. It doesn’t matter where the
is so long as it’s page aligned, and the linker and opergjg
manently agree what it is.

Relocation: MS-DOS EXE files

an be loadedW the same log-
Some load all the pro-
h program its own ad-
the same address. (32

ical address. Many systems are not
grams into the same address space.

In these cases, executable f| ontain rglocation entries often called fix-
ups that identify th i
modified when thg
fixups is the MS-

3 cal-mode memory. If the program doesn’t fit
, the program has to use explicit segment numbers to
al data, and at load time the segment numbers in the
ixed up to match the address where the program is ac-

actually loaded. That is, if the program is loaded at location
x5000, which is paragraph 0x500, a reference to segment 12 is relocated
be a reference to segment 512. The offsets within the segments don’t
change, since the program is relocated as a unit, so the loader needn’t ad-

Object Files 3-73

just anything other than the segment numbers.

Each .EXE File starts with a header shown in Figure 6. Following the
header is some extra information of variable length (used for overlay load-
ers, self-extracting archives, and other application-specific hackery) and a
list of the fixup addresses in 32 bit segment:offset format. The fixup ad-
dresses are relative to the base of the program, so the fixups themselves
have to be relocated to find the addresses in the program to change. After
the fixups comes the program code. There may be more information, ig-
nored by the program loader, after the code. (In the example below, far
pointers are 32 bits with a 16 bit segment number and 16 bit offset.)

Figure 3-6: Format of .EXE file header

char signature[2] = "M";// magi c numnber

short |astsize; // # bytes used in |ast block

short nbl ocks; // nunber of 512 byte bl ocks

short nreloc; // number of relocation entries

short hdrsize; // size of file header in 16 byte paragraphs
short minalloc; // mnimmextra menory to allocate

short nmaxalloc; // maximumextra nmenory to allocate

void far *sp; // initial stack pointer

short checksum // ones conplenent of file sum

void far *ip; // initial instruction pointer

short relocpos; // location of relocation fixup table
short noverlay; // Overlay nunber, 0 for program

char extra[];// extra material for overlays, etc.

void far *relocs[]; // relocation entries, starts at rel ocpos

Loading an .EXE file is only slightly more complicated than loading a
.COM file.

. Read in the header, check the magic number for validity.

3-74 Obiject Files

. Find a suitable area of memory. The m nal | oc and naxal | oc
fields say the minimum and maximum number of extra paragraphs
of memory to allocate beyond the end of the loaded program.
(Linkers invariably default the minimum to the size of the pro-
gram’s BSS-like uninitialized data, and the maximum to OxFF

. Create a PSP, the control area at the head of the program.

. Read in the program code immediately after t
nbl ocks and | ast si ze fields define the length o

. Start reading nr el oc fixups at r el ocpos.

start the program.

Other than the peculiarities associate
pretty typical setup for program loading. cases, different pieces
of the program are relocated differently. protected mode, which
EXE files do not support, segment of code or data in the executable
file is loaded into a separa

ed addressing, this is a

executable has a
the program wil
numbers cg

ning listing all of the segments that
system makes a table of actual segment
segment in the executable. When process-
up the logical segment number in that table
the actual segment number, a process more akin to
to relocation.

ols and relocation

The object formats we’ve considered so far are all loadable, that is, they
n be loaded into memory and run directly. Most object files aren’t load-
ble, but rather are intermediate files passed from a compiler or assembler

Object Files 3-75

to a linker or library manager. These linkable files can be considerably
more complex than runnable ones. Runnable files have to be simple
enough to run on the *““bare metal” of the computer, while linkable files
are processed by a layer of software which can do very sophisticated pro-
cessing. In principle, a linking loader could do all of functions of a linker
as a program was loaded, but for efficiency reasons the loader is generally
as simple as possible to speed program startup. (Dynamic linking, which
we cover in chapter 10, moves a lot of the function of the linker into the
loader, with attendant performance loss, but modern computers are fast
enough that the gains from dynamic linking outweigh the performance

penalty.)

We look at five formats of increasing complexity: relocatable a.out used on
BSD UNIX systems, ELF used on System V, IBM 360 objects, the extend-
ed COFF linkable and PE executable formats used on 32 bit Windows, and
the OMF linkable format used on pre-COFF Windows systems.

Relocatable a.out

Unix systems have always used a single object format for both runnable
and linkable files, with the runnable files leaving out the sections of use
only to the linker. The a.out format we saw in Figure 2 includes several
fields used by the linker. The sizes of the relocation tables for the text and
data segments areina_t r si ze and a_dr si ze, and the size of the sym-
bol table is in a_syns. The three sections follow the text and data, Fig-
ure 7.

Figure 3-7: Smplifed a.out

a.out header
text section
data section

text relocation

Object Files 3-77

~_-a.out header

text

b T

‘. |
| rh——
- data’

- text |
!.re'lnr; _I
- data
~reloc!
symbol
table |

g

3-78 Obiject Files

Relocation entries

Relocation entries serve two functions. When a section of code is rel
ed to a different base address, relocation entries mark the placegi

where to patch in the symbol’s value when the symbol is fin

Figure 8 shows the format of a relocation entry. Eagl

of the text or data segment of a relocatable item.
how long the item is, values O through three mean 1, On some ar-
chitectures) 8 bytes. The pcrel flag that this is % PC relative”
item, that is, it’s used in an instructio e address.

Figure 3-8: Relocai@ap entry forma

Draw this with hgxes

Object Files 3-79

1 ek i, -....E-. ol _._,._.I
k .
[o ﬁddress i
= iﬁdex 3

E""-Uf. E'.s i A :'r
| spare

i

Iength b
e o ‘extern
flag,

The extern flag controls the interpretation of the index field to determine
which segment or symbol the relocation refers to. If the extern flag is off,
this is a plain relocation item, and the index tells which segment (text, da-

3-80 Obiject Files

ta, or BSS) the item is addressing. If the extern flag is on, this is a refer-
ence to an external symbol, and the index is the symbol number in the
file’s symbol table.

This relocation format is adequate for most machine architectures, put
some of the more complex ones need extra flag bits to indicate, e.g., t
byte 370 address constants or high and low half constants on the RC:

Symbolsand strings

The final section of an a.out file is the symbol table. Eac is 12
bytes and describes a single symbol, Figure 9.

Figure 3-9: Symbol format

Draw this with boxes, too:
- four byte name offset
- one byte type

- one spare byte

- two bytegebugger i

Object Files 3-81

name offset

1 1‘1 1 cdebug info/.

f S et] T S5y e e (O, |

k N T walue

Unix compilers permit arbitrarily long identifiers, so the name strings are
all in a string table that follows the symbol table. The first item in a sym-
bol table entry is the offset in the string table of the null-terminated name
of the symbol. In the type byte, if the low bit is set the symbol is external
(a misnomer, it’d better be called global, visible to other modules). Non-
external symbols are not needed for linking but can be used by debuggers.
The rest of the bits are the symbol type. The most important types in-
clude:

. text, data, or bss: A symbol defined in this module. External bit
may or may not be on. Value is the relocatable address in the mod-
ule corresponding to the symbol.

3-82 Obiject Files

. abs: An absolute non-relocatable symbol. (Rare outside of debug-
ger info.) External bit may or may not be on. Value is the absolute
value of the symbol.

. undefined: A symbol not defined in this module. External bit must
be on. Value is usually zero, but see the “common block h
below.

These symbol types are adequate for older languages s
Fortran and, just barely, for C++.

largest hint value found in any of the)4
fined in any module, the linker us
hints. This “common block hack”

data.

a.out summary

The a.out format 4
tems with paging
port for dynamic
special tig

out of favor because it doesn’t easily sup-
a.out doesn’t support C++, which requires

edded systems and didn’t work all that well for a time-sharing system,
jnce it couldn’t support C++ or dynamic linking without extensions. In
ater versions of System V, COFF was superseded by ELF, Executable and

Object Files 3-83

Linking Format. ELF has been adopted by the popular freeware Linux
and BSD variants of Unix as well. ELF has an associated debugging for-
mat called DWARF which we visit in Chapter 5. In this discussion we
treat the 32 bit version of ELF. There are 64 bit variants that extend sizes
and addresses to 64 bits in a straightforward way.

ELF files come in three slightly different flavors: relocatable, executable,
and shared object. Relocatable files are created by compilers and assem-
blers but need to be processed by the linker before running. Executable
files have all relocation done and all symbols resolved except perhaps
shared library symbols to be resolved at runtime. Shared objects are
shared libraries, containing both symbol information for the linker and di-
rectly runnable code for runtime.

ELF files have an unusual dual nature, Figure 10. Compilers, assemblers,
and linkers treat the file as a set of logical sections described by a section
header table, while the system loader treats the file as a set of segments de-
scribed by a program header table. A single segment will usually consist
of several sections. For example, a “loadable read-only”” segment could
contain sections for executable code, read-only data, and symbols for the
dynamic linker. Relocatable files have section tables, executable files have
program header tables, and shared objects have both. The sections are in-
tended for further processing by a linker, while the segments are intended
to be mapped into memory.

Figure 3-10: Two views of an ELF file

linking view and execution view, adapted from fig 1-1 in
Intel TIS document

3-84 Obiject Files

linkable executable
sections - segments
- |ELF header |
(optional, | program header | gescri eamen
ignored) table -

secti.dns I ~ segments

sect@n header | {pptional,
lable - ignored)

files all start with the ELF header, Figure 11. The header is designed
decodable even on machines with a different byte order from the
et architecture. The first four bytes are the magic number identi-
ing an ELF file, followed by three bytes describing the format of the rest
f the header. Once a program has read the cl ass and byt eor der
ags, it knows the byte order and word size of the file and can do the nec-

o~

Object Files 3-85

essary byte swapping and size conversions. Other fields provide the size
and location of the section header and program header, if present,

Figure 3-11: ELF header

char magic[4] = "\177ELF";// magi ¢ nunber

char class; // address size, 1 = 32 bit, 2 = 64 bit
char byteorder; // 1 =1little-endian, 2 = big-endian
char hversion; // header version, always 1

char pad[9];

short filetype; // file type: 1 = relocatable, 2 = executable,

/1 3 = shared object, 4 = core image
short archtype; // 2 = SPARC, 3 = x86, 4 = 68K, etc.
int fversion; // file version, always 1
int entry; // entry point if executable
int phdrpos; // file position of program header or O
int shdrpos; // file position of section header or 0
int flags; // architecture specific flags, usually O
short hdrsize; // size of this ELF header
short phdrent; // size of an entry in program header
short phdrcnt; // nunber of entries in program header or 0
short shdrent; // size of an entry in section header
short phdrcnt; // nunber of entries in section header or 0

short strsec; // section nunber that contains section nane strings

Relocatable files

A relocatable or shared object file is considered to be a collection of sec-
tions, defined in section headers, Figure 12. Each section contains a single
type of information, such as program code, read-only or read-write data,
relocation entries, or symbols. Every symbol defined in the module is de-
fined relative to a section, so a procedure’s entry point would be relative to
the program code section that contains that procedure’s code. There are
also two pseudo-sections SHN_ABS (number 0xfff1) which logically con-

g

3-86

Obiject Files

tains absolute non-relocatable symbols, and SHN_COMMON (number
Oxfff2) that contains uninitialized data blocks, the descendant of the a.out
common block hack. Section zero is always a null section, with an all-ze-
ro section table entry.

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

Figure 3-12: Section header

sh_nanme; // nanme, index into the string tab
sh type; // section type

sh flags; // flag bits, bel ow
sh_addr; // base nenory address, if

sh_offset; // file position of begin on
sh_size; // size in bytes
sh_link; // section nunber with rel ated zero

sh_info; // nore section-sp c info
sh_align; // alignment gra if section is noved
sh _entsize; // size of en tion is an array

Section types includeg

nt including code, data, and debugger

Bl TS but no space is allocated in the file it-
Oata allocated at program load time.

DYNSYM Symbol tables, described in more detail
MTAB table contains all symbols and is intended for

g linker, while DYNSYM s just the symbols for dynamic
linking. (The latter table has to be loaded into memory at runtime,
S0 it’s kept as small as possible.)

TRTAB: A string table, analogous to the one in a.out files. Unlike
a.out files, ELF files can and often do contain separate string tables
for separate purposes, e.g. section names, regular symbol names,
and dynamic linker symbol names.

Object Files 3-87

REL and RELA: Relocation information. REL entries add the relo-
cation value to the base value stored in the code or data, while
RELA entries include the base value for relocation in the relocation
entries themselves. (For historical reasons, x86 objects use REL
relocation and 68K objects use RELA.) There are a bunch of relo-
cation types for each architecture, similar to (and derived from) the
a.out relocation types.

DYNAM C and HASH: Dynamic linking information and the run-
time symbol hash table.

There are three flag bits used: ALLOC, which means that the sec-
tion occupies memory when the program is loaded, WRI TE which
means that the section when loaded is writable, and EXECI NSTR
which means that the section contains executable machine code.

A typical relocatable executable has about a dozen sections. Many of the
section names are meaningful to the linker, which looks for the section
types it knows about for specific processing, while either discarding or
passing through unmodified sections (depending on flag bits) that it
doesn’t know about.

Sections include:

.t ext which is type PROGBITS with attributes ALLOC+EX-
ECINSTR. It’s the equivalent of the a.out text segment.

.data which is type PROGBITS with attributes AL-
LOC+WRITE. It’s the equivalent of the a.out data segment.

. rodat a which is type PROGBI TS with attribute ALLOC. It’s
read-only data, hence no WRITE.

. bss which is type NOBITS with attributes ALLOC+WRITE.
The BSS section takes no space in the file, hence NOBITS, but is
allocated at runtime, hence ALLOC.

.rel.text, .rel.data, and . rel . rodat a, each which is
type REL or RELA. The relocation information for the corre-
sponding text or data section.

3-88 Obiject Files

. .init and . fini, each type PROGBITS with attributes AL-
LOC+EXECINSTR. These are similar to . t ext , but are code to
be executed when the program starts up or terminates, respectively.
C and Fortran don’t need these, but they’re essential for C++ which
has global data with executable initializers and finalizers.

. . synt ab, and . dynsymtypes SYMTAB and DYNSY

linker symbol table is ALLOC set, since it’s loaded

. .strtab, and . dynstr both type STRTAB, 3
strings, for a symbol table or the section
table. The dynstr section, the strings

. debug which contains sym-
i ntains mappings from
s again for the debug-

bols for the debugger, . 1i
source line numbers to objec
ger, and . comrent which contains dg
ly version control vgssion numbers.

the interpreter and passes it the ELF
file as an argume br many years had self-running interpreted

text files, u

kC linker T8 e program and link in any required shared libraries.

LF symbol table is similar to the a.out symbol table. It consists of
of entries, Figure 13.

Figure 3-13: ELF symbol table

Object Files 3-89

int nanme; // position of name string in string table
int value; // synbol value, section relative in reloc,
/] absolute in executable
int size; // object or function size
char type:4; // data object, function, section, or special case file
char bind:4; // local, global, or weak
char other; // spare
short sect; // section nunber, ABS, COVMON or UNDEF

The a.out symbol entry is fleshed out with a few more fields. The size
field tells how large a data object is (particularly for undefined BSS, the
common block hack again.) A symbol’s binding can be local, just visible
in this module, global, visible everywhere, or weak. A weak symbol is a
half-hearted global symbol: if a definition is available for an undefined
weak symbol, the linker will use it, but if not the value defaults to zero.

The symbol’s type is normally data or function. There is a section symbol
defined for each section, usually with the same name as the section itself,
for the benefit of relocation entries. (ELF relocation entries are all relative
to symbols, so a section symbol is necessary to indicate that an item is re-
located relative to one of the sections in the file.) A file entry is a pseudo-
symbol containing the name of the source file.

The section number is the section relative to which the symbol is defined,
e.g., function entry points are defined relative to . t ext . Three special
pseudo-sections also appear, UNDEF for undefined symbols, ABS for
non-relocatable absolute symbols, and COMMON for common blocks not
yet allocated. (The value of a COMMON symbol gives the required align-
ment granularity, and the size gives the minimum size. Once allocated by
the linker, COMMON symbols move into the . bss section.)

A typical complete ELF file, Figure 14, contains quite a few sections for
code, data, relocation information, linker symbols, and debugger symbols.
If the file is a C++ program, it will probably also contain . i nit,. fini,
.rel.init,and. rel.fini sectionsas well.

3-90 Object Files

Figure 3-14: Sample relocatable ELF file

ELF header
Jext

.data
.rodata
.bss

.Sym

el text
.rel.data
.rel.rodata
Jine
.debug
Strtab

(section table, not considered to be a section)

Object Files 391

J _ELF header | ~ (not considered sections)
(segment table) ~

.tt_-'.!_:;t
. ‘.data

:rodata

i e P —

.bss

sym
- +rel.text
. -irel.data

.-rel.rodata

. .line

<8irtab

| sgctioh table - (not considered a section)

g

3-92 Obiject Files

ELF executable files

An ELF executable file has the same general format as a relocatable
but the data are arranged so that the file can be mapped into memgry
run. The file contains a program header that follows the ELF he
file. The program header defines the segments to be mapp,
gram header, Figure 15, is an array of segment descriptions.

Figure 3-15: ELF program header

nt type; // |oadable code or data, dynamc
nt offset; // file offset of seg
nt virtaddr; // virtual addres p segnent
nt physaddr; // physical addr
nt filesize; // size of segne
nt nmensize; // size of segnent In neny
nt flags; // Read, W, te, Execut el
nt align; // requiregs

Ne address space. A segment can start and end at arbitrary
sets, but the virtual starting address for the segment must have the
bits modulo the alignment as the starting offset in the file, i.e,
must start in the same offset on a page. The system maps in the entire
nge from the page where the segment starts to the page where the seg-
ent ends, even if the segment logically only occupies part of the first and
last pages mapped. Figure 16 shows a typical segment arrangement.

Object Files 3-93

Figure 3-16: ELF loadable segments

File offset | Load address | Type

ELF header 0 0x8000000

Program header 0x40 0x8000040

Read only text

(size 0x4500) 0x100 0x8000100 LOAD, Read/Execute
Read/write data

(file size 0x2200, 0x4600 0x8005600 LOAD, Read/Write/Execute

memory size 0x3500)

non-loadable info and optional section headers

The mapped text segment consists of the ELF header, program header, and
read-only text, since the ELF and program headers are in the same page as
the beginning of the text. The read/write but the data segment in the file
starts immediately after the text segment. The page from the file is
mapped both read-only as the last page of the text segment in memory and
copy-on-write as the first page of the data segment. In this example, if a
computer has 4K pages, and in an executable file the text ends at
0x80045ff, then the data starts at 0x8005600. The file page is mapped into
the last page of the text segment at location 0x8004000 where the first
0x600 bytes contain the text from 0x8004000-0x80045ff, and into the data
segment at 0x8005000 where the rest of the page contain the initial con-
tents of data from 0x8005600-0x80056ff.

The BSS section again is logically continuous with the end of the read
write sections in the data segment, in this case 0x1300 bytes, the differ-
ence between the file size and the memory size. The last page of the data
segment is mapped in from the file, but as soon as the operating system
starts to zero the BSS segment, the copy-on-write system makes a private
copy of the page.

3-94 Obiject Files

If the file contains . i nit or . fini sections, those sections are part of
the read only text segment, and the linker inserts code at the entry point to
call the . i ni t section code before it calls the main program, and the
. fini section code after the main program returns.

An ELF shared object contains all the baggage of a relocatable and a

able symbol table and other information that the linker needs
ing executable programs that refer to the shared obj)
table at the end.

ELF summary

C++, while g an efficient
executable format for a virtual mem ith dynamic linking, and
makes it easy to map executable pa 0 the program address
space. It also permits cross-compilatiol and crog-linking from one plat-
form to another, with enough information } ELF file to identify the
target architecture and byte

IBM 360 object

The IBM 360 obj
in use today. It W&
has been aganted

designed for 80 column punch cards, but
on modern systems. Each object file con-
IS (csects), which are optionally named sepa-
unks of code and/or data. Typically each source rou-
one csect, or perhaps one csect for code and another

esses tf ning of the csect; other types of symbols include those
hed within a csect, undefined external symbols, common blocks, and a
ers. Each symbol defined or used in an object file is assigned a
eger External Symbol ID (ESID). An object file is a sequence of

0 byte records in a common format, Figure 17. The first byte of each

cord is 0x02, a value that marks the record as part of an object file. (A
record that starts with a blank is treated as a command by the linker.)

Object Files 3-95

Bytes 2-4 are the record type, TXT for program code or "text", ESD for an
external symbol directory that defines symbols and ESIDs, RLD for Relo-
cation Directory, and END for the last record that also defines the starting
point. The rest of the record up through byte 72 is specific to the record
type. Bytes 73-80 are ignored. On actual punch cards they were usually a
sequence number.

An object file starts with some ESD records that define the csects and all
symbols, then the TXT records, the RLD records and the END. There’s
quite a lot of flexibility in the order of the records. Several TXT records
can redefine the contents of a single location, with the last one in the file
winning. This made it possible (and not uncommon) to punch a few
“patch’ cards to stick at the end of an object deck, rather than reassem-
bling or recompiling.

Figure 3-17: IBM object record format

char flag = 0x2;

char rtype[3]; // three letter record type

char data[68]; // format specific data

char seq[8]; // ignored, usually sequence nunbers

ESD records

Each object file starts with ESD records, Figure 18, that define the csects
and symbols used in the file and give them all ESIDs.

Figure 3-18: ESD format

char flag = 0x2; // 1

char rtype[3] = "ESD';// 2-4 three letter type

char padl[6];

short nbytes; // 11-12 nunber of bytes of info: 16, 32, or 48
char pad?[2];

short esid; // 15-16 ESID of first synbol

g

3-96

Obiject Files

{

/
char
char
char
char
char

[17-72, up to 3 synbols

nane[8] ; /1 bl ank padded synbol nane
type; /1 synbol type
base[3] ; /'l csect origin or |abel offset

bits; /] attribute bits
I en[3]; /1 length of object or csect ESID

SD and PC: Section Definition or Private b a csect.
The csect origin is the logical address of the b the csect,
usually zero, and the length is th th of the cSWQu#PI he attribute

byte contains flags saying wheifer the csect uses 24 or 31 bit pro-
loaded into a 24 or 31
lank name; names of
t there can be multiple

bit address space. PC is a
csects must be unique within a progra
unnamed PC secti

ect. No attribute bits.

e length of the common block, other fields

- 2l reference and weak external. Symbols de-
ere. The linker reports an error if an ER symbol isn’t
here in the program, but an undefined WX is not an

PR: pSeudoregister, a small area of storage defined at link time but
allocated at runtime. Attribute bits give the required alignment, 1
8 bytes, and len is the size of the area.

Object Files 3-97

TXT records

Next come text records, Figure 19, that contain the program code and data.
Each text record defines up to 56 contiguous bytes within a single csect.

Figure 3-19: TXT format
char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad;
char |oc[3]; /1 6-8 csect relative origin of the text

char pad[2];

short nbytes; // 11-12 nunber of bytes of info
char pad[2?];

short esid; // 15-16 ESID of this csect

char text[56]; [l 17-72 data

RLD records

After the text come RLD records, Figure 20, each of which contains a se-
quence of relocation entries.

Figure 3-20: RLD format

char flag = 0x2; // 1

char rtype[3] = "TXT";// 2-4 three letter type
char pad[6];

short nbytes; // 11-12 nunber of bytes of info
char pad[7];

{ [l 17-72 four or eight-byte relocation entries
short t_esid,; /1 target, ESID of referenced csect or synbol
/1 or zero for CXD (total size of PR defs)
short p_esid,; /1 pointer, ESID of csect with reference

3-98 Obiject Files

char flags; [// type and size of ref,
char addr[3]; /1 csect-relative ref address

}

Each entry has the ESIDs of the target and the pointer, a flag by
csect-relative address of the pointer. The flag byte has bits giyd

same ESIDs as this entry.
END records

The end record, Figure 21, gives the stary
ther an address within a csect or the E

Figure 3-21: END format

char flag = 0x2; // 1
char rtype[3] = "ELGE
char pad;

char | oc[3];
char pad[6];
short esid: /

"/ / t hr letter type

r®l ative start address or zero

mm

ough the 80 column records are quite dated, the IBM object format is

prisingly simple and flexible. Extremely small linkers and loaders

le this format; on one model of 360, | used an absolute loader that

it on a single 80 column punch card and could load a program, interpret-
g TXT and END records, and ignoring the rest.

Object Files 3-99

Disk based systems either store object files as card images, or use a variant
version of the format with the same record types but much longer records
without sequence numbers. The linkers for DOS (IBM’s lightweight oper-
ating system for the 360) produce a simplified output format with in effect
one csect and a stripped down RLD without ESIDs.

Within object files, the individual named csects permit a programmer or
linker to arrange the modules in a program as desired, putting all the code
csects together, for example. The main places this format shows its age is
in the eight-character maximum symbol length, and no type information
about individual csects.

Microsoft Portable Executable for mat

Microsoft’s Windows NT has extremely mixed heritage including earlier
versions of MS-DOS and Windows, Digital’s VAX VMS (on which many
of the programmers had worked), and Unix System V (on which many of
the rest of the programmers had worked.) NT’s format is adapted from
COFF, a file format that Unix versions used after a.out but before ELF.
We’ll take a look at PE and, where it differs from PE, Microsoft’s version
of COFF.

Windows developed in an underpowered environment with slow proces-
sors, limited RAM, and originally without hardware paging, so there was
always an emphasis on shared libraries to save memory, and ad-hoc tricks
to improve performance, some of which are apparent in the PE/COFF de-
sign. Most Windows executables contain resources, a general term that
refers to objects such as cursors, icons, bitmaps, menus, and fonts that are
shared between the program and the GUI. A PE file can contain a re-
source directory for all of the resources the program code in that file uses.

PE executable files are intended for a paged environment, so pages from a
PE file are usually be mapped directly into memory and run, much like an
ELF executable. PE’s can be either EXE programs or DLL shared li-
braries (known as dynamic link libraries). The format of the two is the
same, with a status bit identifying a PE as one or the other. Each can con-
tain a list of exported functions and data that can be used by other PE files
loaded into the same address space, and a list of imported functions and
data that need to be resolved from other PE’s at load time. Each file con-

3-100 Obiject Files

tains a set of chunks analogous to ELF segments that have variously been
called sections, segments, and objects. We call them sections here, the
term that Microsoft now uses.

A PE file, Figure 22, starts with a small DOS .EXE file that prints gut
something like "This program needs Microsoft Windows." (Micro

tion and the “optional”” header, which despite its name appe
files, and a list of section headers. The section headeyg i

and omits the optional header.

Figure 3-22: Microsoft PE an file

DOS header (PE only)

DOS program stub (PE only)
PE signature (PE only)
COFF header

from section table)
bols, debug info (optional in PE

Object Files 3-101

- . [
R e

f

DOS header | ekl el

|
f
f
ap——_. M—%ﬁ‘w“mh:'uﬁﬂ%ﬂﬂﬁv Fet-
.. See callouts in chapter
" for the captions for all
R these boxes.
-M‘WHWHT&”IFHHHH“‘HL-EL

Figure 23 shows the PE, COFF, and "optional™ headers. The COFF header
describes the contents of the file, with the most important values being the
number of entries in the section table, The "optional” header contains
pointers to the most commonly used file sections. Addresses are all kept
as offsets from the place in memory that the program is loaded, also called
Relative Virtual Addresses or RVAs.

g

3-102 Object Files

Figure 3-23: PE and COFF header

PE signature
char signature[4] = "PE\O\O";// magic nunber, also shows byte o
COFF header

unsi gned short Machine;// required CPU, 0x14C for 80
unsi gned short Nunber Of Sections;// creation tine g
unsi gned | ong Ti reDat eSt anp; // creation tinme or
unsi gned | ong Poi nt er ToSynbol Tabl e;// file offs
unsi gned | ong Nunber OF Synbol s;// # entries ig
unsi gned short SizeOf Optional Header;// s
unsi gned short Characteristics;// 02 =
/1 0x2000 = DLL rather than EXE

able in COFF
ble or zero

g optional head
= nonr el ocat abl e,

Optional header that follows PE header,
/1 COFF fields

unsi gned short Magic;// octa
unsi gned char Maj or Li nker Ver
unsi gned char M nor Li nker Ver si on
unsi gned | ong Si zeOX Code; / /
unsi gned | ong Size \tializedData;// .data size

unsi gned | ong atiali Data;// .bss size

unsi gned | ong nt;// RVA of entry point
unsi gned | ong A of .text

unsi gned | ong ;// RVA of .data

mageBase;// virtual address to nmap beginning of file

Fecti onAl i gnnment;// section alignment, typically 4096, or 6
FileAlignment;// file page alignnment, typically 512

Maj or Oper at i ngSyst emVer si on

M nor Oper at i ngSyst ener si on;

Maj or | mageVer si on;

M nor | mageVer si on

nsi gned short Maj or Subsyst enVer si on

nsi gned short M nor Subsyst enVer si on

nsi gned | ong Reservedl

Object Files 3-103

unsi gned | ong SizeO'Ilnage;// total size of mappabl e i nage, rounded to Sec

unsi gned | ong Si zeOf Headers; // total size of headers up through section t.

unsi gned | ong CheckSum // often zero

unsi gned short Subsystem// required subsystem 1 = native, 2 = Wndows GJ
/1 3 = Wndows non-GUJ, 5 = 05/2, 7 = PCSI X

unsi gned short DI Characteristics;// when to call initialization routine (!
/1 1 = process start, 2 = process end, 4 = thread start, 8 = thread end

unsi gned | ong Si zeOr St ackReserve;// size to reserve for stack

unsi gned | ong Si zeOF StackCommit;// size to allocate initially for stack

unsi gned | ong Si zeOf HeapReserve;// size to reserve for heap

unsi gned | ong Si zeOf HeapConmit;// size to allocate initially for heap

unsi gned | ong Loader Fl ags;// obsol ete

unsi gned | ong Nunmber Of RvaAndSi zes; // nunber of entries in foll ow ng i mage

/1 following pair is repeated once for each directory

{

unsi gned | ong Virtual Address;// relative virtual address of directory
unsi gned | ong Si ze;

}

Directories are, in order:
Export Directory

Import Directory

Resource Directory
Exception Directory

Security Directory

Base Relocation Table

Debug Directory

Image Description String
Machine specific data

Thread Local Storage Directory
Load Configuration Directory

Each PE file is created in a way that makes it straightforward for the sys-
tem loader to map it into memory. Each section is physically aligned on a
disk block boundary or greater (the filealign value), and logically aligned
on a memory page boundary (4096 on the x86.) The linker creates a PE
file for a specific target address at which the file will be mapped (image-

g

3-104 Obiject Files

base). If a chunk of address space at that address is available, as it almost
always is, no load-time fixups are needed. In a few cases such as the old
win32s compatbility system target addresses aren’t available so the loader
has to map the file somewhere else, in which case the file must contain re-
location fixups in the .reloc section that tell the loader what to ch
Shared DLL libraries also are subject to relocation, since the adgres
which a DLL is mapped depends on what’s already occupying
space.

Following the PE header is the section table, an array of entri
24.

Figure 3-24: Section table

/1 array of entries
unsi gned char Nane[8] ;// sec
unsi gned | ong Virtual Si ze;//
unsi gned | ong Vi rtual Addr ess;
unsi gned | ong

unsi gned | ong Poi nt
/1 next four entrie
unsi gned | ong

unsi gned | ong
unsi gned short
unsi gned short

0x10000000 = shared,
execut e, 0x40000000 = read, 0x80000000 = write

section has both a file address and size (PointerToRawData and Size-

Oof ata) and a memory address and size (VirtualAddress and Virtual-
Size) Which aren’t necessarily the same. The CPU’s page size is often
rger than the disk’s block size, typically 4K pages and 512 byte disk
locks, and a section that ends in the middle of a page need not have
locks for the rest of the page allocated, saving small amounts of disk

ers;// offset of |line nunber entries

bl ocations;// nunber of relocation entries
nenunbers;// nunber of |ine nunber entries
Istics;// 0x20 = text, 0x40 = data, 0x80 = bss,

Ox.

Object Files 3-105

space. Each section is marked with the hardware permissions appropriate
for the pages, e.g. read+execute for code and read+write for data.

PE special sections

A PE file includes .text, .data, and sometimes .bss sections like a Unix ex-
ecutable (usually under those names, in fact) as well as a lot of Windows-
specific sections.

Exports: A list of the symbols defined in this module and visible to
other modules. EXE files typically export no symbols, or maybe
one or two for debugging. DLLs export symbols for the routines
and data that they provide. In keeping with Windows space saving
tradition, exported symbols can be references via small integers
called export ordinals as well as by names. The exports section
contains an array of the RVAs of the exported symbols. It also
contains two parallel arrays of the name of the symbol (as the RVA
of an ASCII string), and the export ordinal for the symbol, sorted
by string name. To look up a symbol by name, perform a binary
search in the string name table, then find the entry in the ordinal
table in the position corresponding to the found name, and use that
ordinal to index the array of RVAs. (This is arguably faster than it-
erating over an array of three-word entries.) Exports can also be
“forwarders” in which case the RVA points to a string naming the
actual symbol which is found in another library.

Imports: The imports table lists all of the symbols that need to be
resolved at load time from DLLs. The linker predetermines which
symbols will be found in which DLLs, so the imports table starts
with an import directory, consisting of one entry per referenced
DLL. Each directory entry contains the name of the DLL, and par-
allel arrays one identifying the required symbols, and the other be-
ing the place in the image to store the symbol value. The entries in
the first value can be either an ordinal (if the high bit is set), or a
pointer to a name string preceded by a guess at the ordinal to speed
up the search. The second array contains the place to store the
symbol’s value; if the symbol is a procedure, the linker will already
have adjusted all calls to the symbol to call indirectly via that loca-

3-106 Obiject Files

tion, if the symbol is data, references in the importing module are
made using that location as a pointer to the actual data. (Some
compilers provide the indirection automatically, others require ex-
plicit program code.)

. Resources: The resource table is organized as a tree. The stru
supports arbitrarily deep trees, but in practice the tree is
els, resource type, name, and language. (Language h
natural language, this permits customizing executabl
of languages other than English.) Each resource can
name or and numbers. A typical resource migjg

ultiple threads of ex-
ts own private storage,
n points to a chunk of

ecution per process. Each thr
Thread Local Storage or TLS. This s

De loaded at the linked target address.) Each fixup block
contains the base RVA of the page, the number of fixups, and an ar-
ray of 16 bit fixup entries. Each entry contains in the low 12 bits

e offset in the block that needs to be relocated, and in the high 4
bits the fixup type, e.g., add 32 bit value, adjust high 16 bits or low
16 bits (for MIPS architecture). This block-by-block scheme saves
considerable space in the relocation table, since each entry can be

g

Object Files 3-107

squeezed to two bytes rather than the 8 or 12 bytes the ELF equiv-
alent takes.

Running a PE executable
Starting a PE executable process is a relatively straightforward procedure.

. Read in the first page of the file with the DOS header, PE header,
and section headers.

. Determine whether the target area of the address space is available,
if not allocate another area.

. Using the information in the section headers, map all of the sec-
tions of the file to the appropriate place in the allocated address
space.

. If the file is not loaded into its target address, apply fixups.

. Go through the list of DLLs in the imports section and load any
that aren’t already loaded. (This process may be recursive.)

. Resolve all the imported symbols in the imports section.

. Create the initial stack and heap using values from the PE header.

. Create the initial thread and start the process.

PE and COFF

A Windows COFF relocatable object file has the same COFF file header
and section headers as a PE, but the structure is more similar to that of a
relocatable ELF file. COFF files don’t have the DOS header nor the op-
tional header following the PE header. Each code or data section also car-
ries along relocation and line number information. (The line numbers in
an EXE file, if any, are collected in in a debug section not handled by the
system loader.) COFF objects have section-relative relocations, like ELF
files, rather than RVA relative relocations, and invariably contain a symbol
table with the symbols needed. COFF files from language compilers typi-
cally do not contain any resources, rather, the resources are in a separate
object file created by a specialized resource compiler.

3-108 Obiject Files

COFF files can also have several other section types not used in PE. The
most notable is the .drective section which contains text command strings
for the linker. Compilers usually use .drective to tell the linker to search
the appropriate language-specific libraries. Some compilers including
MSVC also include linker directives to export code and data sy
when creating a DLL. (This mixture of commands and object coge
way back; IBM linkers accepted mixed card decks of comman
ject files in the early 1960s.)

PE summary

cated, and PE is a definite improvem
Intel/Microsoft OMF files

ok at in this er is one of the oldest for-

The penultimate format w:
mats still in use, the Intel O
OMEF in the late 1974

set of 32 bit extefl
current InteI OM

DOS), defined their own extensions. The
of the original spec and most of the exten-

e’ve seen so far are intended for environments with
and enough RAM to do compiler and linker process-
N0 in Stra ward ways. OMF dates from the early days of micropro-
r development when memories were tiny and storage was often
d paper tapes. As a result, OMF divides the object file into a series
records, Figure 25. Each record contains a type byte, a two-byte
ngth, the contents, and a checksum byte that makes the byte-wise sum of
e entire record zero. (Paper tape equipment had no built-in error detec-
ion, and errors due to dust or sticky parts were not rare.) OMF files are

Object Files 3-109

designed so that a linker on a machine without mass storage can do its job
with a minimum number of passes over the files. Usually 1 1/2 passes do
the trick, a partial pass to find the symbol names which are placed near the
front of each file, and then a full pass to do the linking and produce the
output.

Figure 3-25: OMF record format

picture of

-- type byte

-- two-byte length

-- variable length data
-- checksum byte

quu— - — R ey iy e TS
i ot S e R L]

F

X
g .M';m Heer i

OMF is greatly complicated by the need to deal with the 8086 segmented
architecture. One of the major goal of an OMF linker is to pack code and
data into a minimum number of segments and segment groups. Every
piece of code or data in an OMF object is assigned to a segment, and each
segment in turn can be assigned to a segment group or segment class. (A
group must be small enough to be addressed by a single segment value, a
class can be any size, so groups are used for both addressing and storage
management, while classes are just for storage management.) Code can
reference segments and groups by name, and can also reference code with-

3-110 Obiject Files

in a segment relative to the base of the segment or the base of the group.

OMEF also contains some support for overlay linking, although no OMF
linker I know of has ever supported it, taking overlay instructions instead
from a separate directive file.

OMF records

OMF currently defines at least 40 record types, too many t
here, so we’ll look at a simple OMF file. (The complete sp
tel TIS documents.)

OMF uses several coding techniques to make recordg

a index into the list of names to defin
symbols. The first name is 1, the se
set of names no matter how many L
en. (This saves a small amount of space in the
segment and an external s
can refer to the same strin
stored as one byte.
bytes, with the hi
Oddly, the low 7
the second byte IS

s they might have tak-
uncommon case that a
name since the definitions
the range O through Ox7f are
rough Ox7fff are stored as two

t byte are the high 7 bits of the value and
¥ of the value, the opposite of the native In-

sequences for each. For example, assume a
es DGROUP, CODE, and DATA, defining name in-
hen the module defines two segments called CODE

lginal OMF format was defined for the 16 bit Intel architecture. For
ograms, there are new OMF types defined for the record types
here the address size matters. All of the 16 bit record types happened to
ave even numerical codes, so the corresponding 32 bit record types have
he odd code one greater than the 16 bit type.

Object Files 3-111

Details of an OMF file
Figure 26 lists the records in a simple OMF file.

Figure 3-26: Typical OMF record sequence

THEADR program name

COMENT flags and options

LNAMES list of segment, group, and class names
SEGDEF segment (one record per segment)

GRPDEF group (one record per group)

PUBDEF global symbols

EXTDEF undefined external symbols (one per symbol)
COMDEF common blocks

COMENT end of passl info

LEDATA chunk of code or data (multiple)

LIDATA chunk of repeated data (multiple)

FIXUPP relocations and external ref fixups, each following
the LEDATA or LIDATA to which it refers

MODEND end of module

The file starts with a THEADR record that marks the start of the module
and gives the name of the module’s source file as a string. (If this module
were part of a library, it would start with a similar LHEADR record.)

The second record is a badly misnamed COMENT record which contains
configuration information for the linker. Each COMENT record contains
some flag bits saying whether to keep the comment when linked, a type
byte, and the comment text. Some comment types are indeed comments,
e.g., the compiler version number or a copyright notice, but several of
them give essential linker info such as the memory model to use (tiny
through large), the name of a library to search after processing this file,
definitions of weak external symbols, and a grab-bag of other types of data
that vendors shoe-horned into the OMF format.

3-112 Obiject Files

Next comes a series of LNAMES records that list all of the names used in
this module for segments, groups, classes, and overlays. As noted above,
the all the names in all LNAMES are logically considered an array with
the index of the first name being 1.

After the LNAMES record come SEGDEF records, one for each seg

are the segment’s attributes including its alignment require
for combining it with same-name segments in other mo
length.

Next come GRPDEF records, if any, defining thg®
Each GRPDEF has the index for the group name
segments in the group.

PUBDEF records define "public” sym
PUBDEF defines one or more symb
The record includes the index of the
bol, the symbol’s offset within the seg
byte compiler-specific type field.

up and for each sym-
p, its name, and a one-

EXTDEF records define urfS@lined extegnal symbols. Each record con-
tains the name of ong :

ine a minimum size for the symbol. All of
bols in the module are logically an array,

Is the linker that it can skip the rest of the file in the
ng process.

rest of the file consists of the actual code and data of the program, in-
Ked with fixup records containing relocation and external reference

and LIDATA (iterated). LEDATA simply has the segment index and start-
g offset, followed by the data to store there. LIDATA also starts with the
egment and starting offset, but then has a possibly nested set of repeated

Object Files 3-113

blocks of data. LIDATA efficiently handles code generated for statements
like this Fortran:
| NTEGER A(20, 20) /400*42/

A single LIDATA can have a two- or four-byte block containing 42 and re-
peat it 400 times.

Each LEDATA or LEDATA that needs a fixup must be immediately fol-
lowed by the FIXUPP records. FIXUPP is by far the most complicated
record type. Each fixup requires three items: first the target, the address
being referenced, second the frame, the position in a segment or group rel-
ative to which the address is calculated, and third the location to be fixed
up. Since it’s very common to refer to a single frame in many fixups and
somewhat common to refer to a single target in many fixups, OMF defines
fixup threads, two-bit codes used as shorthands for frames or targets, so at
any point there can be up to four frames and four targets with thread num-
bers defined. Each thread number can be redefined as often as needed.
For example, if a module includes a data group, that group is usually used
as the frame for nearly every data reference in the module, so defining a
thread number for the base address of that group saves a great deal of
space. In practice a GRPDEF record is almost invariably followed by a
FIXUPP record defining a frame thread for that group.

Each FIXUPP record is a sequence of subrecords, with each subrecord ei-
ther defining a thread or a fixup. A thread definition subrecord has flag
bits saying whether it’s defining a frame or target thread. A target thread
definition contains the thread number, the kind of reference (segment rela-
tive, group relative, external relative), the index of the base segment, group
or symbol, and optionally a base offset. A frame thread definition includes
the thread number, the kind of reference (all the kinds for target definition
plus two common special cases, same segment as the location and same
segment as the target.)

Once the threads are defined, a fixup subrecord is relatively simple. It
contains the location to fix up, a code specifying the type of fixup (16 bit
offset, 16 bit segment, full segment:offset, 8 bit relative, etc.), and the
frame and target. The frame and target can either refer to previously de-
fined threads or be specified in place.

3-114 Obiject Files

After the LEDATA, LIDATA, and FIXUPP records, the end of the module
is marked by a MODEND record, which can optionally specify the entry
point if the module is the main routine in a program.

A real OMF file would contain more record types for local symbols, |
numbers, and other debugger info, and in a Windows environment al

end of pass 1 marker. The only hard and fast rules are tha
and MODEND must come first and last, FIXUPPs maigs

forward references are allowed. In particular,
records for symbols, segments, and groups as they
they precede other records that refer to them.

Summary of OMF

The OMF format is quite complic
we’ve seen. Part of the complication iSQue to trj
part due to the division of
to incremental features ad

defined 2o long as

to the other formats
s to compress the data,
small records, part due

, OMEF division of the object into many small
ore trouble than it’s worth. The small record type of
ery common up through the 1970s, but is now obso-

ranging from the trivial ((COM) to the sophisticated (ELF and PE) to the
coco (OMF). Modern object formats such as ELF try to group all of the
ata of a single type together to make it easier for linkers to process. They

Object Files 3-115

also lay out the file with virtual memory considerations in mind, so that
the system loader can map the file into the program’s address space with
as little extra work as possible.

Each object format shows the style of the system for which it was defined.
Unix systems have historically kept their internal interfaces simple and
well-defined, and the a.out and ELF formats reflect that in their relative
simplicity and the lack of special case features. Windows has gone in the
other direction, with process management and user interface intertwined.

Proj ect

Here we define the simple object format used in the project assignments in
this book. Unlike nearly every other object format, this one consists en-
tirely of lines of ASCII text. This makes it possible to create sample ob-
ject files in a text editor, as well as making it easier to check the output
files from the project linker. Figure 27 sketches the format. The segment,
symbol, and relocation entries are represented as lines of text with fields
separated by spaces. Each line may have extra fields at the end which pro-
grams should be prepared to ignore. Numbers are all hexadecimal.

Figure 3-27: Project object format

LINK

nsegs nsyms nrels
-- segments --

-- symbols --
--rels --

-- data --

The first line is the *“*magic number,” the word LI NK.

The second line contains at least three decimal numbers, the number of
segments in the file, the number of symbol table entries, and the number of
relocation entries. There may be other information after the three numbers
for extended versions of the linker. If there are no symbols or relocations,

3-116 Obiject Files

the respective number is zero.

Next comes the segment definitions. Each segment definition contains the
segment name, the address where the segment logically starts, the length
of the segment in bytes, and a string of code letters describing the sgo-
ment. Code letters include R for readable, W for writable, and P fo

sent in the object file. (Other letters may be present as well.) A tygpcal

of segments for an a.out like file would be:

.text 1000 2500 RP

.data 4000 CO0 RWP

.bss 5000 1900 RW

Segments are numbered in the order their definiti{ggs appear, the first
segment being number 1.

Next comes the symbol table. Each entry jg of the form:

name val ue seg type

The name is the symbol name. The x value of the symbol.
Seg is the segment number relative to WhICh thg@¥egment is defined, or 0
bols. The ty string of letters including
d. Symbols are also numbered in the order

D for defined or U for unde
they’re listed, startingg

wing the relocations comes the object data. The data for each seg-
me a single long hex string followed by a newline. (This makes it
easy t0"ead and write section data in perl.) Each pair of hex digits repre-
nts one byte. The segment data strings are in the same order as the seg-
ent table, and there must be segment data for each *““present” segment.
The length of the hex string is determined by the the defined length of the

Object Files 3-117

segment; if the segment is 100 bytes long, the line of segment data is 200
characters, not counting the newline at the end.

Project 3-1: Write a perl program that reads an object files in this format
and stores the contents in a suitable form in perl tables and arrays, then
writes the file back out. The output file need not be identical to the input,
although it should be semantically equivalent. For example, the symbols
need not be written in the same order they were read, although if they’re
reordered, the relocation entries must be adjusted to reflect the new order
of the symbol table.

Exercises

1. Would a text object format like the project format be practical? (Hint:
See Fraser and Hanson’s paper "A Machine-Independent Linker.")

Storage allocation 4-119

Chapter 4
Stor age allocation

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

A linker or loader’s first major task is storage allocation. Once
allocated, the linker can proceed to subsequent phases of sy
and code fixups. Most of the symbols defined in a linkabl
defined relative to storage areas within the file, so the symb
resolved until the areas’ addresses are known.

teractions between the two) can get co
age allocation can be handled in an ¢
dependent way, but there are invari
machine specific hackery.

Segments and addr

Every object or executable
Usually the target i

segments in a pr
don’t ove

Moments are treated in different ways. Most commonly
Brticular type. such as executable code, are concatenat-
¥ segment in the output file. Sometimes segments are
ed one on top of another, as for Fortran common blocks, and in an in-
number of cases, for shared libraries and C++ special features,
r itself needs to create some segments and lay them out.

torage layout is a two-pass process, since the location of each segment
an’t be assigned until the sizes of all segments that logically precede it

*

*

%k ok ok k% %

4-120 Storage allocation

are known.
Simple storage layout

In a simple but not unrealistic situation, the input to a linker consists of a
set of modules, call them M, through M, each of which consists of a sin-
gle segment starting at locafion O of length L, through L, and the target
address space also starts at zero, Figure 1.

Figure 4-1: Sngle segment storage allocation
bunch of segments all starting at zero are relocated one af-

ter another
Outputs-
Inputs tn
module | T | e
1 e R S T ~ | from |
] LA
600 & R it
/module | ST f%m "
I A S ' ‘code |
400 o _ from
‘ /module ' =t
|| ¢
31
500

The linker or loader examines each module in turn, allocating storage se-

Storage allocation 4-121

quentially. The starting address of M; is the sum of L, through L;.1, and
the length of the linked program is the sum of L throug L

Most architectures require that data be aligned on word boundaries or at
least run faster if data is aligned, so linkers generally round each L uplo a
multiple of the most stringent alignment that the architecture requwes
ically 4 or 8 bytes.

Example 1: Assume a main program called main is to be lin ith e
subroutines called calif, mass, and newyork. (It allocates redpital
geographically.) The sizes of each routine are (in hex):

name size

main 1017

calif 920

mass 615

newyork 1390

Assume that storage allocation starigfat locgias 1000 hex, and that the
alignment is four bytes. Then the all Sgad igNbe:

name location

main 1000 - 2016

calif 2018 - 2937

mass

newyork

F'to group correspondmg segments from all of the |nput
>~ On a Unix system with text and data segments, the

e in the output file, it needs to have space allocated to resolve
SS symbols, and to indicate the size of BSS to allocate when the output
le is loaded.) This requires a two-level storage allocation strategy.

Ok ok ok % % % ok

4-122 Storage allocation

Now each module Mi has text size Ti' data size Di’ and BSS size Bi’ Fig-
ure 2.

Figure 4-2: Multiple segment storage allocation *

text, data, and BSS segments being combined separately *

Storage allocation 4-123

A output
- text
data |
bss _
L B _
| fext | °
R data
data
bss
| bss
data
_bhss |

sit reads each input module, the linker allocates space for each of the T,
Di' and Bi as though each segment were separately alocated at zero. Af-

4-124 Storage allocation

ter reading all of the input files, the linker now knows the total size of each

of the three segments, Tt p Dt , and Btot' Since the data segment follows

the text segment, the Iin&er aé)éls T, . t0 the address assigned for each of

the data segments, and since the Btgé segment follows both the text and

data segments, the linker adds the sum of Tt and D, . to the allocated
ot tot

BSS segments.

Again, the linker usually needs to round up each allocated size.
Segment and page alignment

If the text and data segments are loaded into separate memory pages, as is
generally the case, the size of the text segment has to be rounded up to a
full page and the data and BSS segment locations correspondingly adjust-
ed. Many Unix systems use a trick that saves file space by starting the da-
ta immediately after the text in the object file, and mapping that page in
the file into virtual memory twice, once read-only for the text and once
copy-on-write for the data. In that case, the data addresses logically start
exactly one page beyond the end of the text, so rather than rounding up,
the data addresses start exactly 4K or whatever the page size is beyond the
end of the text.

Example 2: We expand on Example 1 so that each routine has a text, data,
and bss segment. The word alignment remains 4 bytes, but the page size
is 0x1000 bytes.

name text data bss
main 1017 320 50
calif 920 217 100
mass 615 300 840

newyork 1390 1213 1400
(all numbers hex)

The linker first lays out the text, then the data, then the bss. Note that the
data section starts on a page boundary at 0x5000, but the bss starts imme-
diately after the data, since at run time data and bss are logically one seg-
ment.

name text data bss

R S I

*

*

ok ok ok ok K % o ok *

g

Storage allocation 4-125

main 1000 - 2016 5000 - 531f 695c - 69ab
calif 2018 - 2937 5320-5446 69ac - 6aab
mass 2938 - 2f4c 5448 - 5747 6aac - 72eb

newyork 2f50 - 42df 5748 - 695a 72ec - 86¢eb
There’s wasted space at the end of the page between 42e0 and 5000.

bss segment ends in mid-page at 86eb, but typically programs gllo
heap space starting immediately after that.

Common blocks and other special segments

Common

Common storage is a feature dating bac

cated scalar and array
lars and arrays that all
subprograms could use. Common storage proyg#Pvery useful, and in sub-
d from a single common
i the name consists of blanks) to

block (now known as blank
multiple named cogg

taking precedence. Fortran systems universally ex-
¥l common blocks to be declared with different sizes,
ain witl Brgest size taking precedence.

Fortran programs often bump up against the memory limits in the
in which they run, so in the absence of dynamic memory alloca-
tion, programmers frequently rebuild a package, tweaking the sizes to fit
hatever problem a package is working on. All but one of the subpro-
rams in a package declare each common block as a one-element array.

4-126 Storage allocation

One of the subprograms declares the actual size of all the common blocks,
and at startup time puts the sizes in variables (in yet another common
block) that the rest of the package can use. This makes it possible to ad-
just the size of the blocks by changing and recompiling a single routine
that defines them, and then relinking.

As an added complication, starting in the 1960s Fortran added BLOCK
DATA to specify static initial data values for all or part of any common
block (except for blank common, a restriction rarely enforced.) Usually
the size of the common block in the BLOCK DATA that initializes a block
is taken to be the block’s actual size at link time.

To handle common blocks, the linker treats the declaration of a common
block in an input file as a segment, but overlays all of the blocks with the
same name rather than concatenating these segments. It uses the largest
declared size as the segment’s size, unless one of the input files has an ini-
tialized version of the segment. In some systems, initialized common is a
separate segment type, while in others it’s just part of the data segment.

Unix linkers have always supported common blocks, since even the earli-
est versions of Unix had a Fortran subset compiler, and Unix versions of C
have traditionally treated uninitialized global variables much like common
blocks. But the pre-ELF versions of Unix object files only had the text,
data, and bss segments with no direct way to declare a common block. As
a special case hack, linkers treated a symbol that was flagged as undefined
but nonetheless had a non-zero value as a common block, with the value
being the size of the block. The linker took the largest value encountered
for such symbols as the size of the common block. For each block, it de-
fined the symbol in the bss segment of the output file, allocating the re-
quired amount of space after each symbol, Figure 3.

Figure 4-3: Unix common blocks

common at the end of bss

Storage allocation 4-127

¥ input files output fil

common
blocks

e pieces of a program are processed simultaneously. A
function table (usually abbreviated vtbl) contains the addresses of
irtual functions (routines that can be overridden in a subclass) for a
. Each class with any virtual functions needs a vtbl. Templates

e essentially macros with arguments that are datatypes, and that expand

to a distinct routines for every distinct set of type arguments. Whileitis
the programmer’s job to ensure that if there is a reference to normal rou-

4-128 Storage allocation

tines called, say hash(i nt) and hash(char *) , there’s exactly
one definition of each kind of hash, a template version of hash(T) auto-
matically creates versions of hash for each data type that is used any-
where in the program as an argument to hash.

In an environment in which each source file is separately compiled, a
straightforward technique is to place in each object file all of the vtbls, ex-
panded template routines, and extern inlines used in that file, resulting in a
great deal of duplicated code.

The simplest approach at link time is to live with the duplication. The re-
sulting program works correctly, but the code bloat can bulk up the object
program to three times or more the size that it should be.

In systems stuck with simple-minded linkers, some C++ systems have
used an iterative linking approach, separate databases of what’s expanded
where, or added pragmas (source code hints to the compiler) that feed
back enough information to the compiler to generate just the code that’s
needed. We cover these in Chapter 11.

Many recent C++ systems have addressed the problem head-on, either by
making the linker smarter, or by integrating the linker with other parts of
the program development system. (We also touch on the latter approach in
chapter 11.) The linker approach has the compiler generate all of the pos-
sibly duplicate code in each object file, with the linker identifying and dis-
carding duplicates.

MS Windows linkers define a COMDAT flag for code sections that tells
the linker to discard all but one identically named sections. The compiler
gives the section the name of the template, suitably mangled to include the
argument types, Figure 4

Figure 4-4: Windows

IMAGE_COMDAT_SELECT_NODUPLICATES 1 Warn
if multiple identically named sections occur.
IMAGE_COMDAT_SELECT_ANY 2 Link one
identically named section, discard the rest.

Storage allocation 4-129

IMAGE_COMDAT_SELECT_SAME_SIZE

3 Link one identically named section, discard
the rest. Warn if a discarded section isn’t the same size.
IMAGE_COMDAT_SELECT_EXACT_MATCH 4 Link
one identically named section, discard the rest. Warn if a
discarded section isn’t identical in size and contents. (No
implemented.)
IMAGE_COMDAT _SELECT_ASSOCIATIVE 5 Li IS
section if another specified section is also linked.

such segment with identical names.
to a .gnu.linkonce section with the
name.

mplates not actually being

doesn’t protect against the
pt to check that the discarded

functionally identical.
segments are byte-fg

early as much duplicated code as it could.
a ters have the same internal representation.
plate instantiated with, say, a pointer to int type and
statiated with pointer to float will often generate iden-

en the names don’t quite match perfectly, but this issue re-
unsatisfactorily resolved.

we’ve been discussing templates up to this point, exactly the
me issues apply to extern inline functions and default constructor, copy,
d assignment routines, which can be handled the same way.

4-130 Storage allocation

Initializers and finalizers

Another problem not unique to C++ but exacerbated by it are initializers
and finalizers. Frequently, it’s easier to write libraries if they can arrange
to run an initializing routine when the program starts, and a finalizing rou-
tine when the program is about to exit. C++ allows static variables. If a
variable’s class has a constructor, that constructor needs to be called at
startup time to initialize the variable, and if it has a destructor, the destruc-
tor needs to be called at exit time. There are various ways to finesse this
without linker support, which we discuss in Chapter 11, but modern link-
ers generally do support this directly.

The usual approach is for each object file to put any startup code into an
anonymous routine, and to put a pointer to that routine into a segment
called .init or something similar. The linker concatenates all the .init seg-
ments together, thereby creating a list of pointers to all the startup rou-
tines. The program’s startup stub need only run down the list and call all
the routines. Exit time code can be handled in much the same way, with a
segment called .fini.

It turns out that this approach is not altogether satisfactory, because some
startup code needs to be run earlier than others. The definition of C++
states that application-level constructors are run in an unpredictable order,
but the 1/0 and other system library constructors need to be run before
constructors in C++ applications are called. The *‘perfect” approach
would be for each init routine to list its dependencies explicitly and do a
topological sort. The BeOS dynamic linker does approximately that, using
library reference dependencies. (If library A depends on library B, library
B’s initializers probably need to run first.)

A much simpler approximation is to have several initialization segments,
.nit and .ctor, so the startup stub first calls the .init routines for library-
level initialization and then the .ctor routines for C++ constructors. The
same problem occurs at the end of the program, with the corresponding
segments being .dtor and .fini. One system goes so far as to allow the pro-
grammer to assign priority numbers, 0 to 127 for user code and 128-255
for system library code, and the linker sorts the initializer and finalizer
routines by priority before combining them so highest priority initializers

Storage allocation 4-131

run first. This is still not altogether satisfactory, since constructors can
have order dependencies on each other that cause hard-to-find bugs, but at
this point C++ makes it the programmer’s responsibility to prevent those
dependencies.

A variant on this scheme puts the actual initialization code in the .init

of code from each object file needs to be able to address th
own file, usually needing registers that point to tables g

IBM pseudo-registers

IBM mainframe linkers provide an i i ed “external
dummy” sections or “pseudo-regist
mainframe architectures without dire
shared data areas are expensive to imp
global object needs its own, four-byte poi
of overhead if the object
need a four-byte pointe

hich means that small

al 0S/360 didn’t provide any support for what’s
pss or task local storage, and very limited support for
0 jobs ran the same program, either the program was

tem 360s didn’t have hardware memory relocation, and although 370s did,
wasn’t until after several revisions of the OS/VS operating system that
e system provided per-process address spaces.)

4-132 Storage allocation

Pseudo-registers help solve both of these problems, Figure 5. Each input
file can declare pseudo-registers, also called external dummy sections. (A
dummy section in 360 assembler is analogous to a structure declaration.)
Each pseudo-register has a name, length, and alignment. At link time, the
linker collects all of the pseudo-registers into one logical segment, taking
the largest size and most restrictive assignment for each, and assigns them
all non-overlapping offsets in this logical segment.

But the linker doesn’t allocate space for the pseudo-register segment. It
merely calculates the size of the segment, and stores it in the program’s
data at a location marked by a special CXD, cumulative external dummy,
relocation item. To refer to a particular pseudo-register, program code us-
es yet another special XD, external dummy, relocation type to indicate
where to place the offset in the logical segment of one of the pseudo-regis-
ters.

The program’s initialization code dynamically allocates space for the
pseudo-registers, using a CXD to know how much space is needed, and
conventionally places the address of that region in register 12, which re-
mains unchanged for the duration of the program. Any part of the pro-
gram can get the address of a pseudo-register by adding the contents of
R12 to an XD item for that register. The usual way to do this is with a
load or store instruction, using R12 as the index register and and XD item
embedded as the address displacement field in the instruction. (The dis-
placement field is only 12 bits, but the XD item leaves the high four bits of
the 16-bit halfword zero, meaning base register zero, which produces the
correct result.)

Figure 4-5: Pseudo-registers

bunch of chunks of space pointed to by R12. various rou-
tines offsetting to them

Storage allocation 4-133

¥
-._,,';._

object file

reference to pseudo-register PR, P
_ . linker assigned offset 20

Lregister 12

The result of all {@is is that alnarts of the program have direct access to

ddressing range, and require tables of memory pointers to address
memory locations. On many RISC UNIX systems, a compiler

eates two data segments in each module, one for regular data and one for
small" data, static objects below some threshold size. The linker collects
all of the small data segments together, and arranges for program startup

o~

4-134 Storage allocation

code to put the address of the combined small data segment in a reserved
register. This permits direct references to small data using based address-
ing relative to that register. Note that unlike pseudo-registers, the small
data storage is both laid out and allocated by the linker, and there’s only
one copy of the small data per process. Some UNIX systems support
threads, but per-thread storage is handled by explicit program code with-
out any special help from the linker.

Special tables

The last source of linker-allocated storage is the linker itself. Particularly
when a program uses shared libraries or overlays, the linker creates seg-
ments with pointers, symbols, and whatever else data are needed at run-
time to support the libraries or overlays. Once these segments are created,
the linker allocates storage for them the same way it does for any other
segments.

X86 segmented stor age allocation

The peculiar requirements of 8086 and 80286 sort-of-segmented memory
addressing led to a a few specialized facilities. X86 OMF object files give
each segment a name and optionally a class. All segments with the same
name are, depending on some flag bits set by the compiler or assembler,
combined into one big segment, and all the segments in a class are allocat-
ed contiguously in a block. Compilers and assemblers use class names to
mark types of segments such as code and static data, so the linker can allo-
cate all the segments of a given class together. So long as all of the seg-
ments in a class are less than 64K total, they can be treated as a single ad-
dressing “group’ using a single segment register, which saves consider-
able time and space.

Figure 6 shows a program linked from three input files, main, able, and
baker. Main contains segments MAINCODE and MAINDATA, able con-
tains ABLECODE, and ABLEDATA, and baker contains BAKERCODE,
BAKERDATA, and BAKERLDATA. Each of the code sections in in the
CODE class and the data sections are in the DATA class, but the BAK-
ERLDATA "large data" section is not assigned to a class. In the linked
program, assuming the CODE sections are a total of 64K or less, they can
be treated as a single segment at runtime, using short rather than long call

g

Storage allocation 4-135

and jump instructions and a single unchanging CS code segment register.
Likewise, if all the DATA fit in 64K they can be treated as a single seg-
ment using short memory reference instructions and a single unchanging
DS data segment register. The BAKERLDATA segment is handled at run-
time as a separate segment, with code loading a segment register (us

the ES) to refer to it.

Figure 4-6:. X86
CODE class with MAINCODE, ABLECQOZ4

CODE
DATA class with MAINDATA, ABLEDA -
TA
BAKERLDATA
/MAIN
| MAINCODE P MAINCODE | CODE
. MAINDATA | — | ABLEGODE | oot
_ il Bgﬁg_RGQDE group
. | /MAINDATA | 5 ATA
FABLE /ABLEDATA |
ol : 8 BAKERDATA QI‘OUP
' ABLECODE | “-BAKERLDATA

| ABLED

BAKER ATA.

4-136 Storage allocation

Real mode and 286 protected mode programs are linked almost identical-
ly. The primary difference is that once the linker creates the linked seg-
ments in a protected mode program, the linker is done, leaving the actual
assignment of memory locations and segment numbers until the program
is loaded. In real mode, the linker has an extra step that allocates the seg-
ments to linear addresses and assigns “paragraph” numbers to the seg-
ments relative to the beginning of the program. Then at load time, the pro-
gram loader has to fix up all of the paragraph numbers in a real mode pro-
gram or segment numbers in a protected mode program to refer to the ac-
tual location where the program is loaded.

Linker control scripts

Traditionally, linkers offered the user limited control over the arrangement
of output data. As linkers started to target environments with messy mem-
ory organizations, such as embedded microprocessors, and multiple target
environments, it became necessary to provide finer grained control over
the arrangement both of data in the target address space and in the output
file. Simple linkers with a fixed set of segments generally have switches to
specify the base address of each segment, for programs to be loaded into
something than the standard application environment. (Operating system
kernels are the usual application for these switches.) Some linkers have
huge numbers of command line switches, often with provision to continue
the command line logically in a file, due to system limits on the length of
the actual command line. For example, the Microsoft linker has about
fifty command line switches that can set the characteristics of each section
in the file, the base address of the output, and a variety of other output de-
tails.

Other linkers have defined a script language to control the linker’s output.
The GNU linker, which also has a long list of command line switches, de-
fines such a language. Figure 7 shows a simple linker script that produces
COFF executables for System V Release 3.2 systems such as SCO Unix.

Figure 4-7: GNU linker control script for COFF executable
OUTPUT_FORVAT(" cof f - i 386")

o~

Storage allocation 4-137

SEARCH DI R(/usr/local/lib);
ENTRY(start)
SECTI ONS
{
.text SIZEOF_HEADERS : {
*(.init)
*(.text)
*(.fini)
etext =
}
.data 0x400000 + (. & OxffcOOfff) : {
*(.data)
edata =

}
.bss SI ZEOF(.data) + ADDR(.data)

{

*(. bss)

* (COVMVON)

end = .;

}
.stab 0 (NOLOAD)
{

[.stab]
}

.stabstr O @

{

[.stabstr

nes describe the output format, which must be present in a
of formats compiled into the linker, the place to look for object code
and the name of the default entry point, _st art in this case.
Then it'lists the sections in the output file. An optional value after the sec-
on name says where the section starts, hence the . t ext section starts
mediately after the file headers. The . t ext section in the output file
contains the . i ni t sections from all of the input files, then the . t ext

4-138 Storage allocation

sections, then the . f i ni sections. The linker defines the symbol et ext
to be the address after the . f i ni sections. Then the script sets the origin
of the . dat a section, to start on a 4K page boundary roughly 400000 hex
beyond the end of the text, and the section includes the . dat a sections
from all the input files, with the symbol edat a defined after them. Then
the . bss section starts right after the data and includes the input . bss
sections as well as any common blocks with end marking the end of the
bss. (COMMON is a keyword in the script language.) After that are two
sections for symbol table entries collected from the corresponding parts of
the input files, but not loaded at runtime, since only a debugger looks at
those symbols. The linker script language is considerably more flexible
than this simple example shows, and is adequate to describe everything
from simple DOS executables to Windows PE executables to complex
overlaid arrangements.

Embedded system storage allocation

Allocation in embedded systems is similar to the schemes we’ve seen so
far, only more complicated due to the complicated address spaces in which
programs must run. Linkers for embedded systems provide script lan-
guages that let the programmer define areas of the address space, and to al-
locate particular segments or object files into those areas, also specifying
the alignment requirements for segments in each area.

Linkers for specialized processors like DSPs have special features to sup-
port the peculiarities of each processor. For example, the Motorola 5600X
DSPs have support for circular buffers that have to be aligned at an ad-
dress that is a power of two at least as large as the buffer. The 56K object
format has a special segment type for these buffers, and the linker auto-
matically allocates them on a correct boundary, shuffling segments to min-
imize unused space.

Storage allocation in practice

We end this chapter by walking through the storage allocation for some
popular linkers.

Storage allocation 4-139

Storage allocation in Unix a.out linkers

Allocation in pre-ELF Unix linkers is only slightly more complex than the
idealized example at the beginning of the chapter, since the set of seg-
ments known in advance, Figure 8. Each input file has text, data, and pss
segments, and perhaps common blocks disguised as external sym
The linker collects the sizes of the text, data, and bss from each
put files, as well as from any objects taken from libraries.
all of the objects, any unresolved external symbols with n
are taken to be common blocks, and are allocated at the end o

Figure 4-8: a.out linking

picture of text, data, and bss/common from ex li-
brary objects being combined i e big segme

4-140 Storage allocation

|

¥ explicitly linked objects output file
data | | }\ 1
e e o W B text
L et
;r 7 | \k --:.I !
[ik, '.s - . E =
b %} :
MRl = | data |
library objects .~ B .
j.../’"{;- !
' i ﬁ-u,,g_'q
7 » | bss
R | W = ‘."1_\. hss
*.\\? ‘ '. =\ segment

common |

Bl e R

At this point, the linker can assign addresses to all of the segments. The
text segment starts at a fixed location that depends on the variety of a.out
being created, either location zero (the oldest formats), one page past loca-
tion zero (NMAGIC formats), or one page plus the size of the a.out header

Storage allocation 4-141

(QMAGIC.) The data segment starts right after the data segment (old un-
shared a.out), on the next page boundary after the text segment (NMAG-
IC). In every format, bss starts immediately after the data segment. With-
in each segment, the linker allocates the segments from each input file
starting at the next word boundary after the previous segment.

Storage allocation in ELF

ELF linking is somewhat more complex than a.out, because

table needed for the program loader, and some spg
dynamic linking, Figure 9.

Figure 4-9: ELF linking

Adapt figs from pages 2-7 an TIS B F doc
show input sections turning into output ents.

4-142 Storage allocation

TR T A AR
” : .

ry. _ .
input files output file

sections

|

d’éﬁ \ g 2}
segment

4
o= e S s |

!" segment. |

R i ST

sections

=

L
i

| sections :

Storage allocation 4-143

ELF objects have the traditional text, data, and bss sections, now spelled
text, .data, and .bss. They also often contain .init and .fini, for startup and
exit time code, as well as various odds and ends. The .rodata and .datal
sections are used in some compilers for read-only data and out-of-line data
literals. (Some also have .rodatal for out-of-line read-only data.)
RISCsystems like MIPS with limited sized address offsets, .
.scommon, are "small" bss and common blocks to help group
jects into one directly addressable area, as we noted above
sion of pseudo-registers. On GNU C++ systems, there
linkonce sections to be included into text, rodata, and datg

the same. The linker collects each type of sectio
gether, along with sections from library objects.

ns to support@time linking.
.) Once that is all done,
Unlike a.out, ELF ob-
t are instead loaded in

(We defer discussion of the details u
the linker allocates space in a conv
jects are not loaded anywhere near ad
about the middle of the adgress space so

tal address space in usetelat On 386 systems, the text base
| reasonably large stack below the
0x08000000, permitting most pro-
grams to use a J@gle secondjevel page table. (Recall that on the 386,
each seconds D
¥ the header in the text segment, so the actual
ter the ELF header and program header table, typical-

of the text segment, since at runtime the page is mapped in as both the last
age of text and the first page of data. The linker allocates the various .da-
a and link-once data, the .got section and on platforms that use it, .sdata

4-144 Storage allocation

small data and the .got global offset table.

Finally come the bss sections, logically right after the data, starting with
.sbss (if any, to put it next to .sdata and .got), the bss segments, and com-
mon blocks.

Storage allocation in Windows linkers

Storage allocation for Windows PE files is somewhat simpler than for ELF
files, because the dynamic linking model for PE involves less support from
the linker at the cost of requiring more support from the compiler, Figure
10.

Figure 4-10: PE storage allocation
adapt from MS web site

Storage allocation 4-145

sections

sections

E executable files are conventionally loaded at 0x400000, which is where
he text starts. The text section includes text from the input files, as well

o~

4-146 Storage allocation

as initialize and finalize sections. Next comes the data sections, aligned on
a logical disk block boundary. (Disk blocks are usually smaller than mem-
ory pages, 512 or 1K rather than 4K on Windows machines.) Following
that are bss and common, .rdata relocation fixups (for DLL libraries that
often can’t be loaded at the expected target address), import and export ta-
bles for dynamic linking, and other sections such as Windows resources.

An unusual section type is .tls, thread local storage. A Windows process
can and usually does have multiple threads of control simultaneously ac-
tive. The .tls data in a PE file is allocated for each thread. It includes both
a block of data to initialize and an array of functions to call on thread start-
up and shutdown.

Exercises

1. Why does a linker shuffle around segments to put segments of the same
type next to each other? Wouldn’t it be easier to leave them in the original
order?

2. When, if ever, does it matter in what order a linker allocates storage for
routines? In our example, what difference would it make if the linker allo-
cated newyork, mass, calif, main rather than main, calif, mass, newyork.
(We’ll ask this question again later when we discuss overlays and dynamic
linking, so you can disregard those considerations.)

3. In most cases a linker allocates similar sections sequentialy, for exam-
ple, the text of calif, mass, and newyork one after another. But it allocates
all common sections with the same name on top of each other. Why?

4. ls it a good idea to permit common blocks declared in different input
files with the same name but different sizes? Why or why not?

5. In example 1, assume that the programmer has rewritten the calif rou-
tine so that the object code is now hex 1333 long. Recompute the assigned
segment locations. In example 2, further assume that the data and bss
sizes for the rewritten calif routine are 975 and 120. Recompute the as-
signed segment locations.

Storage allocation 4-147

Proj ect

Project 4-1: Extend the linker skeleton from project 3-1 to do simple
UNIX-style storage allocation. Assume that the only interesting segments
are . text, . data, and . bss. In the output file, text starts at hex 1000,
data starts at the next multiple of 1000 after the text, and bss starts o

have a data structure that will let you determine what addr
ment in each input file has been assigned, since you’ll g
in subsequent chapters. Use the sample routines ind
allocator.

Project 4-3: Extend the allocator in 4-
put files, combining all segmpents with ide
cation strategy would be t
then starting at the next.2000
ary RW attributes.

bitrary segments in in-
mes. A reasonable allo-

cks in .bss with attribute RW.

Symbol management 5-149

Chapter 5
Symbol management

$Revision: 2.2 $
$Date: 1999/06/30 01:02:35 $

Symbol management is a linker’s key function. Without some way to refer
from one module to another, there wouldn’t be much use for a linker’s oth-
er facilities.

Binding and name resolution

Linkers handle a variety of kinds of symbols. All linkers handle symbolic
references from one module to another. Each input module includes a
symbol table. The symbols include:

. Global symbols defined and perhaps referenced in the module.

. Global symbols referenced but not defined in this module (general-
ly called externals).

. Segment names, which are usually also considered to be global
symbols defined to be at the beginning of the segment.

. Non-global symbols, usually for debuggers and crash dump analy-
sis. These aren’t really symbols needed for the linking process, but
sometimes they are mixed in with global symbols so the linker has
to at least skip over them. In other cases they can be in a separate
table in the file, or in a separate debug info file. (Optional)

. Line number information, to tell source language debuggers the
correspondence between source lines and object code. (Optional)

The linker reads all of the symbol tables in the input module, and extracts
the useful information, which is sometimes all of the incoming info, fre-
quently just what’s needed to link. Then it builds the link-time symbol ta-
bles and uses that to guide the linking process. Depending on the output
file format, the linker may place some or all of the symbol information in
the output file.

*

*

* Ok ok ok %

I

5-150 Symbol management

Some formats have multiple symbol tables per file. For example, ELF
shared libraries can have one symbol table with just the information need-
ed for the dynamic linker and a separate, larger table useful for debugging
and relinking. This isn’t necessarily a bad design; the dynamic linker table
is usually much smaller than the full table and making it separat
speed up the dynamic linking process, which happens far more o
a library is debugged or relinked.

Symbol table formats

not create a full-fledged symbol ta
pass the debugging symbols through

Within the linker itself, a symbol table is o

a symbol in the table, the linker
e, uses that hash value modulo the
select one of the hack buckets
e figure where h is the hash), runs down

ers support much longer names, both because programmers

nger names than they used to (or, in the case of Cobol, are no longer

0 twist the names around to make them unique in the first eight

characters), and because compilers “mangle” names by adding extra char-
ters to encode type information.

Symbol management 5-151

Older linkers with limited name lengths did a string comparison of each
symbol name in the lookup hash chain until they found a match or ran out
of symbols. These days, a program can easily contains many long sym-
bols that are identical up the last few characters, as is often the case with
C++ mangled names, which makes the string comparisons expensive. An
easy fix is to store the full hash value in the symbol table and to do the
string comparison only when the hashes match. Depending on the con-
text, if a symbol is not found, the linker may either add it to the chain or
report an error.

Figure 5-1: Symbol table

Typical symbol table with hashes or hash headers with
chains of symbols
struct sym *symhash[NBUCKET];

struct sym {
struct sym *next;
int fullhash;/* full hash value */
char *symname;

Y

5-152 Symbol management

hash headers

Je—

f

S il SR
£ symhol mbol

| 'I' = . - i =

8|

: symbol i |

O\jﬂ?"’

'symbol

A

@,

Symbol management 5-153

Moduletables

The linker needs to track every input module seen during a linking run,
both modules linked explicitly and those extracted from libraries. Figure 2
shows the structure of a simplified version of the module table for a GNU
linker that produces a.out object files. Since most of the key information
for each a.out file is in the file header, the table just stores a copy of the
header,

Figure 5-2: Moduletable

/* Nane of this file. */

char *fil ename;

/* Nanme to use for the synbol giving address of text start */
char *| ocal _sym nane;

/* Describe the |ayout of the contents of the file */

/* The file's a.out header. */

struct exec header;

/* Ofset in file of debug synbol segnent, or 0 if there is none.
int synmseg_offset;

/* Describe data fromthe file |oaded into core */

/* Synbol table of the file. */
struct nlist *synbols;

/* Size in bytes of string table. */
int string_size;

/* Pointer to the string table. */
char *strings;

/* Next two used only if ‘relocatable output’ or if needed for */
/* output of undefined reference |line nunbers. */

5-154 Symbol management

/* Text and data relocation info */
struct relocation_info *textrel
struct relocation_info *datarel

/* Relation of this file' s segments to the output file }

/* Start of this file's text seg in the output fi

int text_start address;

/[* Start of this file' s data seg in the output

int data_start_address;

/* Start of this file' s bss seg in the outp

int bss_start_address;

/* Ofset in bytes in the output file ¢
of the first local synbol for this f

int local _syms_offset;

The table also contains pointers to i ry cojes of the symbol table
string table (since in an a.out files, the symbol e strings are in a sepa-
rate table from the symbo ocation tables, along with
the computed offsets of the bss segments in the output. If
the file is a library, a4 at is linked has its own module
table entry. (Detaj

During the first
generally |

or defined in any input file, Figure 3. Each time the linker reads
n input file, it adds all of the file’s global symbols to the symbol table,
eeping a chain of the places where the symbol is defined or referenced.

hen the first pass is done, every global symbol should have exactly one

Symbol management 5-155

definition and zero or more references. (This is a minor oversimplifica-
tion, since UNIX object files disguise common blocks as undefined sym-
bols with non-zero values, but that’s a straightforward special case for the
linker to handle.)

Figure 5-3: Global symbol table

/* abstracted fromgnu |Id a.out */
struct gl osym
{
/* Pointer to next synbol in this synmbol’s hash bucket. */
struct gl osym *|i nk;
/* Name of this symbol. */
char *nane;
/* Val ue of this synbol as a gl obal synbol. */
| ong val ue;
/* Chain of external 'nlist’s in files for this synbol, both defs
and refs. */
struct nlist *refs;
/* Nonzero neans definitions of this synbol as commobn have been seen
and the value here is the largest size specified by any of them */
i nt max_conmon_si ze;
/* Nonzero neans a definition of this global synbol is known to exist
Li brary nmenbers should not be | oaded on its account. */
char defi ned,;
/* Nonzero neans a reference to this global symbol has been seen
inafile that is surely being | oaded.
A value higher than 1 is the n_type code for the synbol’s
definition. */
char referenced;
/* 1 neans that this synmbol has nmultiple definitions. 2 neans
that it has nultiple definitions, and sonme of them are set
el ements, one of which has been printed out already. */
unsi gned char nul tiply_defined;

}

5-156 Symbol management

As the symbols in each file are added to the global symbol table, the linker
links each entry from the file to its corresponding global symbol table en-
try, Figure 4. Relocation items generally refer to symbols by index in the
module’s own symbol table, so for each external reference, the linker has
to be able to tell that, for example, symbol 15 in module A is n
frui t, while symbol 12 in module B is also named f r ui t, thajl
the same symbol. Each module has its own set of indices an
own vector of pointers.

Figure 5-4: Resolving a symbol from a fijg
symbol table

Each module entry points to vector of symbo
file, each of which is set to point obal symbd

try.

Symbol management 5-157

linker symbol table

] turned intonu
symbol table, ,
}i(n't':lexl.-d py listof pointers
entry number Mto symbol
o LG

Symbol resolution

During the second pass of linking, the linker resolves symbol references as
it creates the output file. The details of resolution interact with relocation
(Chapter 7), since in most object formats, relocation entries identify the
program references to the symbol. In the simplest case, in which the link-
er is creating an output file with absolute addresses (such as data refer-
ences in Unix linkers) the address of the symbol simply replaces the sym-
bol reference. If the symbol is resolved to address 20486, the linker re-
places the reference with 20486.

5-158 Symbol management

Real situations are more complex. For one thing, there are many ways that
a symbol might be referred to, in a data pointer, in an instruction, or even
synthesized from multiple instructions. For another, the output of the link-
er is itself frequently relocatable. This means that if, say, a symbol is re-
solved to offset 426 in the data section, the output file has to contain
locatable reference to data+426 where the symbol reference was.

The output file will usually have a symbol table of its own,
needs to create a new vector of indexes of the symbols to
output file, then map symbol numbers in outgoing relocati
those new indices.

Special symbols

tables of pointers to the ro
symbol like ~ CTOR LI
find the list and call g

Name mangli

The names used
the same

Bource programs from which the object files
ree reasons for this: avoiding name collisions,
nd type checking. The process of turning the source
the object file names is called name mangling. This

C and Fortran name mangling

In older object formats (before maybe 1970), compilers used names from
e source program directly as the names in the object file, perhaps trun-
ating long names to a name length limit. This worked reasonably well,

Symbol management 5-159

but caused problems due to collisions with names reserved by compilers
and libraries. For example, Fortran programs that do formatted I/O im-
plicitly call routines in the library to do their reads and writes. Other rou-
tines handle arithmetic errors, complex arithmetic, and everything else in a
programming language that’s too complicated to be generated as in-line
code.

The names of all of these routines are in effect reserved names, and part of
the programming folklore was to know what names not to use. As a par-
ticularly egregious example, this Fortran program would for quite a few
years crash an OS/360 system:

CALL MAIN

END

Why? The OS/360 programming convention is that every routine includ-
ing the main program has a name, and the name of the main program is
MAIN. When a Fortran main program starts, it calls the operating system
to catch a variety of arithmetic error traps, and each trap catch call allocat-
ed some space in a system table. But this program called itself recursively
over and over again, each time establishing another nested set of trap calls,
the system table ran out of space, and the system crashed. OS/390 is a lot
more robust than its predecessors were 30 years ago, but the reserved
name problem remains. It’s even worse in mixed language programs,
since code in all languages has to avoid using any name used by any of the
language runtime libraries in use.

One approach to the reserved name problem was to use something other
than procedure calls to call the runtime library. On the PDP-6 and -10, for
example, the interface to the Fortran 1/0 package was through a variety of
system call instruction that trapped back to the program rather than to the
operating system. This was a clever trick, but it was quite specific to the
PDP-6/10 architecture and didn’t scale well, since there was no way for
mixed language code to share the trap, nor was it practical to link the mini-
mum necessary part of the 1/0 package because there was no easy way to
tell which traps the input modules in a program used.

5-160 Symbol management

The approach taken on UNIX systems was to mangle the names of C and
Fortran procedures so they wouldn’t inadvertently collide with names of
library and other routines. C procedure names were decorated with a lead-
ing underscore, so that mai n became _rmai n. Fortran names were further
mangled with both a leading and trailing underscore so that cal ¢ be
cal c. (This particular approach made it possible to call C
whose names ended with an underscore from Fortran, which m
sible to write Fortran libraries in C.) The only significant di
this scheme is that it shrank the C name space from the 8
mitted by the object format to 7 characters for C and gj

mangling N8
with forbidden charac-
ames. The choice of
one of developer con-

Fortran programs, the runtime librarj
ters that can’t collide with applica
name mangling vs. collision-proof libr
venience. At the time UNI
already had extensive ass
mangle the names of n

ibraries, and it was easier to
le routines than to go back and

gled names is to encode scope and type information,
ible to use existing linkers to link programs in C++,
o@Puages that have more complex naming rules than do C,

types. A single program may have a global variable V and a static member
f a class C. : V. C++ permits function name overloading, with several
unctions having the same name but different arguments, such as f (i nt

Symbol management 5-161

x) and f (fl oat x). Class definitions can include functions, including
overloaded names, and even functions that redefine built-in operators, that
is, a class can contain a function whose name is in effect >> or any other
built-in operator.

C++ was initially implemented as a translator called cfront that produced
C code and used an existing linker, so its author used name mangling to
produce names that can sneak through the C compiler into the linker. All
the linker had to do with them was its usual job of matching identically
named defined and undefined global names. Since then, nearly all C++
compilers generate object code or at least assembler code directly, but
name mangling remains the standard way to handle overloaded names.
Modern linkers now know enough about name mangling to demangle
names reported in error messages, but otherwise leave mangled names
alone.

The influential Annotated C++ Reference Manual described the name
mangling scheme that cfront used, which with minor variations has be-
come a de-facto standard. We describe it here.

Data variable names outside of C++ classes don’t get mangled at all. An
array called f oo has a mangled name of f 00. Function names not associ-
ated with classes are mangled to encode the types of the arguments by ap-
pending __F and a string of letters that represent the argument types and
type modifiers listed in Figure 5. For example, a function
func(float, int, unsigned char) becomes func__Ffi Uc.
Class names are considered types, and are encoded as the length of the
class name followed by the name, such as 4Pai r. Classses can contain
names of internal classes to multiple levels; these "qualified” names are
encoded as Q, a digit indicating the number of levels, and the encoded
class names, SO First:: Second:: Third becomes
@B5Fi rst 6Second5Thi r d. This means that a function that takes two
class arguments f(Pair, First::Second:: Third) becomes
f F4Pai r @B5Fi r st 6Second5Thi r d.

Figure 5-5: Type lettersin C++ mangled names

g

5-162 Symbol management

Type Letter
void

char

short

int

long

float

double

long double
varargs

unsigned

const

volatile

signed

pointer

reference

array of length n
function

pointer to nth member

\Y;
c

S

i

I

f

d

r

e
U
C
Vv
S
P
R
An
F

Class member furyg
scores, the en
cl::fn(void)
or five charg

s the function name, two under-
Y then F and the arguments, so
_2cl Fv. All of the operators have four
s as well, suchas __ ml for* and __aor
SEl® including constructor, destructor, new, and
gsaswell _ct, dt, nw and __dl. A con-
Pair taking two character pointer arguments

ame type as the nth argument” and Nnmmeans "n arguments the
ame type as the mth argument. A function segnent (Pair, Pair)
ould be segnent __F4Pai r T1 and a function t r apezoi d(Pai r,
air, Pair, Pair) wouldbetrapezoid_ _F4Pair N31.

Symbol management 5-163

Name mangling does the job of giving unique names to every possible
C++ object at the cost of tremendously long and (lacking linker and de-
bugger support) unreadable names in error messages and listings.
Nonetheless, C++ has an intrinsic problem that it has a potentially huge
namespace. Any scheme for representing the names of C++ objects has to
be nearly as verbose as name mangling, and mangled names do have the
advantage of being readable by at least some humans.

Early users of mangled names often found that although linkers in theory
supported long names, in practice the long names didn’t work very well,
and performance was dreadful when linking programs that contained many
long names that were identical up to the last few characters. Fortunately,
symbol table algorithms are a well-understood subject, and now one can
expect linkers to handle long names without trouble.

Link-time type checking

Although mangled names only became popular with the advent of C++,
the idea of linker type checking has been around for a long time. (I first
encountered it in the Dartmouth PL/I linker in about 1974.) The idea of
linker type checking is quite straightforward. Most languages have proce-
dures with declared argument types, and if the caller doesn’t pass the num-
ber and type of arguments that the callee expects, it’s an error, often a
hard-to-diagnose error if the caller and callee are in separately compiled
files. For linker type checking, each defined or undefined global symbol
has associated with it a string representing the argument and return types,
similar to the mangled C++ argument types. When the linker resolves a
symbol, it compares the type strings for the reference and definition of the
symbol, and reports an error if they don’t match. A nice property of this
scheme is that the linker need not understand the type encoding at all, just
whether the strings are the same or not.

Even in an environment with C++ mangled names, this type checking
would still be useful, since not all C++ type information is encoded into a
mangled name. The types that functions return, and types of global data
could profitably be checked by a scheme like this one.

5-164 Symbol management

Weak external and other kinds of symbols

Up to this point, we’ve considered all linker global symbols to work the
same way, and each mention of a name to be either a definition or a refer-
ence to a symbol. Many object formats can qualify a reference as weak or
strong. A strong reference must be resolved, while a weak reference
be resolved if there’s a definition, but it’s not an error if it’s no
processing of weak symbols is much like that for strong sym
that at the end of the first pass an undefined reference to on
Generally the linker defines undefined weak symbols to be

that application code can check. Weak symbols are4simai
connection with libraries, so we revisit them in Chag

Maintai ning debugging information

that the programmer can debug the o inQ®O source pro-
gram function and variable names, a
program. Compilers support this by ' OWmation in the object file
that provides a mapping from source i
dresses, and also describes all of the functi

UNIX compilers hayg

files, and
deﬂned

non-System V E
files. Microsoft

/ARF that was defined for System V ELF
ir own formats for their Codeview debug-

flers need to be able to map between program address-
umbers. This lets users set breakpoints by line number

ine number information is simple execpt with optimizing compilers that
n move code around so that the sequence of code in the object file
doesn’t match the sequence of source lines.

Symbol management 5-165

For each line in the source file for which the compiler generated any code,
the compiler emits a line number entry with the line number and the be-
ginning of the code. If a program address lies between two line number
entries, the debugger reports it as being the lower of the two line numbers.
The line numbers need to be scoped by file name, both source file name
and include file name. Some formats do this by creating a list of files and
putting a file index in each line number entry. Others intersperse "begin
include™ and "end include" items in the list of line numbers, implicitly
maintaining a stack of line numbers.

When compiler optimization makes the generated code from a single state-
ment discontiguous, some object formats (notably DWARF) let the com-
piler map each byte of object code back to a source line, using a lot of
space in the process, while others just emit approximate locations.

Symbol and variable information

Compilers also have to emit the names, types, and locations of each pro-
gram variable. The debug symbol information is somewhat more complex
than mangled names are, because it needs to encode not just the type
names, but for structure types the definitions of the types so the debugger
can correctly format all of the subfields in a structure.

The symbol information is an implicit or explicit tree. At the top level in
each file is a list of types, variables, and functions defined at the top level,
and within each of those are the fields of structures, variables defined with-
in functions, and so forth. Within functions, the tree includes "begin
block™ and "end block™ markers referring to line numbers, so the debugger
can tell what variables are in scope at each point in the program.

The trickiest part of the symbol information is the location information.
The location of a static variable doesn’t change, but a local variable within
a a routine may be static, on the stack, in a register, or in optimized code,
moved from place to place in different parts of the routine. On most archi-
tectures, the standard calling sequence for routines maintains a chain of
saved stack and frame pointers for each nested routine, with the local stack
variables in each routine allocated at known offsets from the frame pointer.
In leaf routines or routines that allocate no local stack variables, a common
optimization is to skip setting the frame pointer. The debugger needs to

5-166 Symbol management

know about this in order both to interpret call stack tracebacks correctly
and to find local variables in a routine with no frame pointer. Codeview
does this with a specific list of routines with no frame pointer.

Practical issues

For the most part, the linker just passes through debug informati
terpreted, perhaps relocating segment-relative addresses o
through.

One thing that linkers are starting to do is detecting and re
cated debug information. In C and particularly C+g
have a set of header files that define types and dec
source file includes the headers that define all o
that file might use.

Compilers pass through the debug inforigadl M in all of the
header files that each source file incl
header file is included by 20 source
gether, the linker will receive 20 cop
file. Although debuggers have never had any t
plicated information, headg@files, particul
means that the amount of d
ers can safely dlscar

g information for that
le disregarding the du-
n C++, can be large which
r info can be substantial. Link-
ial, and increasingly do so, both
0 save space. In some cases, com-
directly into files or databases to be read
linker, so the linker need only add or up-

by the debugger
date infg

ormation is stored in an object file, sometimes the de-

s intermixed with the linker symbols in one big symbol

, While sometimes the two are separate. Unix systems added debug

tion to the compilers a little at a time over the years, so it all ended

up in huge symbol table. Other formats including Microsoft’s ECOFF
nd to separate linker symbols from debug symbols and both from line
umbers.

Symbol management 5-167

Sometimes the resulting debug information goes into the output file, some-
times into a separate debug file, sometimes both. The advantage of putting
all of the debug information into the output file is simplicity in the build
process, since all of the information used to debug the program is present
in one place. The most obvious disadvantage is that it makes the ex-
ecutable file enormous. Also if the debug information is separated out, it’s
easy to build a final version of a program, then ship the executable but not
the debug files. This keeps the size of the shipped program down and dis-
courages casual reverse engineering, but the developers still have the de-
bug files if needed to debug errors found in the shipping project. UNIX
systems have a "strip” command that removes the debugging symbols
from an object file but doesn’t change the code at all. The developers keep
the unstripped file and ship the stripped version. Even though the two files
are different, the running code is the same and the debugger can use the
symbols from the unstripped file to debug a core dump made from the
stripped version.

Exercises

1. Write a C++ program with a lot of functions whose mangled names dif-
fer only in the last few characters. See how long they take to compile.
Change them so the mangled names differ in the first few characters.
Time a compile and link again. Do you need a new linker?

2. lInvestigate the debug symbol format that your favorite linker uses.
(Some on-line resources are listed in the bibiography.) Write a program to
dump the debugging symbols from an object file and see how much of the
source program you can reconstruct from it.

Project

Project 5-1: Extend the linker to handle symbol name resolution. Make
the linker read the symbol tables from each file and create a global symbol
table that subsequent parts of the linker can use. Each symbol in the glob-
al symbol table needs to include, along with the name, whether the symbol
is defined, and which module defines it. Be sure to check for undefined
and multiply defined symbols.

5-168 Symbol management

Project 5-2: Add symbol value resolution to the linker. Since most sym-
bols are defined relative to segments in linker input files, the value of each
symbol has to be adjusted to account for the address to which each seg-
ment is relocated. For example, if a symbol is defined as location 42 with-
in a file’s text segment, and the segment is relocated to 3710, the sy
becomes 3752.

Project 5-3: Finish the work from project 4-2; handle Unix-sty##’common
blocks. Assign location values to each common block.

Libraries 6-169

Chapter 6
Libraries

Every modern linker handles libraries, collections of object files that are
included as needed in a linked program. In this chapter we cover tradi-
tional statically linked libraries, leaving the more complex shared libraries
to Chapters 9 and 10.

Purpose of libraries

In the 1940s and early 1950s, programming shops had actual code libraries
containing reels of tape or later decks of cards that a programmer would
visit and select routines to load with his program. Once loaders and link-
ers started to resolve symbolic references, it became possible to automate
the process by selecting routines from the library that resolve otherwise
undefined symbols.

A library file is fundamentally no more than a collection of object files,
usually with some added directory information to make it faster to search.
As always, the details are more complicated than the basic idea, so we
work them out in this chapter. We use the term file to refer to a separate
object file, and module to refer to an object file included in a library.

Library formats

The simplest library formats are just sequences of object modules. On se-
quential media like magnetic or paper tape, there’s little point in adding a
directory since the linker has to read through the whole library anyway,
and skipping over library members is no slower than reading them in. On
disks, though, a directory can speed up library searching considerably and
is now a standard facility.

Using the oper ating system

0S/360 and its descendants including MVS provide partitioned data
sets(PDS), that contain named members, each of which can be treated as a
sequential file. The system provides features for giving multiple aliases to
a single member, for treating multiple PDS as a single logical PDS for the
duration of a program, for enumerating the names in a logical PDS, and of
course for reading or writing the members. Member names are eight char-

¥ X X x

¥ X X X x

* Ok ok ok *

6-170 Libraries

acters which probably not coincidentally is the length of an external sym-
bol in a linker. (MVS introduces an extended PDS or PDSE which has
some support for names up to 1024 characters, for the benefit of C, C++,
and Cobol programmers.)

A linker library is merely a PDS where each member is an objec

have an alias for each global symbol manually created when
built. The linker searches the logical PDS specified as
members whose names match undefined symbols. An adva
scheme is that there’s no object library update prograg
standard file maintenance utilities for PDS suffice.

Although I’ve never seen a linker do so, a linke
could handle libraries the same way; the library wou dggectory, the
members object files within the direct ith each 0 i
global symbol defined in the file. (U permits multiple names for a sin-
gle file.)

Unix and Windows Archive files

UNIX linker libraries use
for collections of any types
anything else. Librgg

“archive” fo hich can actually be used
lles, althoygh in practice it’s rarely used for

5, but later versions had various sorts of di-
used for about a decade in BSD versions

Or ELF libraries (text archive headers with an ex-
names, directory called /) in System V.4, later ver-

Il modern Unix systems use minor variations of the same archive format,
igure 1. The format uses only text characters in the archive headers,
hich means that an archive of text files is itself a text file (a quality that

Libraries 6-171

has turned out in practice to be useless.) Each archive starts with the
“magic’ eight character string ! <ar ch>\ n, where \ n is a new line.
Each archive member is preceded by a 60 byte header containing:

The name of the member, padded to 16 characters as described be-
low.

The modification date, as a decimal number of seconds since the
beginning of 1970.

The user and group IDs as decimal numbers.
The UNIX file mode as an octal number.

The size of the file in bytes as a decimal number. If the file size is
odd, the file’s contents are padded with a newline character to
make the total length even, although the pad character isn’t count-
ed in the size field.

The two characters reverse quote and newline, to make the header
a line of text and provide a simple check that the header is indeed a
header.

Each member header contains the modification time, user and
group IDs and file mode, although linkers ignore them.

char
char
char
char
char
char
char

Figure 6-1: Unix archive format

File header:

I<arch>\n

Member header:
nane[16]; /* nmenber nanme */
nmodtine[12]; /* nmodification tine */
uid[6]; /* user ID*/
gid[6]; /* group ID */
node[8]; /* octal file node */
size[10]; /* menber size */
eol[2]; /* reverese quote, newine */

g

6-172 Libraries

Member names that are 15 characters or less are followed by enough
spaces to pad the name to 16 characters, or in COFF or ELF archives, a
slash followed by enough spaces to pad the total to 16 characters. (Unix
and Windows both use slashes to separate components in filenames.) The
version of this archive format used with a.out files didn’t support me
names longer than 16 characters, reflecting pre-BSD Unix file sysggm

handle the longer names correctly, nobody used them.) C
Windows archives store names longer than 16 characters i

followed
by the decimal offset in the / / member of the name Windows
archives, the // member must be the fladgd member C
Unix archives the member need not I there are no Iong names, but

follows the symbol directory if it do

directly move to and read t embers they need to use.

The a.out archives a member called . SYMDEF
which has to be g e archive, Figure 2. The member
starts with a worg ini e size in bytes of the symbol table that fol-

g table, each string followed by a null byte. Each
ontains a zero-based offset into the string table of the
the file position of the header of the member that de-
he symbols table entries are conventionally in the or-

Figure 6-2: SYMDEF directory format

nt tablesize; /* size in bytes of following table */
struct syntable {

Libraries 6-173

int synmbol; /* offset in string table */

int nmenber; /* nenber pointer */
} syntable [];
int stringsize; /* size of string table */
char strings[]; /* null terminated strings */

COFF and ELF archives use the otherwise impossible name / for the sym-
bol directory rather than __ . SYMDEF and use a somewhat simpler for-
mat, Figure 3. The first four byte value is the number of symbols. Follow-
ing that is an array of file offsets of archive members, and a set of null ter-
minated strings. The first offset points to the member that defines the
symbol named by the first string, and so forth. COFF archives usually use
a big-endian byte order for the symbol table regardless of the native byte
order of the architecture.

Figure 6-3: COFF / ELF directory format

i nt nsynbols; /* nunber of synbols */
int menber[]; /* nenber offsets */
char strings[]; /* null term nated strings */

Microsoft ECOFF archives add a second symbol directory member, Figure
4, confusingly also called / that follows the first one.

Figure 6-4: ECOFF second symbol directory

int nmenbers; /* count of nenber offsets */

int menbers[]; /* menber offsets */

int nsynbols; /* number of synbols */

ushort symdx[]; /* pointers to nenber offsets */

char strings[]; /* synbol nanes, in al phabetical order */

g

6-174 Libraries

The ECOFF directory consists of a count of member entries followed by
an array of member offsets, one per archive member. Following that is a
count of symbols, an array of two-byte member offset pointers, foll
by the null terminated symbols in alphabetical order. The membgg o

member corresponding to the fifth symbol, consult the fi
pointer array which contains the index in the members 3

Extension to 64 bits

Even if an archive contains objects
need to change the archive format f
grows greater than 4GB. Nonetheles
ferent symbol directory format with a differ
| SYMB4/ .

Intel OMF libraries

FF unless the archive
rchitectures have a dif-

first 0Dject module (file)

second object module (file) ...
IBNAM module names record

LIBLOC module locations record

LIBDIC symbol directory

Libraries 6-175

LIBHED record
first object module (file)

secﬁnd object module (file)

LIBNAM module
names record

LIBLOC module
locations. record

g

6-176 Libraries

The library starts with a LIBDIC record that contains the file offset of the
LIBNAM record in a (block,offset) format used by Intel’s ISIS operating
system. The LIBNAM simply contains a list of module names, each
preceded by a count byte indicating the length of the name. The
record contains a parallel list of (block,offset) file locations
module starts. The LIBDIC contains a list of groups of ¢
with the names defined in each module, each group follo
byte to separate it from the subsequent group.

Although this format is a little clunky, it contains 4
tion and does the job.

Creating libraries

Each archive format has its own techni r creating liOW#ries. Depend- *
ing on how much support the oper rovides for the archive *
format, library creation can involv standard system file *
management programs to library-speci *
At one end of the spectrug@ IBM MVS Ik es are created by the stan- *
dard IEBCOPY utility that tes partijoned data sets. In the middle, *
Unix libraries are cig mmand that combines files into *
e program called ranlib added the *

gymbols from each member, creating the *

cing it into the file. In principle ranlib *

@ directory as a real file, then called ar to in- *

practice ranlib manipulated the archive directly. *

archives, the function of ranlib has moved into ar, *

bol directory if any of the members appear to be ob- *

Pugh ar still can create archives of non-objects *

e other end of the spectrum, OMF archives and Windows ECOFF *

arc are created by specialized librarian programs, since those formats *
*

have n®er been used for anything other than object code libraries.

ne minor issue for library creation is the order of object files, particularly
or the ancient formats that didn’t have a symbol directory. Pre-ranlib

Libraries 6-177

Unix systems contained a pair of programs called lorder and tsort to help
create archives. Lorder took as its input a set of object files (not libraries),
and produced a dependency list of what files refered to symbols in what
other files. (This is not hard to do; lorder was and still is typically imple-
mented as a shell script that extracts the symbols using a symbol listing
utility, does a little text processing on the symbols, then uses standard sort
and join utilities to create its output.) Tsort did a topological sort on the
output of lorder, producing a sorted list of files so each symbol is defined
after all the references to it, allowing a single sequential pass over the files
to resolve all undefined references. The output of lorder was used to con-
trol ar.

Although the symbol directories in modern libraries allow the linking pro-
cess to work regardless of the order of the objects within a library, most li-
braries are still created with lorder and tsort to speed up the linking pro-
Cess.

Searchinglibraries

After a library is created, the linker has to be able to search it. Library
search generally happens during the first linker pass, after all of the indi-
vidual input files have been read. If the library or libraries have symbol
directories, the linker reads in the directory, and checks each symbol in
turn against the linker’s symbol table. If the symbol is used but undefined,
the linker includes that symbol’s file from the library. It’s not enough to
mark the file for later loading; the linker has to process the symbols in the
segments in the library file just like those in an explicitly linked file. The
segments go in the segment table, and the symbols, both defined and unde-
fined are entered into the global symbol table. It’s quite common for one
library routine to refer to symbols in another library routine, for example,
a higher level 1/0 routine like pri nt f might refer to a lower level put c
orwr it e routine.

Library symbol resolution is an interative process. After the linker has
made a pass over the symbols in the directory, if it included any files from
the library during that pass, it should make another pass to resolve any
symbols required by the included files, until it makes a complete pass over
the directory and finds nothing else to include. Not all linkers do this;

ok ok ok % ok ok ok K F * F

¥ X * % %

6-178 Libraries

many just make a single sequential pass over the directory and miss any
backwards dependencies from a file to another file earlier in the library.
Tools like tsort and lorder can minimize the difficulty due to single-pass
linkers, but it’s not uncommon for programmers to explcitly list the same
library several times on the linker command line to force multiple p
and resolve all the symbols.

Unix linkers and many Windows linkers take an intermixed I}
files and libraries on the command line or in a control fil
each in order, so that the programmer can control the order
jects are loaded and I|brar|es are searched Although i

braries, then system libraries for math
like, and finally the standard system |}

When programmers use multiple lib
braries more than once when there are C|rcul ependencies among li-
braries. That is, if a routingp library A d s on a routine in library B,
but another routine in librar)Rg depends gn a routine in library A, neither
searching A followeg

n necessary to list li-

plling the linker to search AB A or B AB,
B C D is inelegant but solves the problem.
Since thes arogmany flicated symbols among the libraries, if the
em all as a group as IBM’s mainframe linkers
rogrammers would be well served.

ivate ve POf a few routines, notably mal | oc and f r ee, for heap
ge management, and want to use them rather than the standard system
s. For that case, a linker flag specifically saying “don’t look for
bols in the library’” would in most cases be preferable to getting
e effect by putting the private malloc in the search order in front of the
ublic one.

ok ok ok % ok ok ok ok ok ok ok ok ok ok X * * F

A ok ok ok * % %

Libraries 6-179

Per formance issues

The primary performance issue related to libraries used to be the time
spent scanning libraries sequentially. Once symbol directories became
standard, reading an input file from a library became insignificantly slower
than reading a separate input file, and so long as libraries are topologically
sorted, the linker rarely needs to make more than one pass over the symbol
directory.

Library searches can still be slow if a library has a lot of tiny members. A
typical Unix system library has over 600 members. Particularly in the
now-common case that all of the library members are combined at runtime
into a single shared library anyway, it’d probably be faster to create a sin-
gle object file that defines all of the symbols in the library and link using
that rather than searching a library. We examine this in more detail in
Chapter 9.

Weak external symbols

The simple definition-reference model used for symbol resolution and li-
brary member selection turns out to be insufficiently flexible for many ap-
plications. For example, most C programs call routines in the pri nt f
family to format data for output. Printf can format all sorts of data, includ-
ing floating point, which means that any program that uses printf will get
the floating point libraries linked in even if the program doesn’t actually
use floating point.

For many years, PDP-11 Unix programs had to trick the linker to avoid
linking the floating libraries in integer-only programs. The C compiler
emitted a reference to the special symbol f |t used in any routine that
used floating point code. The C library was arranged as in Figure 6, taking
advantage of the fact that the linker searched the library sequentially. If
the program used floating point, the reference to fltused would cause the
real floating point routines to be linked, including the real version of fcvt,
the floating output routine. Then when the I/0O module was linked to de-
fine printf, there was already a version of fcvt that satisfyed the reference
in the 1/O module. In programs that didn’t use floating point, the real
floating point routines wouldn’t be loaded, since there wouldn’t be any un-
defined symbols they resolved, and the reference to fcvt in the 1/0 module

6-180 Libraries

would be resolved by the stub floating routines that follow the 1/O routines
in the library.

Figure 6-6: Unix classic C library

Real floating point module, define fltused and fcvt
I/0 module, defines printf, refers to fcvt
Stub floating routines, define stub fcvt

While this trick works, using it for more than one o ols would
rapidly become unwieldy, and its corre eration cri depends on
the order of the modules in the librar mething that’s eaSy to get wrong
when the library’s rebuilt.

The solution to this dilemma is weak €Xternal sy#hbols, external symbols
that do not cause library members to be If a definition for the
symbol is available, either n explicitly linked file or due to a normal
external causing a libra

external is left u
sidered to be an

iDle resod Passes over the library.

dds yet another kind of weak symbol, a weak definition as well as a
erence. A weak definition defines a global symbol if no normal
definition is available. If a normal definition is available, the weak defini-

on is ignored. Weak definitions are infrequently used but can be useful
0 define error stubs without putting the stubs in separate modules.

Libraries 6-181

Exercises

What should a linker do if two modules in different libraries define the
same symbol? Is it an error?

Library symbol directories generally include only defined global symbols.
Would it be useful to include undefined global symbols as well?

When sorting object files using lorder and tsort, it’s possible that tsort
won’t be able to come up with a total order for the files. When will this
happen, and is it a problem?

Some library formats put the directory at the front of the library while oth-
ers put it at the end. What practical difference does it make?

Describe some other situations where weak externals and weak definitions
are useful.

Proj ect

This part of the project adds library searching to the linker. We’ll experi-
ment with two different library formats. The first is the IBM-like directory
format suggested early in the chapter. A library is a directory, each mem-
ber is a file in the directory, each file having names for each of the export-
ed files in the directory. If you’re using a system that doesn’t support
Unix-style multiple names, fake it. Give each file a single name (choose
one of the exported symbols). Then make a file named MAP that contains
lines of the form:

name sym sym sym. ..

where name is the file’s name and sym are the rest of the exported sym-
bols.

The second library format is a single file. The library starts with a single
line:
LI BRARY nnnn pppppp

where nnnn is the number of modules in the library and pppppp is the off-
set in the file where the library directory starts. Following that line are the
library members, one after another. At the end of the file, starting at offset

g

6-182 Libraries

pppppp is the library directory, which consists of lines, one per module, in

the format:
pppppp 11111 syml synm?2 syn8 ...

where pppppp is the position in the file where the module starts, I i
length of the module, and the symi are the symbols defined in this

bols. Optionally, extend the librarian so it can take an existin
add, replace, or delete modules in place.

Project 6-2: Extend the linker to handle director
the linker encounters a library in its list of input
and include each module in the library that defines &
Be sure you correctly handle library mo
fined in other library members.

-format library from a
ite the LIBRARY line

Project 6-3: Write a librarian that cr
set of object files. Note that you can
at the front of the file until
sonable approaches inclu r|t|ng a dummy library line, then seeklng
back and rewrltmg line_i

he Iibrarian to update an existing li-
arder than updating a directory format li-

ker to handle file-format libraries. When the
ibrary in its list of input files, search the library and
e in the library that defines an undefined symbol.

Relocation 7-183

Chapter 7
Relocation

$Revision: 2.2 $
$Date: 1999/06/30 01:02:35 $

Once a linker has scanned all of the input files to determine segment sizes,
symbol definitions and symbol references, figured out which library mod-
ules to include, and decided where in the output address space all of the
segments will go, the next stage is the heart of the linking process, reloca-
tion. We use relocation to refer both to the process of adjusting program
addresses to account for non-zero segment origins, and the process of re-
solving references to external symbols, since the two are frequently han-
dled together.

The linker’s first pass lays out the positions of the various segments and
collects the segment-relative values of all global symbols in the program.
Once the linker determines the position of each segment, it potentially
needs to fix up all storage addresses to reflect the new locations of the seg-
ments. On most architectures, addresses in data are absolute, while those
embedded in instructions may be absolute or relative. The linker needs to
fixup accordingly, as we’ll discuss later.

The first pass also creates the global symbol table as described in Chapter
5. The linker also resolves stored references to global symbols to the sym-
bols’ addresses.

Har dwar e and softwar e relocation

Since nearly all modern computers have hardware relocation, one might
wonder why a linker or loader still does software relocation. (This ques-
tion confused me when programming a PDP-6 in the late 1960s, and the
situation has only gotten more complicated since then.) The answer has
partly to do with performance, and partly with binding time.

Hardware relocation allows an operating system to give each process a
separate address space that starts at a fixed known address, which makes
program loading easier and prevents buggy programs in one address space
from damaging programs in other address spaces. Software linker or load-

Ok ok ok % % %

¥ X % % % o 3k

*

* %

7-184 Relocation

er relocation combines input files into one large file that’s ready to be
loaded into the address space provided by hardware relocation, frequently
with no load-time fixing up at all.

On a machine like a 286 or 286 with several thousand segments, it would
indeed be possible to load one routine or global datum per segment,

handled as inter-segment references looked up in the syste
bles and bound at runtime. Unfortunately, x86 segment Ioo
slow, and a program that did a segment lookup for eve

link time, so they hold still during d
shipping. Library "bit creep” isa ch
program errors when a program run
than its authors anticipated. (MS Windows a
problem due to the large
ent versions of libraries ofte
on the same computgs
dynamic linking tg
point in paying fq

ard to debug source of
t versions of libraries

aries they use, with differ-
various applications all loaded
overhead of 286 style segments,
than static linking, and there’s no

address. On some systems including MS-DOS and MVS,
rogram is linked as though it will be loaded at location zero. The
dress is chosen from available storage and the program is always
relocated as it’s loaded. On others, notably MS Windows, programs are

nked to be loaded at a fixed address which is generally available, and no
oad-time relocation is needed except in the unusual case that the standard

A ok % ok % ok ok o ok

Relocation 7-185

address is already in use by something else. (Current versions of Windows
in practice never do load-time relocation of executable programs, although
they do relocate DLL shared libraries. Similarly, Unix systems never relo-
cate ELF programs although they do relocate ELF shared libraries.)

Load-time relocation is quite simple compared to link-time relocation. At
link time, different addresses need to be relocated different amounts de-
pending on the size and locations of the segments. At load time, on the
other hand, the entire program is invariably treated as a single big segment
for relocation purposes, and the loader needs only to adjust program ad-
dresses by the difference between the nominal and actual load addresses.

Symbol and segment relocation

The linker’s first pass lays out the positions of the various segments and
collects the segment-relative values of all global symbols in the program.
Once the linker determines the position of each segment, it needs to adjust
the stored addresses.

. Data addresses and absolute program address references within a
segment need to be adjusted. For example, if a pointer refers to lo-
cation 100, but the segment base is relocated to 1000, the pointer
needs to be adjusted to location 1100.

. Inter-segment program references need to be adjusted as well. Ab-
solute address references need to be adjusted to reflect the new po-
sition of the target address’ segment, while relative addresses need
to reflect the positions of both the target segment and the segment
in which the reference lies.

. References to global symbols have to be resolved. If an instruction
calls a routine det onat e, and det onat e is at offset 500 in a
segment that starts at 1000, the address in that instruction has to be
adjusted to refer to location 1500.

The requirements of relocation and symbol resolution are slightly
different. For relocation, the number of base values is fairly small,
the number of segments in an input file, but the object format has
to permit relocation of references to any address in any segment.
For symbol resolution, the number of symbols is far greater, but in

b T .

* Ok ok ok k%

7-186 Relocation

most cases the only action the linker needs to take with the symbol
is to plug the symbol’s value into a word in the program.

Many linkers unify segment and symbol relocation by treating each seg-
ment as a pseudo-symbol whose value is the base of the segment. This
makes segment-relative relocations a special case of symbol-relative

addends, the base address of the segment in which the sym
the offset of the symbol within that segment. Some linke

segment base do the addition as each item is relSgated. pst cases,
there’s no compelling reason to do it one way or the Sgaer. ¥ few link-

ence using a specified segment.

Symbol lookups

Object formats invariably tr ach file’g set of symbols as an array, and
internally refer to th

Wdifferent indexes, as will the output if the
output is relinkal\ge straightforward way to handle this is to
keep an 3

al sy

relocation is a one-time operation and the resulting file can’t be relocated
ain. Some object formats, notably the IBM 360, are relinkable and keep
Il the relocation data in the output file. (In the case of the 360, the output

%k ok ok k% %

Relocation 7-187

file needs to be relocated when loaded, so it has to keep all the relocation
information anyway.) With Unix linkers, a linker option makes the output
relinkable, and in some cases, notably shared libraries, the output always
has relocation information since libraries need to be relocated when loaded
as well.

¥ X X x

In the simplest case, Figure 1, the relocation information for a segment is
just a list of places in the segment that need to be relocated. As the linker
processes the segment, it adds the base position of the segment to the value
at each location identified by a relocation entry. This handles direct ad-
dressing and pointer values in memory for a single segment.

Figure 7-1: Smple relocation entry

address | address | address | ...

Real programs on modern computers are somewhat more complicated, due
to multiple segments and addressing modes. The classic Unix a.out for-
mat, Figure 2, is about the simplest that handles these issues.

Figure 7-2: a.out relocation entry

int address /* offset in text or data segnent */
unsigned int r_symbol num: 24, /* ordinal nunber of add synbol */

r_pcrel : 1, /* 1 if value should be pc-relative */
r_length : 2, /* log base 2 of value’'s width */
r_extern: 1, /* 1 if need to add synbol to value */

Each object file has two sets of relocation entries, one for the text segment
and one for the data segment. (The bss segment is defined to be all zero,
so there’s nothing to relocate there.) Each relocation entry contains a bit
r _ext ern to specify whether this is a segment-relative or symbol-rela-

7-188 Relocation

tive entry. If the bit is clear, it’s segment relative and r _synbol numis
actually a code for the segment, N_TEXT (4), N_DATA (6), or N_BSS (8).
The pc_r el at i ve bit specifies whether the reference is absolute or rela-
tive to the current location (“program counter™.)

The exact details of each relocation depend on the type and segmen
volved. In the discussion below, TR, DR, and BR are the reloc
of the text, data, and bss segments, respectively.

For a pointer or direct address within the same segment, t
TR or DR to the stored value already in the segment.

For a pointer or direct address from one segme
adds the relocated base of the target segment, TR

the input fiN

ent points to offset 100
ter will have the value
ent in the output turns
linker will add 13000 to

2200. If the final relocated address of
out to be 15000, then DR will be 13000,
the existing 2200 producin

Some architectures g

programmer who
fit in the i

inters in data due to the profusion of often quirky instruction formats.
out format described above has only two relocation formats, abso-
pc-relative, but most computer architectures require a longer list
of relocation formats to handle all the instruction formats.

Relocation 7-189

X86 instruction relocation

Despite the complex instruction encodings on the x86, from the linker’s
point of view the architecture is easy to handle because there are only two
kinds of addresses the linker has to handle, direct and pc-relative. (We ig-
nore segmentation here, as do most 32 bit linkers.) Data reference instruc-
tions can contain the 32 bit address of the target, which the linker can relo-
cate the same as any other 32 bit data address, adding the relocated base of
the segment in which the target resides.

Call and jump instructions use relative addressing, so the value in the in-
struction is the difference between the target address and the address of the
instruction itself. For calls and jumps within the same segment, no reloca-
tion is required since the relative positions of addreses within a single seg-
ment never changes. For intersegment jumps the linker needs to add the
relocation for the target segment and subtract that of the instruction’s seg-
ment. For a jump from the text to the data segment, for example, the relo-
cation value to apply would be DR-TR.

SPARC instruction relocation

Few architectures have instruction encodings as linker-friendly as the x86.
The SPARC, for example, has no direct addressing, four different branch
formats, and some specialized instructions used to synthesize a 32 bit ad-
dress, with individual instructions only containing part of an address. The
linker needs to handle all of this.

Unlike the x86, none of the SPARC instruction formats have room for a 32
bit address in the instruction itself. This means that in the input files, the
target address of an instruction with a relocatable memory reference can’t
be stored in the instruction itself. Instead, SPARC relocation entries, Fig-
ure 3, have an extra field r _addend which contains the 32 bit value to
which the reference is made. Since SPARC relocation can’t be described
as simply as x86, the various type bits are replaced by ar _t ype field that
contains a code that describes the format of the relocation. Also, rather
than dedicate a bit to distinguish between segment and symbol relocations,
each input file defines symbols . t ext, . dat a, and . bss, that are de-
fined as the beginnings of their respective segments, and segment reloca-
tions refer to those symbols.

7-190 Relocation

Figure 7-3: SPARC relocation entry

i nt r_address; /* offset of of data to relocate */

int r_index: 24, /* synbol table index of synbol */
r_type:8; /* relocation type*/

int r_addend; /* datum addend*/

and the special SETHI absolute address hack. AR eS are re-
located almost the same as on the x86, the linker a0W or BR to
the stored value. In this case the addend in the relocatid isn’t really

needed, since there’s room for a full
linker adds the addend to the stored v

h bits are in bit positions 20 and 21. The linker does
ng and masking to store those bits without modifying

registePwhich provides the low 10 bits of the address. The linker handles
is with two specialized relocation modes, one of which puts the 22 high
its of the relocated address (the addend plus the appropriate relocated
segment base) in the low 22 bits of the stored value, and a second mode

Relocation 7-191

which puts the low 10 bits of the relocated address in the low 10 bits of the
stored value. Unlike the branch modes above, these relocation modes do
not check that each value fits in the stored bits, since in both cases the
stored bits don’t represent the entire value.

Relocation on other architectures uses variations on the SPARC tech-
niques, with a different relocation type for each instruction format that can
address memory.

ECOFF segment relocation

Microsoft’s COFF object format is an extended version of COFF which is
descended from a.out, so it’s not surprising that Win32 relocation bears a
lot of similarities to a.out relocation. Each section in a COFF object file
can have a list of relocation entries similar to a.out entries, Figure 4. A pe-
culiarity of COFF relocation entries is that even on 32 bit machines,
they’re 10 bytes long, which means that on machines that require aligned
data, the linker can’t just load the entire relocation table into a memory ar-
ray with a single read, but rather has to read and unpack entries one at a
time. (COFF is old enough that saving two bytes per entry probably ap-
peared worthwhile.) In each entry, the address is the RVA (relative virtual
address) of the stored data, the index is the segment or symbol index, and
the type is a machine specific relocation type. For each section of the in-
put file, the symbol table contains an entry with a name like . t ext, so
segment relocations use the index of the symbol corresponding to the tar-
get section.

Figure 7-4: MS COFF relocation entry

int address; /* offset of of data to relocate */
int index; /* symbol index */
short type; /* relocation type */

On the x86, ECOFF relocations work much like they do in a.out. An IM-
AGE_REL 1386 _DIR32 is a 32 bit direct address or stored pointer, an IM-

7-192 Relocation

AGE_REL 1386_DIR32NB is 32 bit direct address or stored pointer rela-
tive to the base of the progam, and an IMAGE_REL 1386 _REL32 is a pc-
relative 32 bit address. A few other relocation types support special Win-
dows features, mentioned later.

ECOFF supports several RISC processors including the MIPS, Alpha

quences to synthesize a direct address. ECOFF has relo
handle each of those situations, along with the conventional
locations.

MIPS, for example, has a jump instruction that

stored instruction already contains t target address. To do
the relocation, the linker has to reco located target address
by extracting the low 26 bits of the stored instg®ltion, shifting and mask-
target segment, then undo
the shlftmg and maskmg to instruction. In the process, the

linker also has to chg

struction

MIPS also has a the SETHI trick. MIPS instructions can
contain 16 4 0 load an arbitrary 32 bit value one uses a
LUI (Iq instruction to place the high half of an imme-
diate h 16 bits of a register, followed by an ORI (OR im-

b low 16 bits in the register. The relocation types IM-
REFHI and IMAGE_REL_MIPS_REFLO support this
PTinker to relocate the high or low half, respectively, of the
t value in the relocated instruction. REFHI presents a problem
Imagine that the target address before relocation is hex 00123456,
so theWored instruction would contain 0012, the high half of the unrelo-
ated value. Now imagine that the relocation value is 1E000. The final
alue will be 123456 plus 1E000 which is 141456, so the stored value will
e 0014. But wait — to do this calculation, the linker needs the full value

Relocation 7-193

00123456, but only the 0012 is stored in the instruction. Where does it
find the low half with 3456? ECOFF’s answer is that the next relocation
item after the REFHI is IMAGE_REL_MIPS_PAIR, in which the index
contains the low half of the target for a preceding REFHI. This is ar-
guably a better approach than using an extra addend field in each reloca-
tion item, since the PAIR item only occurs after REFHI, rather than wast-
ing space in every item. The disadvantage is that the order of relocation
items now becomes important, while it wasn’t before.

ELF relocation

ELF relocation is similar to a.out and COFF relocation. ELF does ratio-
nalize the issue of relocation items with addends and those without, having
two kinds of relocation sections, SHT_REL without and SHT _RELA
with. In practice, all of the relocation sections in a single file are of the
same type, depending on the target architecture. If the architecture has
room for all the addends in the object code like the x86 does, it uses REL,
if not it uses RELA. But in principle a compiler could save some space on
architectures that need addends by putting all the relocations with zero ad-
dends, e.g., procedure references, in a SHT_REL section and the rest in a
SHT_RELA.

ELF also adds some extra relocation types to handle dynamic linking and
position independent code, that we discuss in Chapter 8.

OMF relocation

OMF relocation is conceptually the same as the schemes we’ve already
looked at, although the details are quite complex. Since OMF was origi-
nally designed for use on microcomputers with limited memory and stor-
age, the format permits relocation to take place without having to load an
entire segment into memory. OMF intermixes LIDATA or LEDATA data
records with FIXUPP relocation records, with each FIXUPP referring to
the preceding data. Hence, the linker can read and buffer a data record,
then read a following FIXUPP, apply the relocations, and write out the re-
located data. FIXUPPs refer to relocation ““threads™, two-bit codes that
indirectly refer to a frame, an OMF reloctation base. The linker has to
track the four active frames, updating them as FIXUPP records redefine
them, and using them as FIXUPP records refer to them.

g

7-194 Relocation

Relinkable and relocatable output for mats

A few formats are relinkable, which means that the output file has a sym-
bol table and relocation information so it can be used as an input file in a
subsequent link. Many formats are relocatable, which means that the qut-
put file has relocation information for load-time relocation.

through verbatim, some modified, and some discarded.
ment-relative fixups in formats that don’t combine segm

Entries for symbol resolution can be paSsed throg#h unmodified, changed
to segment relocations, or
fined, the linker passes thr the relocation item, possibly adjusting the
offset and symbol inde ed segments and the order of
. If the symbol is resolved, what
the linker does dg ‘ of the symbol reference. If the ref-
erence is a pc-rel@ive one witjlin the same segment, the linker can discard

erence is absolute or inter-segment, the relo-
D a segment-relative one.

e relocation for mats

Alth the most common format for relocation items is an array of fix-

ups, there are a few other possibilities, including chained references and

itmaps. Most formats also have segments that need to be treated special-
by the linker.

Relocation 7-195

Chained references

For external symbol references, one surprisingly effective format is a
linked list of references, with the links in the object code itself. The sym-
bol table entry points to one reference, the word at that location points to a
subsequent reference, and so forth to the final reference which has a stop
value such as zero or -1. This works on architectures where address refer-
ences are a full word, or at least enough bits to cover the maximum size of
an object file segment. (SPARC branches, for example, have a 22 bit off-
set which, since instructions are aligned on four-byte boundaries, is
enough to cover a 2“7 byte section, which is a reasonable limit on a single
file segment.)

This trick does not handle symbol references with offsets, which is usually
an acceptable limitation for code references but a problem for data. In C,
for example, one can write static initializers which point into the middle of
arrays:

extern int a[];

static int *ap = &[3];

On a 32 bit machine, the contents of ap are a plus 12. A way around this
problem is either to use this technique just for code pointers, or else to use
the link list for the common case of references with no offset, and some-
thing else for references with offsets.

Bit maps

On architectures like the PDP-11, Z8000, and some DSPs that use abso-
lute addressing, code segments can end up with a lot of segment reloca-
tions since most memory reference instructions contain an address that
needs to be relocated. Rather than making a list of locations to fix up, it
can be more efficient to store fixups as a bit map, with one bit for every
word in a segment, the bit being set if the location needs to be fixed up.
On 16 bit architectures, a bit map saves space if more than 1/16 of the
words in a segment need relocation; on a 32 bit architecture if more than
1/32 of the words need relocation.

7-196 Relocation

Special segments
Many object formats define special segment formats that require special
relocation processing.

. Windows objects have thread local storage (TLS), a special
ment containing global variables that is replicated for eaclyth
started within a process.

. IBM 360 objects have "pseudoregisters”, similar
storage, an area with named subchunks referred to f
input files.

. Many RISC architectures define "small" sg
ed together into one area, with a register s
point to that area allowing direct addressing T
program.
In each of these cases, the lin eeds a special relocation type or
two to handle special segmen

For Windows thread local storage, the
by architecture. For the x86, IMAGE_R N
the target symbol’s offset the beginning of its segment. This fixup is
generally an instructigg i

in the TLS. For
CREL fixups to s
HI (the lattg

oth RISC processors, there are both SE-
hlue as well as SECRELLO and SECREL-
R, as with REFHI) to generate section-rel-

Wisters, the object format adds two relocation types.
egister reference, which stores the offset of the pseu-
into two bytes in a load or store instruction. The other

by runtime startup code to determine how much storage to allocate
of pseudoregisters.

or small data segments, object formats define a relocation type such as
PREL (global pointer relocation) for MIPS or LITERAL for Alpha
hich stores the offset of the target date in the small data area. The linker

Relocation 7-197

defines a symbol like _GP as the base of the small data area, so that run-
time startup code can load a pointer to the area into a fixed register.

Relocation special cases

Many object formats have "weak™ external symbols which are treated as
normal global symbols if some input file happens to define them, or zero
otherwise. (See Chapter 5 for details.) These usually require no special
effort in the relocation process, since the symbol is either a normal defined
global, or else it’s zero. Either way, references are resolved like any other
symbol.

Some older object formats permitted much more complex relocation than
the formats we’ve discussed here. In the IBM 360 format, for example,
each relocation item can either add or subtract the address to which it
refers, and multiple relocation items can modify the same location, permit-
ting references like A- B where either or both of A and B are external sym-
bols.

Some older linkers permitted arbitrarily complex relocations, with elabo-
rate reverse polish strings representing link-time expressions to be re-
solved and stored into program memory. Although these schemes had
great expressive power, it turned out to be power that wasn’t very useful,
and modern linkers have retreated to references with optional offsets.

Exercises

Why does a SPARC linker check for address overflow when relocating
branch addresses, but not when doing the high and low parts of the ad-
dresses in a SETHI sequence?

In the MIPS example, a REFHI relocation item needs a following PAIR
item, but a REFLO doesn’t. Why not?

References to symbols that are pseudo-registers and thread local storage
are resolved as offsets from the start of the segment, while normal symbol
references are resolved as absolute addresses. Why?

We said that a.out and COFF relocation doesn’t handle references like A-B
where A and B are both global symbols. Can you come up with a way to

7-198 Relocation

fake it?
Project

Recall that relocations are in this format:
| oc seg ref type ...

where loc is the location to be relocated, seg is the segment it’
the segment or symbol to which the relocation refers, and ty
cation type. For concreteness, we define these relocation ty

. A4 Absolute reference. The four bytes at loc 3
ence to segment ref.

. R4 Relative reference. The four bytes at
ence to segment ref. That is, the bytes at loc CNgata
between the address after loc (lo and the tarygeddress. (This
is the x86 relative jump instru

. AS4 Absolute symbol refere
lute reference to symbol ref,
ready stored at loc. (The addend is

ytes at loc are an abso-
nd being the value al-
zero.)

. RS4 Relative symbo erence. The four bytes at loc are a relative
reference to

ererence. The two bytes at loc are the least signifi-
s of a reference to symbol ref.

e linker handle these relocation types. After the link-
has cred Psymbol table and assigned the addresses of all of the seg-
ts and symbols, process the relocation items in each input file. Keep
that the relocations are defined to affect the actual byte values of
t data, not the hex representation. If you’re writing your linker in
erl, it’s probably easiest to convert each segment of object data to a bina-

string using the perl pack function, do the relocations then convert back
0 hex using unpack.

Relocation 7-199

Project 7-2: Which endian-ness did you assume when you handled your
relocations in project 7-1? Modify your linker to assume the other enndi-
an-ness instead.

g

Loading and overlays 8-201

Chapter 8
L oading and overlays

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Loading is the process of bringing a program into main memory.
run. In this chapter we look at the loading process, concentratj
ing programs that have already been linked. Many system
linking loaders that combined the linking and loading proce
have now practically disappeared, with the only one
hardware being on MVS and the dynamic linker
10. Linking loaders weren’t all that different fro
primary and obvious difference being that the outp®
rather than placed in a file.

Basic loading

with the
memory

We touched on most of the basics of
object file design. Loading is a little
program is loaded by mappjng into a proc
memory system or just rea i

pending on whether a

On most modern syg

program into the segments in the address space.

. Zero out any bss space at the end of the program if the virtual
emory system doesn’t do so automatically.

Create a stack segment if the architecture needs one.

*

Ok ok ok ok %

8-202 Loading and overlays

. Set up any runtime information such as program arguments or en-
vironment variables.

. Start the program.
If the program isn’t mapped through the virtual memory system,
reading in the object file just means reading in the file with normal
"read" system calls. On systems which support shared read-only
code segments, the system needs to check whether there’s already
a copy of the code segment loaded in and use that rather than mak-
ing another copy.

On systems that do memory mapping, the process is slightly more compli-
cated. The system loader has to create the segments, then arrange to map
the file pages into the segments with appropriate permissions, read-only
(RO) or copy-on-write (COW). In some cases, the same page is double
mapped at the end of one segment and the beginning of the next, RO in
one and COW in the other, in formats like compact Unix a.out. The data
segment is generally contiguous with the bss segment, so the loader has to
zero out the part of the last page after the end of the data (since the disk
version usually has symbols or something else there), and allocate enough
zero pages following the data to cover the bss segment.

Basic loading, with relocation

A few systems still do load time relocation for executables, and many do
load time relocation of shared libraries. Some, like MS-DQOS, lack usable
hardware relocation. Others, like MVS, have hardware relocation but are
descended from systems that didn’t have it. Some have hardware reloca-
tion but can load multiple executable programs and shared libraries into
the same address space, so linkers can’t count on having specific addresses
available.

As discussed in Chapter 7, load-time relocation is far simpler than link-
time relocation, because the entire program is relocated as a unit. If, for
example, the program is linked as though it would be loaded at location
zero, but is in fact loaded at location 15000, all of the places in the pro-
gram that require fixups will get 15000 added. After reading the program
into memory, the loader consults the relocation items in the object file and
fixes up the memory locations to which the items point.

g

Loading and overlays 8-203

Load-time relocation can present a performance problem, because code
loaded at different virtual addresses can’t usually be shared between ad-
dress spaces, since the fixups for each address space are different. One ap-
proach, used by MVS, and to some extent by Windows and AIX is to cre-
ate a shared memory area present in multiple address spaces and loa
used programs into that. (MVS calls this this link pack area.) Thisgas

explicitly.
Position-independent code

One popular solution to the dilemma of loading

shared among all processes, with o
process.

This is a surprisingly old idea. TSS/ 1966, and | don’t be-
lieve it was original there. (TSS was not buggy, but I can report
from personal experience t'W@the PIC features really worked.)

On modern architec
Jumps and branchg® er PC-relative or relative to a base
register set at rugi oad-time relocation is required for them.
The problem is essing. The code can’t contain any direct

eate a table of data addresses in a data page and
ht table in a register, so the code can use indexed ad-
at register to pick up the data. This works at the cost

T 0 position independent code

TSS took a brute-force approach. Every routine had two addresses, the
dress of the code, known as the V-con (short for V style address con-
tant, which even non-PIC code needed) and the address of the data,

8-204 Loading and overlays

known as the R-con. The standard OS/360 calling sequence requires that
the caller provide an 18 word register save area pointed to by register 13.
TSS extended the save area to 19 words and required that the caller place
callee’s R-con into that 19th word before making the call, Figure 1. Each
routine had in its data segment the V-cons and R-cons for all of the rou-
tinesthat it called, and stored the appropriate R-con into the outgoing save
area before each call. The main routine in a program received a save area
from the operating system which provided the initial R-con.

Figure 8-1: TSS style two-address procedure call

TSS style with R-con in the save area

Cal l er:

- copy Rcon into
save area

- load V-con into R15

- Call via R15

Cal | ee:

- load R-con from save area
- addresses of sub-procedures
in data area

Loading and overlays 8-205

Callers | ||
- copy R-¢on into

save area MBS,
- load V-con into R15. . .
- Call'viaR15

Callee:

- load R-con from save area

- addresses of sub-ggocedureS™
in data area

(s scheme worked, but is poorly suited for modern systems. For one
thiNg@acopying the R-cons made the calling sequence bulky. For another, it
madegpocedure pointers two words, which didn’t matter in the 1960s but
\S an issue now since in programs written in C, al pointers have to be the

e size. (The C standard doesn't mandate it, but far too much existing
code assumes it to do anything else.)

8-206 Loading and overlays

Per-routine pointer tables

A simple modification used in some Unix systems is to treat the address of
a procedure’s data as the address of the procedure, and to place a pointer
to the procedure’s code at that address, Figure 2. To call a procedure, the
caller loads the data address into an agreed data pointer register, then loads
the code address from the location pointed to by the data pointer into a
scratch register and calls the routine. This is easy to implement, and has
adequate if not fabulous performance.

Figure 8-2: Code via data pointers

[ROMP style data table with code pointer at the beginning.]
Caller:
- Load pointer table
address into RP
- Load code address from
O(RP) into RC

- Call via RC

Cal | ee:

- RP points to pointer
tabl e

- Tabl e has addresses of
poi nter tables for
sub- procedur es

Loading and overlays 8-207

Caller::

- Load pointer table
address into RP

- Load.code address.
from O(RP) into RC

- Call via RC

Callee:. :

- RP points to pointer
table ,

- Table has addres of
pointer tables f
sub-proced

of Contents

IBM IX uses a more sophisticated version of this scheme. AIX pro-
rams group routines into modules with a module typically being the ob-
ct code generated from a single C or C++ source file or a group of relat-
d source files. The data segment of each module contains a table of con-

8-208 Loading and overlays

tents (TOC), which contains the combined pointer tables for al of the rou-
tines in the module as well as some of the small static data for the routines.
Register 2 always contains the address of TOC for the current module,
permitting direct access to the static datain the TOC, and indirect address-
ing of code and data to which the TOC contains pointers. Calls within a
single module are a single "call" instruction, since the caller and callee
share the same TOC. Inter-module calls have to switch TOCs before the
call and switch back afterwards.

Compilers generate al calls as a call instruction, followed by a placehold-
er no-op instruction, which is correct for intraamodule calls. When the
linker encounters an inter-module call, it generates a routine called a glob-
a linkage or glink at the end of the module’s text segment. The glink
saves the caler’'s TOC on the stack, loads the callee’'s TOC and address
from pointersin the the caller's TOC, then jumps to the routine. The link-
er redirects each inter-module call to the glink for the called routine, and
patches the following no-op to a load instruction that restores the TOC
from the stack. Procedure pointers are pointers to a TOC/code pair, and
calls through a pointer use a generic glink routine that uses the TOC and
code address the pointer points to.

This scheme makes intraamodule calls as fast as possible. Inter-module
calls returns are slowed somewhat by the detour through the glink routine,
but the slowdown is small compared to some of the alternatives we'll see
in a moment.

ELF position independent code

Unix System V Release 4 (SVR4) introduced a PIC scheme similar to the
TOC scheme for its ELF shared libraries. The SVR4 scheme is now uni-
versally used by systems that use ELF executables, Figure 3. It has the ad-
vantage of returning to the normal convention that the address of a proce-
dure is the address of the code for the procedure, regardless of whether
one is calling PIC code, found in shared ELF libraries, or non-PIC code,
found in regular ELF executables, at the cost of somewhat more per-rou-
tine overhead than the TOC scheme's.

Loading and overlays 8-209

Its designers noticed that an ELF executable consists of a group of code
pages followed by a group of data pages, and regardless of where in the
address space the program is loaded, the offset from the code to the data
doesn’t change. So if the code can load its own address into a register, the
data will be at a known distance from that address, and references to
in the program’s own data segment can use efficient based addressi
fixed offsets.

The linker creates a global offset table (GOT) containing pog
the global data that the executable file addresses. (Each share
its own GOT and if the main program were comp|le

If a procedure needs to refer to global i i 0 the proce-
dure itself to load up the address of th
ture, but the 386 code is typical:
call .L2;; push PCin on the
. L2:
popl %bx ;; PCintg
addl $_GLOBAL_OFFSET Y - +[.-.L2], %bx;; adjust ebx to GOT address

which has the effjift of pushiN@ the PC on the stack but not jumping, then
a pop to get the i gister and an add immediate of the differ-
ence betwg o OT and address the target of the call. In an

; pyseOmpiler, there’s a special R_386_GOTPC relo-
Woperand of the addl instruction. It tells the linker to

: output file, there’s no relocation needed for the instruction
the distance from the addl to the GOT is fixed.

Figure 8-3: PIC code and data with fixed offsets

picture of code page showing constant offset to data even

8-210 Loading and overlays

though loaded at different addresses in different address

spaces.
: e . Load address unknown
E | XX0000 © " at link time
ifode L LI L F AT G el
ko § t _ | "l 1L2: o "--POPT"j%bX Bk
shyihen] add S$FFO, %bx
|
! II fixed distance from
& 155 e e %1000 code to GOT
data - GOT
segment/]

|
/

Once the GOT register is loaded, code can reference local static data using
the GOT register as a base register, since the distance from a static datum
in the program’s data segment to the GOT is fixed at link tine. Addresses
of global data aren’t bound until the program is loaded (see Chapter 10),
so to reference global data, code has to load a pointer to the data from the
GOT and then deference the pointer. This extra memory reference makes
programs somewhat slower, although it’s a cost that most programmers are
willing to pay for the convenience of dynamically linked libraries. Speed
critical code can use static shared libraries (Chapter 9) or no shared li-
braries at all.

g

Loading and overlays 8-211

To support PIC, ELF defines a handful of special relocation types for code
that uses the GOT in addition R_386_GOTPC or its equivalent. The exact
types are architecture-specific, but the x86 is typical:

. R 386_(@G0T32: The relative location of the slot in the GOT
where the linker has placed a pointer to the given symbol.
for indirectly referenced global data.

. R 386_GOTOFF: The distance from the base of th
given symbol or address. Used to address static data
GOT.

. R 386_RELATI VE: Used to mark data adg
library that need to be relocated at load ti

For example, consider this scrap of C code:
static int a; /* static variable *
extern int b; /* global variabl

a =1 b= 2;

Variable a is allocated in t
is at a known fixed distance
variable directly, usinggiae e
novl $1, a@0TO 4"

bss segment bject file, which means it
the GOT. Object code can reference this
gister and a GOT-relative offset:

Variable b is gloA

, and its |gmation may not be known until runtime if it
turns out foaae in YAl

lifferenidFL F library or executable. In this case, the
M ter to b which the linker creates in the GOT:
%ax;; R 386 _GOr32 ref to address of variable

Brnpiler only creates the R_386_GOT32 reference, and it’s
the linker to collect all such references and make slots for them in

Finally, ELF shared libraries contain R_386_RELATIVE relocation entries
at the runtime loader, part of the dynamic linker we examine in Chapter
0, uses to do loadtime relocaion. Since the text in shared libraries is in-

OFF reference to variable "a"

n bn

8-212 Loading and overlays

variably PIC, there’s no relocation entries for the code, but data can’t be
PIC, so there is a relocation entry for every pointer in the data segment.
(Actually, you can build a shared library with non-PIC code, in which case
there will be relocation entries for the text as well, although almost no-
body does that since it makes the text non-sharable.)

PIC costs and benefits

The advantages of PIC are straighforward; it makes it possible to load
code without having to do load-time relocation, and to share memory
pages of code among processes even though they don’t all have the same
address space allocated. The possible disadvantages are slowdowns at
load time, in procedure calls, in function prolog and epilog, and overall
slower code.

At load time, although the code segment of a PIC file needn’t be relocated,
the data segment does. In large libraries, the TOC or GOT can be very
large and it can take a long time to resolve all the entries. This is as much
a problem with dynamic linking, which we’ll address in Chapter 10, as
with PIC. Handling R_386_RELATIVE items or the equivalent to relo-
cate GOT pointers to data in the same executable is fairly fast, but the
problem is that many GOT entries point to data in other executables and
require a symbol table lookup to resolve.

Calls in ELF executables are usually dynamically linked, even calls within
the same library, which adds significant overhead. We revisit this in Chap-
ter 10.

Function prolog and epilogs in ELF files are quite slow. They have to save
and restore the GOT register, ebx in the x86, and the dummy call and pop
to get the program counter into a register are quite slow. From a perfor-
mance viewpoint, the TOC approach used in AlX wins here, since each
procedure can assume that its TOC register is already set at procedure en-

try.

Finally, PIC code is bigger and slower than non-PIC. The slowdown
varies greatly by architectures. On RISC systems with plenty of registers
and no direct addressing, the loss of one register to be the TOC or GOT
pointer isn’t significant, and lacking direct addressing they need a constant

g

Loading and overlays 8-213

pool of some sort anyway. The worst case is on the x86. It only has six
registers, so losing one of them to be the GOT pointer can make code sig-
nificantly worse. Since the x86 does have direct addressing, a reference to
external data that would be a simple MOV or ADD instruction in non- PIC
code turns into a load of the address followed by the MOV or ADD,
both adds an extra memory reference and uses yet another precio
ter for the temporary pointer.

Particularly on x86 systems, the performance loss in PIC
cant in speed-critical tasks, enough so that some systems ret
of-PIC approach for shared libraries. We’ll revisit tig
two chapters.

Bootstrap loading

ogram loadeM¥esident in the
hain of programs being

computer to load the program of in
loaded by other programs has to star
is how is the first program loaded into

In modern computers, the i@t program th puter runs after a hardware

OM knogn as the bootstrap ROM. as in

address 16 bytes below the top of the sys-
rap ROM occupies the top 64K of the ad-

if that fails the first block of the first hard disk, into
0 and jumps to location zero. The program in block
a slightly larger operating system boot program from a

the operatlng system boot program, but the sequence of increasingly capa-
le loaders remains.)

8-214 Loading and overlays

Why not just load the operating system directly? Because you can’t fit an
operating system loader into 512 bytes. The first level loader typically is
only able to load a single-segment program from a file with a fixed name
in the top-level directory of the boot disk. The operating system loader
contains more sophisticated code that can read and interpret a configura-
tion file, uncompress a compressed operating system executable, address
large amounts of memory (on an x86 the loader usually runs in real mode
which means that it’s tricky to address more than 1MB of memory.) The
full operating system can turn on the virtual memory system, loads the
drivers it needs, and then proceed to run user-level programs.

Many Unix systems use a similar bootstrap process to get user-mode pro-
grams running. The kernel creates a process, then stuffs a tiny little pro-
gram, only a few dozen bytes long, into that process. The tiny program
executes a system call that runs /etc/init, the user mode initialization pro-
gram that in turn runs configuration files and starts the daemons and login
programs that a running system needs.

None of this matters much to the application level programmer, but it be-
comes more interesting if you want to write programs that run on the bare
hardware of the machine, since then you need to arrange to intercept the
bootstrap sequence somewhere and run your program rather than the usual
operating system. Some systems make this quite easy (just stick the name
of your program in AUTOEXEC.BAT and reboot Windows 95, for exam-
ple), others make it nearly impossible. It also presents opportunities for
customized systems. For example, a single-application system could be
built over a Unix kernel by naming the application /etc/init.

Treestructured overlays

We close this chapter with a description of tree-structured overlays, a
widely used scheme in the days before virtual memory to fit programs into
memories smaller than the programs. Overlays are another technique that
dates back to before 1960, and are still in use in some memory-constrained
environments. Several MS-DOS linkers in the 1980 supported them in a
form nearly identical to that used 25 years earlier on mainframe comput-
ers. Although overlays are now little used on conventional architectures,
the techniques that linkers use to create and manage overlays remain inter-

Loading and overlays 8-215

esting. Also, the inter-segment call tricks developed for overlays point the
way to dynamic linking. In environments like DSPs with constrained pro-
gram address spaces, overlay techniques can be a good way to squeeze
programs in, especialy since overlay managers tend to be small. The
0S/360 overlay manager is only about 500 bytes, and | once wrote o
agraphics processor with a 512 word address space that used only g do
words or So.

Overlaid programs divide the code into a tree of segments, as thdOne
in Figure 4.

Figure 8-4: Atypical overlay tree
ROQT callsA andD. A cadlsBandC, D cdls

8-216 Loading and overlays

4
|_~
L]

LB R
‘5 i
ot |

e A R

The programmer manually assigns object files or individual object code
segments to overlay segments. Sibling segments in the overlay tree share

g

Loading and overlays 8-217

the same memory. In the example, segments A and D share the same
memory, B and C share the same memory, and E and F share the same
memory. The sequence of segments that lead to a specific segment is
called a path, so the path for E includes the root, D, and E.

When the program starts, the system loads the root segment which

call target is loaded. For example, if the root calls a routine¢
the overlay manager loads section A if it’s not already loaded:
in A calls a routine in B the manager has to ensure thaigii

and B are loaded. Upwards calls don’t require &
entire path from the root is already loaded.

Calls across the tree are known as exclygi ally consid-
ered to be an error since it’s not possi
programmer force exclusive calls forglituatj re the called routine is

known not to return.

Defining overlays

Overlay linkers created ov
files. The objects dgg :
grammer specifie
linker reads and

y instructions, Intstead, the pro-
with a command language that the
re 5 shows the same overlay structure as
tines loaded into each segment.

with aaron and andy and D.
A calls B (bill and betty) and C (chris), D (dick, dot) calls E
dgar) and F (fran).

8-218 Loading and overlays

-

' ROOT

miin()

| fob Hekg T T
1
|

| ma <+
| Taaron() andy() | ¢ dick() dot()
B e
betty() ‘chris() N |
el m@gar{) fran() |

WESPET——

Figure 6 shows the linker commands that one might give to the IBM 360
linker to create this structure. Spacing doesn’t matter, so we’ve indented
the commands to show the tree structure. OVERLAY commands define
the beginning of each segment; commands with the same overlay name

g

Loading and overlays 8-219

define segments that overlay each other. Hence the first OVERLAY AD
defines segment A, and the second defines segmnt D. Overlay segments
are defined in a depth first left to right tree walk. INCLUDE commands
name logical files for the linker to read.

Figure 8-6: Linker commands

| NCLUDE ROB
I NCLUDE RI CK
OVERLAY AD
| NCLUDE AARON, ANDY
OVERLAY BC
| NCLUDE BI LL, BETTY
OVERLAY BC
I NCLUDE CHRI S
OVERLAY AD
I NCLUDE DI CK, DOT
OVERLAY EF
| NCLUDE EDGAR
OVERLAY EF
| NCLUDE FRAN

ly out overlays to be space effiecent. The
ach a@fiment is the maximum length of any of the
y € same space. For example, assume that the file
e as follows.

It’s up to the pra

8-220 Loading and overlays

chris 3000
dick 3000
dot 4000
edgar 2000
fran 3000

The storage allocation, looks like Figure 7. Each segment starts immedi-
ately after the preceding segment in the path, and the total program size is
the length of the longest path. This program is fairly well balanced, with
the longest path being 11500 and the shortest being 8000. Juggling the
overlay structure to find one that is as compact as possible while still being
valid (no exclusive calls) and reasonably efficient is a black art requiring
considerable trial and error. Since the overlays are defined entirely in the
linker, each trial requires a relink but no recompilation.

Figure 8-7: Overlay storage layout

0 rob

500 rick

2000 aaron 2000 dick

5000 andy 5000 dot

6000 bill 6000 chris

7000 betty 9000 ---- 9000 edgar 9000 fran
8000 ---- 11000 ---- 12000 ----

| mplementation of overlays

The implementation of overlays is surprisingly simple. Once the linker
determines the layout of the segments, relocates the code in each segment
appropriately based on the memory location of the segment. The linker
needs to create a segment table which goes in the root segment, and, in
each segment, glue code for each routine that is the target of a downward
call from that segment.

g

Loading and overlays 8-221

The segment table, Figure 8, lists each segment, a flag to note if the seg-
ment is loaded, the segment’s path. and information needed to load the
segment from disk.

Figure 8-8: Idealized segment table

struct segtab {
struct segtab *path;// preceding segnent in pa
bool ean ispresent;// true if this segment is |oa
int nenoffset; // relative | oad address
int diskoffset; // location in executa
int size; // segnent size

} segtab[];

The linker interposes the glue code downward call so the
overlay manager can ensure that the re
ments can use glue code in higher level b
Ick, and betty, the root needs

glue code for each of thgse t » If segment A contains calls to

glue for betty alr
to global symbol
actual routjge

th®®root. All downward calls (which are
to glue code, Figure 9, rather than to the
as to save any registers it changes, since it
alling and called routine, then jump into the
oviding the address of the real routine and an indica-

igure 8-9: Idealized glue code for x86

lue’ betty: call |oad overlay
.long betty // address of real routine
.long segtab+N // address of segment B's segtab

8-222 Loading and overlays

At runtime, the system loads in the root segment and starts it. At each
downward call, the glue code calls the overlay manager. The manager
checks the target segment’s status. If the segment is present, the manager
just jumps to the real routine. If the segment is not present, the manager
loads the target segment and any unloaded preceding segments in the path,
marks any conflicting segments as not present, marks the newly loaded
segments as present, and jumps.

Overlay fine points

As always, details make elegant tree structured overlays messier than they
might be.

Data

We’ve been talking about structuring code overlays, without any consider-
ation of where the data goes. Individual routines may have private data
loaded into the segments with the routines, but any data that has to be re-
membered from one call to the next needs to be promoted high enough in
the tree that it won’t get unloaded and reloaded, which would lose any
changes made. In practice, it means that most global data usually ends up
in the root. When Fortran programs are overlaid, overlay linkers can posi-
tion common blocks appropriately to be used as communication areas.
For example, if dick calls edgar and fran, and the latter two both refer to a
common block, that block has to reside in segment D to be a communica-
tion area.

Duplicated code

Frequently the overall structure of an overlaid program can be improved
by duplicating code. In our example, imagine that chris and edgar both
call a routine called greg which is 500 bytes long. A single copy of greg
would have to go in the root, increasing the total loaded size of the pro-
gram, since placing it anywhere else in the tree would require a forbidden
exclusive call from either chris or edgar. On the other hand, if both seg-
ments C and E include copies of greg, the overall loaded size of the pro-
gram doesn’t increase, since the end of segment C would grow from 9000

Loading and overlays 8-223

to 9500 and of E from 11000 to 11500, both still smaller than the 12000
bytes that F requires.

Multiple regions

Frequently, a program’s calling structure doesn’t map very well to a sj
tree. Overlay systems handle multiple code regions, with a separ
lay tree in each region. Calls between regions always go tht
ence | never found a use for more than two.

Overlay summary

generally with a lot of trial and erro Igital origami”, but they were a
very effective way to squeeze a large imited memory.

tions in the linker to turn | into one that did more
work, in this case, loading
ping in a variety of wa

dick and dot share the same space, and adjust the structure so that the call
ee still works. How much space does the overlaid program take now?

8-224 Loading and overlays

In the overlay segment table, there’s no explicit marking of conflicting
segments. When the overlay manager loads a segment and the segment’s
path, how does the manager determine what segments to mark as not pre-
sent?

In an overlaid program with no exclusive calls, is it possible that a series
of calls could end up jumping to unloaded code anyway? In the example
above, what happens if rob calls bill, which calls aaron, which calls chris,
then the routines all return? How hard would it be for the linker or overlay
manager to detect or prevent that problem?

Proj ect

Project 8-1: Add a feature to the linker to "wrap™ routines. Create a linker
switch
-W hane

that wraps the given routine. Change all references in the program to the
named routine to be references to w ap_nane. (Be sure not to miss in-
ternal references within the segment in which the name is defined.)
Change the name of the routine to r eal _nane. This lets the program-
mer write a wrapper routine called wr ap_nane that can call the original
routineas r eal _nane.

Project 8-2: Starting the linker skeleton from chapter 3, write a tool that
modifies an object file to wrap a name. That is, references to nane turn
into external references to wr ap_narme, and the existing routine is re-
named r eal _nane. Why would one want to use such a program rather
than building the feature into the linker. (Hint: consider the case where
you’re not the author or maintainer of the linker.)

Project 8-3: Add support to the linker to produce executables with posi-
tion-independent code We add a few new four-byte relocation types:

|l oc seg ref GA4

| oc seg ref GP4

loc seg ref GR4

| oc seg ref ER4

The types are:

Loading and overlays 8-225

. GA4: (GOT address) At location loc, store the distance to the GOT.

. GP4: (GOT pointer) Put a pointer to symbol ref in the GOT, and at
location loc, store the GOT-relative offset of that pointer.

. GR4: (GOT relative) Location loc contains an address in seg
ref. Replace that with the offset from the beginning of the £O
that address.

GP4, and GR4 entries. In the output file, create ER4

any data that would have to be relocate he output ere loaded at
other than its nominal address. This d Include anything marked by an
A4 or AS4 relocation entry in the in i 't forget the GOT.)

Shared libraries 9-227

Chapter 9
Shared libraries

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Program libraries date back to the earliest days of computing, since pro-
grammers quickly realized that they could save a lot of time and effort by
reusing chunks of program code. With the advent of compilers for lan-
guages like Fortran and COBOL, libraries became an integral part of pro-
gramming. Compiled languages use libraries explictly when a program
calls a standard procedure such as sqrt(), and they use libraries implicitly
for 1/0, conversions, sorting, and many other functions too complex to ex-
press as in-line code. As languages have gotten more complex, libraries
have gotten correspondingly more complex. When | wrote a Fortran 77
compiler twenty years ago, the runtime library was already more work
than the compiler itself, and a Fortran 77 library is far simpler than one for
C++.

The growth of language libraries means not only that all programs include
library code, but that most programs include a lot of the same library code.
Every C program, for example, uses the system call library, nearly all use
the standard 1/O library routines such as printf, and many use other popu-
lar libraries for math, networking, and other common functions. This
means that in a typical Unix system with a thousand compiled programs,
there’s close to a thousand copies of printf. If all those programs could
share a single copy of the library routines they use, the savings in disk
space would be substantial. (On a Unix system without shared libraries,
there’s five to ten megabytes of copies of printf alone.) Even more impor-
tant, if running programs could share a single in-memory copy of the li-
braries, the main memory savings could be very significant, both saving
memory and improving paging behavior.

All shared library schemes work essentially the same way. At link time,
the linker searches through libraries as usual to find modules that resolve
otherwise undefined external symbols. But rather than copying the con-
tents of the module into the output file, the linker makes a note of what li-
brary the module came from, and puts a list of the libraries in the ex-

ok ok ok ok % ok ok ok ok Kk

¥ O% % X X X % % ok ok ok 3k

* ok ok k%

9-228 Shared libraries

ecutable. When the program is loaded, startup code finds those libraries *
and maps them into the program’s address space before the program starts, N
Figure 1. Standard operating system file mapping semantics automatically
share pages that are mapped read-only or copy-on-write. The startup code
that does the mapping may be in the operating system, the executable
special dynamic linker mapped into the process’ address space, QL S
combination of the three.

Figure 9-1: Programwith shared libraries

Picture of executable, shared libraries

main excutable, app library, C library

files from different places

arrows show refs from main to a ainto C, a

Shared libraries 9-229

mydir/myprog e
Ishlibflibc
executable e W
program G runtime
" library
lappllib/applib
i sy
| application
library

In this chapter, we look at static linked shared libraries, that is, libraries
where program and data addresses in libraries are bound to executables at
link time. In the next chapter we look at the considerably more complex
dynamic linked libraries. Although dynamic linking is more flexible and
more "modern”, it’s also a lot slower than static linking because a great
deal of work that would otherwise have been done once at link time is re-
done each time a dynamically linked program starts. Also, dynamically
linked programs usually use extra ““glue”” code to call routines in shared li-

g

9-230 Shared libraries

braries. The glue usually contains several jumps, which can slow down
calls considerably. On systems that support both static and dynamic
shared libraries, unless programs need the extra flexibility of dynamic
linking, they’re faster and smaller with static linked libraries.

Binding time

Shared libraries raise binding time issues that don’t apply to co

ing that shared library available when the program is run.
ror occurs when the required libraries aren’t present. Th

ing.

A much more interesting problem occurs when the g¥csent, but
the library has changed since the program was linked. entionally
linked program, symbols are bound to ses and libraMpcode is bound
to the executable at link time, so the I
the one it uses regardless of subsequ
shared libraries, symbols are still bou es at link time, but li-
brary code isn’t bound to the executable n time. (With dynamic
shared libraries, they’re bo layed until runtime.)

he library.. With static

A static linked shareg very much without breaking the

3 sometimes be updated without breaking the
if the updates can be made in a way that don’t move

s each time the library changes. In practice, the solution is invari-
tiple versions, since disk space is cheap and tracking down every
ecutable that might have used a shared library is rarely possible.

Shared libraries 9-231

Shared librariesin practice

In the rest of this chapter we concentrate on the static shared libraries pro-
vided in UNIX System V Release 3.2 (COFF format), older Linux systems
(a.out format), and the BSD/OS derivative of 4.4BSD (a.out and ELF for-
mats.) All three work nearly the same, but some of the differences are in-
structive. The SVR3.2 implementation required changes in the linker to
support searching shared libraries, and extensive operating system support
to do the runtime startup required. The Linux implemention required one
small tweak to the linker and added a single system call to assist in library
mapping. The BSD/OS implementation made no changes at all to the
linker or operating system, using a shell script to provide the necessary ar-
guments to the linker and a modified version of the standard C library
startup routine to map in the libraries.

Address space management

The most difficult aspect of shared libraries is address space management.
Each shared library occupies a fixed piece of address space in each pro-
gram in which it is used. Different libraries have to use non-overlapping
addresses if they can be used in the same program. Although it’s possible
to check mechanically that libraries don’t overlap, assigning address space
to libraries is a black art. On the one hand, you want to leave some slop in
between them so if a new version of one library grows a little, it won’t
bump into the next library up. On the other hand, you’d like to put your
popular libraries as close together as possible to minimize the number of
page tables needed. (Recall that on an x86, for example, there’s a second
level table for each 4MB block of address space active in a process.)

There’s invariably a master table of shared library address space on each
system, with libraries starting some place in the address space far away
from applications. Linux’s start at hex 60000000, BSD/OS at a0000000.
Commercial vendors subdivide the address space further between vendor
supplied libraries and user and third-party libraries which start at
a0800000 in BSD/QS, for example.

Generally both the code and data addresses for each library are explicitly
defined, with the data area starting on a page boundary a page or two after
the end of the code. This makes it possible to create minor version up-

g

9-232 Shared libraries

dates, since the updates frequently don’t change the data layout, but just
add or change code.

Each individual shared library exports symbols, both code and data, and
usually also imports symbols if the library depends on other libraries.
though it would work if one just linked routines together into a shar
brary in haphazard order, real libraries use some discipline in
addresses to make it easier, or at least possible, to update a lib
changing the addresses of exported symbols. For code a
than exporting the actual address of each routine, the I|bra
table of jump mstructlons WhICh jump to all of the rg

per routine is an insignificant slowdo i Pal routine ad-
dresses are not visible, new versions
if routines in the new version aren’t
the old version.

For exported data, the situ
to add a level of indirection
turns out that exporig :

hon is more di , since there’s no easy way
r code addresses. In practice it
les of known sizes that change

or single word
system caII) ort gane (pojaers to two strings giving the name of the

orlect the exported data at the front of the data sec-

anonymous data that are part of individual routines,
that exported addresses will change from one version

rary code and data, ready to be mapped in, Figure 2.

Shared libraries 9-233

Figure 9-2: Structure of typical shared library

File header, a.out, COFF, or ELF header
(Initialization routine, not always present)
Jump table

Code

Global data

Private data

Some shared libraries start with a small bootstrap routine used to map in
the rest of the library. After that comes the jump table, aligned on a page
boundary if it’s not the first thing in the library. The exported address of
each public routine in the library is the jump table entry. Following the
jump table is the rest of the text section (the jump table is considered to be
text, since it’s executable code), then the exported data and private data.
The bss segment logically follows the data, but as in any other executable
file, isn’t actually present in the file.

Creating shared libraries

A UNIX shared library actually consists of two related files, the shared li-
brary itself and a stub library for the linker to use. A library creation utili-
ty takes as input a normal library in archive format and some files of con-
trol information and uses them to create create the two files. The stub li-
brary contains no code or data at all (other than possibly a tiny bootstrap
routine) but contains symbol definitions for programs linked with the li-
brary to use.

Creating the shared library involves these basic steps, which we discuss in
greater detail below:

. Determine at what address the library’s code and data will be load-
ed.
. Scan through the input library to find all of the exported code sym-

bols. (One of the control files may be a list of some of symbols not
to export, if they’re just used for inter-routine communication with-
in the library.)

9-234 Shared libraries

. Make up the jump table with an entry for each exported code sym-
bol.
. If there’s an initialization or loader routine at the beginning of the

library, compile or assemble that.

. Create the shared library: Run the linker and link everytiing
gether into one big executable format file.

. Create the stub library: Extract the necessary sy
newly created shared library, reconcile those symb
symbols from the input library, create a stub
brary routine, then compile or assemble
them into the stub library. In COFF librigs
initialization code placed in the stub library
executable.

Creating the jump table

e an assembler source
ble it. Each jump in-

The easiest way to create the jump
file full of jump instructions, Figure 3,
struction needs to be labelled |n a systematy
later be extracted for the st

A minor complicatigg

code, short 3 b
longer 5 byte ju

adequate. For libraries larger than that,
ry. Mixed sizes of jumps aren’t very satis-
the table addresses harder to compute and
arder to make the jump table compatible in future
The simplest solution is to make all of the jumps the
Btively, make all of the jumps short, and for routines

e end of the table to which short instructions can jump.
s usually more trouble than it’s worth, since jump tables are rarely
n a few hundred entries in the first place.)

Figure 9-3: Jump table

Shared libraries 9-235

start on a page boundary
.align 8; align on 8-byte boundary for variable |l ength insns
JUWMP_ read: jnmp _read
.align 8
JUMP wite: jnmp _wite

_read: ... code for read()

_wite: ... code for wite()

Creating the shared library

Once the jump table and, if needed, the loader routine are created, creating
the shared library is easy. Just run the linker with suitable switches to
make the code and data start at the right places, and link together the boot-
strap, the jump tables, and all of the routines from the input library. This
both assigns addresses to everything in the library and creates the shared
library file.

One minor complication involves interlibrary references. If you’re creat-
ing, say, a shared math library that uses routines from the shared C library,
the references have to be made correctly. Assuming that the library whose
routines are needed has already been built when the linker builds the new
library, it needs only to search the old library’s stub library, just like any
normal executable that refers to the old library. This will get all of the ref-
erences correct. The only remaining issue is that there needs to be some
way to ensure that any programs that use the new library also link to the
old library. Suitable design of the new stub library can ensure that.

Creating the stub library

Creating the stub library is one of the trickier parts of the shared library
process. For each routine in the real library, the stub library needs to con-
tain a corresponding entry that defines both the exported and imported
global symbols.

9-236 Shared libraries

The data global symbols are wherever the linker put them in the shared li-
brary image, and the most reasonable way to get their values is to create
the shared library with a symbol table and extract the symbols from that
symbol table. For code global symbols, the entry points are all in the jump
table, so it’s equally easy to extract the symbols from the shared libr
compute the addresses from the base address of the jump table agd €
symbol’s position in the table.

Unlike a normal library module, a module in the stub libr
code nor data, but just has symbol definitions. The symbols h
fined as absolute numbers rather than relocatable, singg

defined and undefined globals, as well as the type
global. It then writes the stub routine, usually as a ;
gram, defining each text global as the of the jumpWle entry, each
data or bss global as the actual addr
defined global as undefined. When i PNRe set of stub sources, it
assembles them all and combines them

COFF stub libraries use a
object files with two named
relocation informati st i

Ive design. They’re single
.| i b section contains all of the

I bc. a, the usual name for the C library, and the current

version is 4.0, the stub library might be
ibc_s.4.0.0.a and the shared library image
/1ibc_s.4.0.0. (The extra zero allows for minor version up-
ates.) Once the libraries are moved into the appropriate directories
ey’re ready to use.

Shared libraries 9-237

Version haming

Any shared library system needs a way to handle multiple versions of li-
braries. When a library is updated, the new version may or may not be ad-
dress-compatible and call-compatible with previous versions. Unix sys-
tems address this issue with the multi-number version names mentioned
above.

The first number changes each time a new incompatible version of the li-
brary is released. A program linked with a 4.x.x library can’t use a 3.x.x
nor a 5.x.x. The second number is the minor version. On Sun systems,
each executable requires a minor version at least as great as the one with
which the executable was linked. If it were linked with 4.2.x, for example,
it would run with a 4.3.x library but not a 4.1.x. Other systems treat the
second component as an extension of the the first component, so an ex-
ecutable linked with a 4.2.x library will only run with a 4.2.x library. The
third component is universally treated as a patch level. Executables prefer
the highest available patch level, but any patch level will do.

Different systems take slightly different approaches to finding the appro-
priate libraries at runtime. Sun systems have a fairly complex runtime
loader that looks at all of the file names in the library directory and picks
the best one. Linux systems use symbolic links to avoid the search pro-
cess. If the latest version of the libc.so library is version 4.2.2, the li-
brary’s name is |i bc_s. 4. 2.2, but the library is also linked to
i bc_s. 4. 2 so the loader need only open the shorter name and the cor-
rect version is selected.

Most systems permit shared libraries to reside in multiple directories. An
environment variable such as LD_LI BRARY_PATH can override the path
built into the executable, permitting developers to substitute library ver-
sions in their private directories for debugging or performance testing.
(Programs that use the "set user ID" feature to run as other than the current
user have to ignore LD LI BRARY_PATH to prevent a malicious user
from substituting a trojan horse library.)

9-238 Shared libraries

Linking with shared libraries

Linking with static shared libraries is far simpler than creating the li-
braries, because the process of creating the stub libraries has already done
nearly all the hard work to make the linker resolve program addresseg to
the appropriate places in the libraries. The only hard part is arrangin

there are multiple definitions, the definitions are all P
by the symbol. Each shared library s A

__SHARED LI BRARI ES _ thati address of a structure containing
the name, version, and load address@@f thed The linker creates an
array of pointers to each of those stru it SHARED LI -
BRARI ES _ so the runtrme startup code can uggft. The BSD/OS shared
library scheme uses no > Rather, the shell script
wrapper used to create a ed execytable runs down the list of li-
braries passed as ajg
library), extract i oad addresses for those libraries
from alistina tes a little assembler source file contain-
ing an array of aining library names and load address-
cludes the object file in the list of argu-

shared libraries

a program that uses shared libraries involves three steps: loading
table, mapping the libraries, and doing library-specific initializa-
jon. In each case, the program executable is loaded into memory by the

stem in the usual way. After that, the different schemes diverge. The
ystem V.3 kernel had extensions to handle COFF shared library executa-

Shared libraries 9-239

bles and the kernel internally looked at the list of libraries and mapped
them in before starting the program. The disadvantages of this scheme
were “kernel bloat”, adding more code to the nonpagable kernel, and in-
flexibility, since it didn’t permit any flexibility or upgradability in future
versions. (System V.4 scrapped the whole scheme and went to ELF dy-
namic shared libraries which we address in the next chapter.)

Linux added a single uselib() system call that took the file name and ad-
dress of a library and mapped it into the program address space. The start-
up routine bound into the executable ran down the list of libraries, doing a
uselib() on each.

The BSD/OS scheme uses the standard mmap() system call that maps
pages of a file into the address space and a bootstrap routine that is linked
into each shared library as the first thing in the library. The startup routine
in the executable runs down the table of shared libraries, and for each one
opens the file, maps the first page of the file to the load address, and then
calls the bootstrap routine which is at a fixed location near the beginning
of that page following the executable file header. The bootstrap routine
then maps the rest of the text segment, the data segment, and maps fresh
address space for the bss segment, then returns.

Once the segments are all mapped, there’s often some library-specific ini-
tialization to do, for example, putting a pointer to the system environment
strings in the global variable envi r on specified by standard C. The
COFF implementation collects the initialization code from the . i nit
segments in the program file, and runs it from the program startup code.
Depending on the library it may or may not call routines in the shared li-
brary. The Linux implemention doesn’t do any library initialization and
documents the problem that variables defined in both the program and the
library don’t work very well.

In the BSD/OS implementation, the bootstrap routine for the C library re-
ceives a pointer to the table of shared libraries and maps in all of the other
libraries, minimizing the amount of code that has to be linked into individ-
ual executables. Recent versions of BSD use ELF format executables.
The ELF header has a i nt er p section containing the name of an "inter-
preter" program to use when running the file. BSD uses the shared C li-

g

9-240 Shared libraries

brary as the interpreter, which means that the kernel maps in the shared C
library before the program starts, saving the overhead of some system
calls. The library bootstrap routine does the same initializations, maps the
rest of the libraries, and, via a pointer, calls the main routine in the pro-
gram.

The malloc hack, and other shared library problems

Although static shared libraries have excellent performanc
term maintenance is difficult and error-prone, as this anecdo

In a static library, all intra-library calls are permanentl

lem since few programs redefine standard library ro0
str crrp(), or even if they do it’s not a major proble

standard version.

But a lot of programs define thei
free(), the routines that allocate heap stora
those routines in a prograng@on’t work. T ndard st r dup() routine,
for example, returns a poin(@ato a string allocated by malloc, which the
application can free ded. If the library allocated the
string one versio g application freed that string with a
different version

s of mal | oc() and

ary uses an ugly hack, Figure 4. The system’s
pd malloc and free as indirect caIIs through pointers

tern *mal | oc_ptr) (size_t);
rn v0|d (*free_ptr)(void *);
e malloc(s) (*malloc_ptr)(s)
free(s) (*free_ptr)(s)

Shared libraries 9-241

Figure 9-4: The malloc hack

picture of program, shared C library.
malloc pointer and init code
indirect calls from library code

: shared

.F)r()s]riirtl w”litir:ir}kf-

.I '

| call call |
ﬁ’zlllncﬂ. matloc() |

' -_ !_ mhllnc{}j
“malloc() 4 L

| ERPS hy _~

~'pointer to malloe

Then they recompiled the entire C library, and added these lines (or the as-
sembler equivalent) to the . i ni t section of the stub library, so they are
included in every program that uses the shared library.

#undef mal |l oc

#undef free

mal | oc_ptr = &mal |l oc;
free_ptr = &free;

g

9-242 Shared libraries

Since the stub library is bound into the application, not the shared library,
its references to malloc and free are resolved at the time each program is
linked. If there’s a private version of malloc and free, it puts pointers to
them in the pointers, otherwise it will use the standard library version. Ei-
ther way, the library and the application use the same version of m
and free.

Although the implementation of this trick made maintenance g
harder, and doesn’t scale to more than a few hand-chosen
that intra-library calls can be made through pointers that ar
program runtime is a good one, so long as it’s autonmgad

quire fragile manual source code tweaks. We’ll fing
ed version works in the next chapter.

it with any of the shared libraries we
a status code of zero rather than the
int errno;

defines a new instance of d to the one in the shared
library. If you uncomment xt er n, ghe program works, because now
it’s an undefined glof i

unl i nk("/non-existent-file");
printf("Status was %\ n", errno);

Shared libraries 9-243

Finally, even the jump table in Unix shared libraries has been known to
cause compatibility problems. From the point of view of routines outside
a shared library, the address of each exported routine in the library is the
address of the jump table entry. But from the point of view of routines
within the library, the address of that routine may be the jump table entry,
or may be the real entry point to which the table entry jumps. There have
been cases where a library routine compared an address passed as an argu-
ment to see if it were one of the other routines in the library, in order to do
some special case processing.

An obvious but less than totally effective solution is to bind the address of
the routine to the jump table entry while building the shared library, since
that ensures that all symbolic references to routines within the library are
resolved to the table entry. But if two routines are within the same object
file, the reference in the object file is usually a relative reference to the
routine’s address in the text segment. (Since it’s in the same object file,
the routine’s address is known and other than this peculiar case, there’s no
reason to make a symbolic reference back into the same object file.) Al-
though it would be possible to scan relocatable text references for values
that match exported symbol addresses, the most practical solution to this
problem is ““don’t do that™, don’t write code that depends on recognizing
the address of a library routine.

Windows DLLs have a similar problem, since within each EXE or DLL,
the addresses of imported routines are considered to be the addresses of
the stub routines that make indirect jumps to the real address of the rou-
tine. Again, the most practical solution to the problem is ““don’t do that.”

Exercises

If you look in a /shlib directory on a Unix system with shared libraries,
you’ll usually see three or four versions of each library with names like
libc_s.2.0.1and!libc_s.3.0.0. Why not just have the most re-
cent one?

9-244 Shared libraries

In a stub library, why is it important to include all of the undefined globals
for each routine, even if the undefined global refers to another routine in
the shared library?

What difference would it make if a stub library were a single large gx-
ecutable with all of the library’s symbols as in COFF or Linux, or an
al library with separate modules?

Proj ect

We’ll extend the linker to support static shared libraries.
several subprojects, first to create the shared libraries
ectables with the shared libraries.

A shared library in our system is merely an object
given address. There can be no relocations and no u
erences, although references to other s libraries &

in the library containing the exporte
the corresponding library member b xt orjata. Each stub library

"LIBRARY NAME" con-
tains lines of text. The firs e of the corresponding shared

library, and the rest g

e of the shared library and the subsequent fields are
er shared libraries on which it depends.

whichWPe linker allocates the segments. The input is a regular library, and
tub libraries for any other shared libraries on which this one depends.

he output is an executable format shared library containing the segments
of all of the members of the input library, and a stub library with a stub

Shared libraries 9-245

member corresponding to each member of the input library.

Project 9-2: Extend the linker to create executables using static shared li-
braries. Project 9-1 already has most of the work of searching stub li-
braries symbol resolution, since the way that an executable refers to sym-
bols in a shared library is the same as the way that one shared library
refers to another. The linker needs to put the names of the required li-
braries in the output file, so that the runtime loader knows what to load.
Have the linker create a segment called . | i b that contains the names of
the shared libraries as strings with a null byte separating the strings and
two null bytes at the end. Create a symbol _SHARED LI BRARI ES that
refers to the beginning of the . | i b section to which code in the startup
routine can refer.

g

Dynamic Linking and Loading 10-247

Chapter 10
Dynamic Linking and L oading

$Revision: 2.3 $
$Date: 1999/06/15 03:30:36 $

Dynamic linking defers much of the linking process until a progr,
running. It provides a variety of benefits that are hard to get ot i

. Dynamically linked shared libraries are easier to cré
linked shared libraries.

. Dynamically linked shared libraries are easj
linked shared libraries.

. The semantics of dynamically linked shared
closer to those of unshared librari

0 those of static linking,
since a large part of the I|nk s to be redone every time a pro-

gram runs. Every dya

below.) Dynamic libraries are also larger
namic ones have to include symbol tables.

patibility, a chronic source of problems is
, mantlcs Since dynamic shared libraries are so easy
tg, UpRRte compardg® to unshared or static shared libraries, it’s easy to

ies (g are in use by existing programs, which means that the
havior 8 programs changes even though "nothing has changed".
ke is a frequent source of problems on Microsoft Windows, where pro-
se a lot of shared libraries, libraries go through a lot of versions,
ry version control is not very sophisticated. Most programs ship
ith copies of all of the libraries they use, and installers often will inad-
ertently install an older version of a shared library on top of a newer one,
reaking programs that are expecting features found in the newer one.

* %

Ok ok ok k% %

10-248 Dynamic Linking and Loading

Well-behaved applications pop up a warning before installing an older li-
brary over a newer one, but even so, programs that depend on semantics of
older libraries have been known to break when newer versions replace the
older ones.

ELF dynamic linking

Sun Microsystems’ SunOS introduced dynamic shared libraries to UNIX
in the late 1980s. UNIX System V Release 4, which Sun co-developed,
introduced the ELF object format and adapted the Sun scheme to ELF.
ELF was clearly an improvement over the previous object formats, and by
the late 1990s it had become the standard for UNIX and UNIX like sys-
tems including Linux and BSD derivatives.

Contents of an ELF file

As mentioned in Chapter 3, an ELF file can be viewed as a set of sections,
interpreted by the linker, or a set of segments, interpreted by the program
loader. ELF programs and shared libraries have the same general struc-
ture, but with different sets of segments and sections.

ELF shared libraries can be loaded at any address, so they invariably use
position independent code (PIC) so that the text pages of the file need not
be relocated and can be shared among multiple processes. As described in
Chapter 8, ELF linkers support PIC code with a Global Offset Table
(GOT) in each shared library that contains pointers to all of the static data
referenced in the program, Figure 1. The dynamic linker resolves and re-
locates all of the pointers in the GOT. This can be a performance issue but
in practice the GOT is small except in very large libraries; a commonly
used version of the standard C library has only 180 entries in the GOT for
over 350K of code.

Since the GOT is in the same loadable ELF file as the code that references
it, and the relative addresses within a file don’t change regardless of where
the program is loaded, the code can locate the GOT with a relative address,
load the address of the GOT into a register, and then load pointers from the
GOT whenever it needs to address static data. A library need not have a
GOT if it references no static data, but in practice all libraries do.

Dynamic Linking and Loading 10-249

To support dynamic linking, each ELF shared libary and each executable
that uses shared libraries has a Procedure Linkage Table (PLT). The PLT
adds a level of indirection for function calls analogous to that provided by
the GOT for data. The PLT also permits "lazy evaluation", that is, not re-
solving procedure addresses until they’re called for the first time. g
the PLT tends to have a lot more entries than the GOT (over 600 |
library mentioned above), and most of the routines will never b
any given program, that can both speed startup and save cong

overall.

Figure 10-1: PLT and GOT

picture of program with PLT

picture of library with PLT and G

program library
call oy
text \ text
PLT j
el
data Gor

data

10-250 Dynamic Linking and Loading

We discuss the details of the PLT below.

An ELF dynamically linked file contains all of the linker information that
the runtime linker will need to relocate the file and resolve any undefined
symbols. The . dynsymsection, the dynamic symbol table, contains all
of the file’s imported and exported symbols. The . dynstr and . hash
sections contain the name strings for the symbol, and a hash table the run-
time linker can use to look up symbols quickly.

The final extra piece of an ELF dynamically linked file is the DYNAM C
segment (also marked as the . dynami c section) which runtime dynamic
linker uses to find the information about the file the linker needs. It’s load-
ed as part of the data segment, but is pointed to from the ELF file header
so the runtime dynamic linker can find it. The DYNAMIC section is a list
of tagged values and pointers. Some entry types occur just in programs,
some just in libraries, some in both.

. NEEDED: the name of a library this file needs. (Always in pro-
grams, sometimes in libraries when one library is dependend on
another, can occur more than once.)

. SONAME: "shared object name", the name of the file the linker us-
es. (Libraries.)

. SYMTAB, STRTAB, HASH, SYMENT, STRSZ,: point to the
symbol table, associated string and hash tables, size of a symbol
table entry, size of string table. (Both.)

. PLTGQOT: points to the GOT, or on some architectures to the PLT
(Both.)

. REL, RELSZ, and RELENT or RELA, RELASZ, and RELAENT:
pointer to, number of, and size of relocation entries. REL entries
don’t contain addends, RELA entries do. (Both.)

. JMPREL, PLTRELSZ, and PLTREL: pointer to, size, and format
(REL or RELA) of relocation table for data referred to by the PLT.
(Both.)

Dynamic Linking and Loading 10-251

. INIT and FINI: pointer to initializer and finalizer routines to be
called at program startup and finish. (Optional but usual in both.)

. A few other obscure types not often used.
An entire ELF shared library might look like Figure 2. First ¢
the read-only parts, including the symbol table, PLT, text, and
only data, then the read-write parts including regular d
and the dynamic section. The bss logically follows t
write section, but as always isn’t present in the file.

Figure 10-2: An ELF shared library

(Lots of pointer arrows here)

read-only pages:
.hash

.dynsym

.dynstr

plt

dext

.rodata

read-writefl
.data

.go

10-252 Dynamic Linking and Loading

., header |
- | Lhash
_read-only = -dynsym
7 dynstr

- .plt

i 2
2

, Jdynamic

.hEEI |

Dynamic Linking and Loading 10-253

An ELF program looks much the same, but in the read-only segment has
init and fini routines, and an INTERP section near the front of the file to
specify the name of the dynamic linker (usually | d. so). The data
ment has no GOT, since program files aren’t relocated at runtime.

L oading a dynamically linked program

Loading a dynamically linked ELF program is a lengthy trodtror-
ward process.

Starting the dynamic linker

When the operating system runs the program, it ma pages as
normal, but notes that there’s an INTERPRETER the ex-
ecutable. The specified interpreter is the mic linker ¥ which is it-
self in ELF shared library format. er than starting the program, the
system maps the dynamic linker i
space as well and starts Id.so, passin
information needed by the linker. The vector i

If We system hasn’t mapped the program
instead be a AT_EXECFD entry that con-

artng address of the program, to which the dynam-
bs after it has finished initialization.

relocate pointers in its own data segment, and resolve code references to
e routines needed to load everything else. (The Linux ld.so names all of
e essential routines with names starting with _dt _ and special-case code

10-254 Dynamic Linking and Loading

looks for symbols that start with the string and resolves them.)

The linker then initializes a chain of symbol tables with pointers to the
program’s symbol table and the linker’s own symbol table. Conceptually,
the program file and all of the libraries loaded into a process share a single
symbol table. But rather than build a merged symbol table at runtime, the
linker keeps a linked list of the symbol tables in each file. each file con-
tains a hash table to speed symbol lookup, with a set of hash headers and a
hash chain for each header. The linker can search for a symbol quickly by
computing the symbol’s hash value once, then running through apprpriate
hash chain in each of the symbol tables in the list.

Finding thelibraries

Once the linker’s own initializations are done, it finds the names of the li-
braries required by the program. The program’s program header has a
pointer to the "dynamic" segment in the file that contains dynamic linking
information. That segment contains a pointer, DT_STRTAB, to the file’s
string table, and entries DT_NEEDED each of which contains the offset in
the string table of the name of a required library.

For each library, the linker finds the library’s ELF shared library file,
which is in itself a fairly complex process. The library name in a
DT_NEEDED entry is something like libXt.s0.6 (the Xt toolkit, version
6.) The library file might in in any of several library directories, and might
not even have the same file name. On my system, the actual name of that
library is /usr/X11R6/lib/libXt.s0.6.0, with the “.0” at the end being a mi-
nor version number.

The linker looks in these places to find the library:

. If the dynamic segment contains an entry called DT_RPATH, it’s a
colon-separated list of directories to search for libraries. This entry
is added by a command line switch or environment variable to the
regular (not dynamic) linker at the time a program is linked. It’s
mostly used for subsystems like databases that load a collection of
programs and supporting libraries into a single directory.

Dynamic Linking and Loading 10-255

. If there’s an environment symbol LD_LIBRARY_PATH, it’s treat-
ed as a colon-separated list of directories in which the linker looks
for the library. This lets a developer build a new version of a li-
brary, put it in the LD_LIBRARY_PATH and use it with existing
linked programs either to test the new library, or equally well (g
strument the behavior of the program. (It skips this step if ge
gram is set-uid, for security reasons.)

. The linker looks in the library cache file / et c/
which contains a list of library names and paths.
name is present, it uses the corresponding patjg "

path need not be exactly the same as the
tion on library versions, below.)

. If all else fails, it looks in the d Q#0, and if the

the file, and reads the ELF header to fin m header which in turn
points to the file’s segments including th ic segment. The linker
allocates space for the libr text and data segments and maps them in,
along with zeroed page

R_386_GLOB_DAT, used to initialize a GOT entry to the address
of a symbol defined in another library.

10-256 Dynamic Linking and Loading

. R_386_32, a non-GOT reference to a symbol defined in another li-
brary, generally a pointer in static data.

. R_386_RELATIVE, for relocatable data references, typically a
pointer to a string or other locally defined static data.

. R_386_JMP_SLOT, used to initialize GOT entries for the PLT, de-
scribed later.

If a library has an . i ni t section, the loader calls it to do library-specific
initializations, such as C++ static constructors, and any . f i ni section is
noted to be run at exit time. (It doesn’t do the init for the main program,
since that’s handled in the program’s own startup code.) When this pass is
done, all of the libraries are fully loaded and ready to execute, and the
loader calls the program’s entry point to start the program.

L azy procedure linkage with the PLT

Programs that use shared libraries generally contain calls to a lot of func-
tions. In a single run of the program many of the functions are never
called, in error routines or other parts of the program that aren’t used. Fur-
thermore, each shared library also contains calls to functions in other li-
braries, even fewer of which will be executed in a given program run since
many of them are in routines that the program never calls either directly or
indirectly.

To speed program startup, dynamically linked ELF programs use lazy
binding of procedure addresses. That is, the address of a procedure isn’t
bound until the first time the procedure is called.

ELF supports lazy binding via the Procedure Linkage Table, or PLT. Each
dynamically bound program and shared library has a PLT, with the PLT
containing an entry for each non-local routine called from the program or
library, Figure 3. Note that the PLT in PIC code is itself PIC, so it can be
part of the read-only text segment.

Figure 10-3: PLT structure in x86 code
Special first entry

Dynamic Linking and Loading 10-257

PLTO: pushl GOT+4
j mp * GOT+8

Regular entries, non-PIC code:
PLTn: jnp*GOT+m

push #rel oc_of f set

jmp PLTO

Regular entries, PIC code:
PLTNn: | np*GOT+m %ebx)
push #rel oc_of fset

jmp PLTO

All calls within the program or library
when the program or library is built
PLT. The first time the program or
calls the runtime linker to resolve the
that, the PLT entry jumps directly to the
call, the cost of using the
call, and nothing at a return.

articular ro are adjusted
the routine’s entry in the
routine, the PLT entry
s of the routine. After

The first entry in
dynamic linker.

values in the GO
code thaid A

e dynamic linker automatically places two
4 (the second word of the GOT) it puts a

y is initially set to point to the push instruction in the PLT
that follows the jmp. (In a PIC file this requires a loadtime reloca-
t not an expensive symbol lookup.) Following the jump is a push
n which pushes a relocation offset, the offset in the file’s reloca-
jon table of a special relocation entry of type R_386_JMP_SLOT. The

location entry’s symbol reference points to the symbol in the file’s sym-
ol table, and its address points to the GOT entry.

10-258 Dynamic Linking and Loading

This compact but rather baroque arragement means that the first time the
program or library calls a PLT entry, the first jump in the PLT entry in ef-
fect does nothing, since the GOT entry through which it jumps points back
into the PLT entry. Then the push instruction pushes the offset value
which indirectly identifies both the symbol to resolve and the GOT entry
into which to resolve it, and jumps to PLTO. The instructions in PLTO
push another code that identifies which program or library it is, and then
jumps into stub code in the dynamic linker with the two identifying codes
at the top of the stack. Note that this was a jump, rather than a call, above
the two identifying words just pushed is the return address back to the rou-
tine that called into the PLT.

Now the stub code saves all the registers and calls an internal routine in
the dynamic linker to do the resolution. the two identifying words suffice
to find the library’s symbol table and the routine’s entry in that symbol
table. The dynamic linker looks up the symbol value using the concatenat-
ed runtime symbol table, and stores the routine’s address into the GOT en-
try. Then the stub code restores the registers, pops the two words that the
PLT pushed, and jumps off to the routine. The GOT entry having been up-
dated, subsequent calls to that PLT entry jump directly to the routine itself
without entering the dynamic linker.

Other peculiarities of dynamic linking

The ELF linker and dynamic linker have a lot of obscure code to handle
special cases and try and keep the runtime semantics as similar as possible
to whose of unshared libraries.

Static initializations

If a program has an external reference to a global variable defined in a
shared library, the linker has to create in the program a copy of the vari-
able, since program data addresses have to be bound at link time, Figure 4.
This poses no problem for the code in the shared library, since the code
can refer to the variable via a GOT pointer which the dynamic linker can
fix up, but there is a problem if the library initializes the variable. To deal
with this problem, the linker puts an entry in the program’s relocation
table (which otherwise just contains R 386_JMP_SLOT,
R 386_GLOB _DAT, R 386_32, and R _386_RELATI VE entries) of

Dynamic Linking and Loading 10-259

type R_386_COPY that points to the place in the program where the copy
of the variable is defined, and tells the dynamic linker to copy the initial
value of that word of data from the shared library.

Figure 10-4: Global data initialization
Main program:

extern int token;

Routine in shared library:
i nt token = 42;

Although this feature is essential for
rarely in practice. This is a band-ai
data. The initializers that do occur a
other data, so the band-aid suffices.

s of code, it occurs very
works for single word
nters to procedures or

Library versions

Dynamic libraries
numbers, like | i
jor version numb

with major and minor versions
ut wPograms should be bound only to ma-
so0. 1 since minor versions are supposed

casonably fast, the system manager maintains a
the full pathname most recent version of each library,
a configuration program whenever a new library is in-

library called |ibc.so.1.1 would have a SONAME of
i bc. so. 1. (The SONAME defaults to the library’s name.) When the
nker builds a program that uses shared libraries, it lists the SONAMEs of
he libraries it used rather than the actual names of the libraries. The

10-260 Dynamic Linking and Loading

cache creation program scans all of the directories that contain shared li-
braries, finds all of the shared libraries, extracts the SONAME from each
one, and where there are multiple libraries with the same SONAME, dis-
cards all but the highest version number. Then it writes the cache file with
SONAMEs and full pathnames so at runtime the dynamic linker can
quickly find the current version of each library.

Dynamic loading at runtime

Although the ELF dynamic linker is usually called implcitly at program
load time and from PLT entries, programs can also call it explicitly using
dl open() to load a shared library and dl syn{') to find the address of a
symbol, usually a procedure to call. Those two routines are actually sim-
ple wrappers that call back into the dynamic linker. When the dynamic
linker loads a library via dl open(), it does the same relocation and sym-
bol resolution it does on any other library, so the dynamically loaded pro-
gram can without any special arrangements call back to routines already
loaded and refer to global data in the running program.

This permits users to add extra functionality to programs without access to
the source code of the programs and without even having to stop and
restart the programs (useful when the program is something like a
database or a web server.) Mainframe operating systems have provided
access to "exit routines" like this since at least the early 1960s, albeit with-
out such a convenient interface, and it’s long been a way to add great flexi-
bility to packaged applications. It also provides a way for programs to ex-
tend themselves; there’s no reason a program couldn’t write a routine in C
or C++, run the compiler and linker to create a shared library, then dynam-
ically load and run the new code. (Mainframe sort programs have linked
and loaded custom inner loop code for each sort job for decades.)

Microsoft Dynamic Link Libraries

Microsoft Windows also provides shared libraries, called dynamic-link li-
braries or DLLs in a fashion similar to but somewhat simpler than ELF
shared libraries. The design of DLLs changed substantially between the
16 bit Windows 3.1 and the 32 bit Windows NT and 95. This discussion
addresses only the more modern Win32 libraries. DLLs import procedure
addresses using a PLT-like scheme. Although the design of DLLs would

Dynamic Linking and Loading 10-261

make it possible to import data addresses using a GOT-like scheme, in
practice they use a simpler scheme that requires explicit program code to
dereference imported pointers to shared data.

each application its own address space and executables and 4
mapped into each address space where they are used. For
this doesn’t make any practical difference, but for data it me
application using a DLL gets its own copy of the D
slight oversimplification, since PE files can mark g

data with a single copy shared among all applica file, but
most data is unshared.)
Loading a Windows executable and DL similar to g a dynami-

cally linked ELF program, althoughdlf the Windows case the dynamic
linker is part of the kernel. First t in the executable file,
guided by section info in the PE hea aps in all of the DLLs
that the executable refers to, again guided by t headers in each DLL.

PE files can contain relo
contain them and so t the address for which it was
entries, and are relocated when
s sgace for which they were linked isn’t

e relocation rebasing.)

PE supports shared libraries with two special sections of the file, . edat a,
r exported data, that lists the symbols exported from a file, and . i dat a,
at lists the symbols imported into a file. Program files generally have

10-262 Dynamic Linking and Loading

only an . i dat a section, while DLLs always have an . edat a and may
have a . i dat a if they use other DLLs. Symbols can be exported either
by symbol name, or by "ordinal”, a small integer that gives the index of
the symbol in the export address table. Linking by ordinals is slightly
more efficient since it avoids a symbol lookup, but considerably more er-
ror prone since it’s up to the person who builds a DLL to ensure that ordi-
nals stay the same from one library version to another. In practice ordinals
are usually used to call system services that rarely change, and names for
everything else.

The . edat a section contains an export directory table that describes the
rest of the section, followed by the tables that define the exported symbols,
Figure 5.

Figure 10-5: Structure of .edata section

export directory pointing to:
export address table

ordinal table

name pointer table

name strings

Dynamic Linking and Loading 10-263

parts of .edata section
* - exploded view

|

directory |
address e
= (of export bol
- ordinal s name poifed table
table ame‘strings)

hame table -

strings

export address table contains the RVA (relative virtual address, rela-

tiv he base of the PE file) of the symbol. If the RVA points back into
the . t a section, it’s a "forwarder" reference, and the value pointed to
ks a string naming the symbol to use to satisfy the reference, probably de-
ned in a different DLL. The ordinal and name pointer tables are parallel,
ith each entry in the name pointer table being the RVA of the name string

10-264 Dynamic Linking and Loading

for the symbol, and the ordinal being the index in the export address table.
(Ordinals need not be zero-based; the ordinal base to subtract from ordinal
values to get the index in the export address table is stored in the export di-
rectory and is most often 1.) Exported symbols need not all have names,
although in practice they always do. The symbols in the name pointer
table are in alphabetical order to permit the loader to use a binary search.

The . i dat a section does the converse of what the . edat a section does,
by mapping symbols or ordinals back into virtual addresses. The section
consists of a null-terminated array of import directory tables, one per DLL
from which symbols are imported, followed by an import lookup table per
DLL, followed by a name table with hints, Figure 6.

Figure 10-6: Structure of .idata section

array of import directory tables, with lotsa arrows

each has import lookup table RVA, time/date stamp, for-
warder chain (unused?), DLL name, import address RVA
table

NULL

import table, entries with high bit flag (table per DLL)
hint/name table

o~

Dynamic Linking and Loading 10-265

import directory
table _ lookup table address tables
e for'first DLL (in fext segment)
lookup table

, forsecond D

rt address table. The lookup table consists of 32 bit entries. If the
igh bit of an entry is set, the low 31 bits are the ordinal of the symbol to
port, otherwise the entry is the RVA of an entry in the hint/name table.
Each hint/name entry consists of a four-byte hint that guesses the index of

10-266 Dynamic Linking and Loading

the symbol in the DLL’s export name pointer table, followed by the null
terminated symbol name. The program loader uses the hint to probe the
export table, and if the symbol name matches, it uses that symbol, other-
wise it binary searches the entire export table for the name. (If the DLL
hasn’t changed, or at least its list of exported symbols hasn’t changed,
since the program that uses the DLL was linked, the guess will be right.)

Unlike ELF imported symbols, the values of symbols imported via . i da-
t a are only placed in the import address table, not fixed up anywhere else
in the importing file. For code addresses, this makes little difference.
When the linker builds an executable or DLL, it creates in the text section
a table of misnamed "thunks", indirect jumps through the entries in the im-
port address table, and uses the addresses of the thunks as the address of
the imported routine, which is transparent to the programmer. (The thunks
as well as most of the data in the . i dat a section actually come from a
stub library created at the same time as the DLL.) In recent versions of
Microsoft’s C and C++ compiler, if the programmer knows that a routine
will be called in a DLL, the routine can be declared "dllimport”, and the
compiler will emit an indirect call to the address table entry, avoiding the
extra indirect jJump. For data addresses, the situation is more problemati-
cal, since it’s harder to hide the extra level of indirection required to ad-
dress a symbol in another executable. Traditionally, programmers just bit
the bullet and explicitly declared imported variables to be pointers to the
real values and explicitly dereferencd the pointers. Recent versions of Mi-
crosoft’s C and C++ compiler also let the programmer declare global data
to be "dllimport" and the compiler will emit the extra pointer deferences,
much like ELF code that references data indirectly via pointers in the
GOT.

Lazy binding

Recent versions of Windows compilers have added delay loaded imports
to permit lazy symbol binding for procedures, somewhat like the ELF PLT.
A delay-loaded DLL has a structure similar to the . i dat a import direc-
tory table, but not in the .idata section so the program loader doesn’t han-
dle it automatically. The entries in the import address table initially all
point to a helper routine that finds and loads the DLL and replaces the con-
tents of the address table with the actual addresses. The delay-loaded di-

Dynamic Linking and Loading 10-267

rectory table has a place to store the original contents of the import ad-
dress table so the values can be put back if the DLL is later unloaded. Mi-
crosoft provides a standard helper routine, but its interfaces are document-
ed and programmers can write their own versions if need be.

Windows also permits programs to load and unload DLLs explicitly
LoadLi brary and FreeLi brary, and to find addresses of ggmb
using Get Pr ocAddr ess.

DLLsand threads

One area in which the Windows DLL model does

thead is using. The TLS needs "slots"
from each DLL that uses TLS. The
tion in a PE executable, that defines

ing the .tls section as a tem

The problem is that ”

time system calls that allocate slots at the end of the
ke calls rather than .tls unless the DLL is known only

he ill-fated UNIX variant from the Open Software Foundation,
sed a shared library scheme intermediate between static and dynamic
nking. Its authors noted that static linking is a lot faster than dynamic
since less relocation is needed, and that libraries are updated infrequently

10-268 Dynamic Linking and Loading

enough that system managers are willing to endure some pain when they
update shared libraries, although not the agony of relinking every ex-
ecutable program in the entire system.

So OSF/1 took the approach of maintaining a global symbol table visible
to all processes, and loaded all the shared libraries into a sharable address
space at system boot time. This assigned all of the libraries addresses that
wouldn’t change while the system was running. Each time a program
started, if it used shared libraries, it would map in the shared libraries and
symbol table and resolve undefined references in the executable using the
global symbol table. No load-time relocation was ever required since pro-
grams were all linked to load in a part of the address space that was guar-
anteed to be available in each process, and the library relocation had al-
ready happened when they were loaded at boot time.

When one of the shared libraries changed, the system just had to be re-
booted normally, at which point the system loaded the new libraries and
created a new symbol table for executables to use.

This scheme was clever, but it wasn’t very satisfactory. For one thing, pro-
cessing symbol lookups is considerably slower than processing relocation
entries, so avoiding relocation wasn’t that much of a performance advan-
tage. For another, dynamic linking provides the ability to load and run a
library at runtime, and the OSF/1 scheme didn’t provide for that.

Making shared librariesfast

Shared libraries, and ELF shared libraries in particular, can be very slow.
The slowdowns come from a variety of sources, several of which we men-
tioned in Chapter 8:

. Load-time relocation of libraries

. Load-time symbol resolution in libraries and executables
. Overhead due to PIC function prolog code

. Overhead due to PIC indirect data references

. Slower code due to PIC reserved addressing registers

The first two problems can be ameliorated by caching, the latter

*

Dynamic Linking and Loading 10-269

two by retreating from pure PIC code.

On modern computers with large address spaces, it’s usually possible to
choose an address range for a shared library that’s available in all or at
least most of the processes that use the library. One very effective tegh-
nique is similar to the Windows approach. Either when the libra

a chunk of address space. After that, each time a program li
brary, use the same addresses of possible, which means tha:
will be necessary. If that address space isn’t available in a
the library is relocated as before.

If a system uses pre-relocated libraries,
All the processes that load a library at its
the library’s code whether
chosen address can in pra
mance loss of Pl
from Chapter 9,
the program faili
performange I

ble as PIC without the perfor-
e static linked library approach
address space collisions, rather than
linker moves the libraries at some loss of
s approach.

ned relocated libraries with great thoroughness, in-
orrect semantics when libaries change. When a new
is installed BeOS notes the fact and creates a new

moved. This does make the programmer’s life easier, but it’s not clear to
e that libraries are in practice updated often enough to merit the consid-
rable amount of system code needed to track library updates.

10-270 Dynamic Linking and Loading

Comparison of dynamic linking approaches

The Unix/ELF and Windows/PE dynamic linking differ in several interest-
ing ways.

The ELF scheme uses a single name space per program, while the PE
scheme uses a name space per library. An ELF executable lists the sym-
bols it needs and the libraries it needs, but it doesn’t record which symbol
is in which library. A PE file, on the other hand, lists the symbols to im-
port from each library. The PE scheme is less flexible but also more resis-
tant to inadvertent spoofing. Imagine that an executable calls routine
AFUNC which is found in library A and BFUNC which is found in library
B. If a new version of library A happens to define its own BFUNC, an
ELF program could use the new BFUNC in preference to the old one,
while a PE program wouldn’t. This is a problem with some large libraries;
one partial solution is to use the poorly documented DT_FILTER and
DT_AUXILIARY fields to tell the dynamic linker what libraries this one
imports symbols from, so the linker will search those libraries for import-
ed symbols before searching the executable and the rest of the libraries.
The DT_SYMBOLIC field tells the dynamic linker to search the library’s
own symbol table first, so that other libraries cannot shadow intra-library
references. (This isn’t always desirable; consider the malloc hack de-
scribed in the previous chapter.) These ad-hoc approaches make it less
likely that symbols in unrelated libraries will inadvertently shadow the
correct symbols, but they’re no substitude for a hierarchical link-time
name space as we’ll see in Chapter 11 that Java has.

The ELF scheme tries considerably harder than the PE scheme to maintain
the semantics of static linked programs. In an ELF program, references to
data imported from another library are automatically resolved, while a PE
program needs to treat imported data specially. The PE scheme has trou-
ble comparing the values of pointers to functions, since the address of an
imported function is the address of the "thunk" that calls it, not the address
of the actual function in the other library. ELF handles all pointers the
same.

At run-time, nearly all of the Windows dynamic linker is in the operating
system, while the ELF dynamic linker runs entirely as part of the applica-

g

Dynamic Linking and Loading 10-271

tion, with the kernel merely mapping in the initial files. The Windows
scheme is arguably faster, since it doesn’t have to map and relocate the dy-
namic linker in each process before it starts linking. The ELF scheme is
definitely a lot more flexible. Since each executable names the “inter-
preter" program (now always the dynamic linker named 1d.so) to use &}
ferent executables could use different interpreters without requring gny
erating system changes. In practice, this makes it easier to s
ecutables from variant versions of Unix, notably Linux and
ing a dynamic linker that links to compatibility libraries tha
native executables.

Exercises

In ELF shared libraries, libraries are often linked rom one
routine to another within a single shared library go c PLT and
have their addresses bound at runtime. Igdids useful? why not?

Imagine that a program calls a librar
shared library, and the programmer
that uses that library. Later, the syste
silly name for a routine and installs a new
the routine xsazq instea
grammer runs the program?

5 all of the
e situtatio

namic loader bi
would happen in

rogram’s PLT entries at load time. What
n the previous problem if LD_BlI ND_NOW

some extra cleverness in the linker and using the ex-
e operating system. How hard would it be to provide

’s impractical to build an entire dynamic linking system for our project
nker, since much of the work of dynamic linking happens at runtime, not
ink time. Much of the work of building a shared library was already done

10-272 Dynamic Linking and Loading

in the project 8-3 that created PIC executables. A dynamically linked
shared library is just a PIC executable with a well-defined list of imported
and exported symbols and a list of other libraries on which it depends. To
mark the file as a shared library or an executable that uses shared libraries,
the first line is:

LINKLIB libl lib2 ...

or

LINK Iibl lib2 ...

where the lib’s are the names of other shared libraries on which this one
depends.

Project 10-1: Starting with the version of the linker from project 8-3, ex-
tend the linker to produce shared libraries and executables that need shared
libraries. The linker needs to take as its input a list of input files to com-
bine into the output executable or library, as well as other shared libraries
to search. The output file contains a symbol table with defined (exported)
and undefined (imported) symbols. Relocation types are the ones for PIC
files along with AS4 and RS4 for references to imported symbols.

Project 10-2: Write a run-time binder, that is, a program that takes an ex-
ecutable that uses shared libraries and resolves its references. It should
read in the executable, then read in the necessary libraries, relocating them
to non-overlapping available addresses, and creating a logically merged
symbol table. (You may want to actually create such a table, or use a list
of per-file tables as ELF does.) Then resolve all of the relocations and ex-
ternal references. When you’re done, all code and data should be assigned
memory addresses, and all addresses in the code and data should be re-
solved and relocated to the assigned addresses.

g

Advanced techniques 11-273

Chapter 11
Advanced techniques

$Revision: 2.1 $
$Date: 1999/06/04 20:30:28 $

This chapter describes a grab-bag of miscellaneous linker techni
don’t fit very well anywhere else.

Techniquesfor C++

C++ presents three significant challenges to the linke
cated naming rules, in which multiple functions ca
they have different argument types. Name man§
enough that all linkers use it in some form or anothel

The second is global initializers and de tors, routin®Qi#ft need to be

quires that the linker collect the piecqlof inid and destructor code, or
at least pointers to them, into one pl rtup and exit code can
run it all.

The third, and by far the complex issue involves templates and "ex
tern inline™ procedures efines an infinite family of pro-
ng the template specialized by a
type. For examp
ily members beirg@ a hash tab of mtegers of floating point numbers of

¢ compiled program needs to contaln all of the
My that are actually used in the program, but shouldn’t
tafg@any otherslIf the C++ compiler takes the traditional approach of
i ¥ file separately, it can’t tell when it compiles a file that
es temp Yl ether some of the template family members are used in
source files. If the compiler takes a conservative approach and gen-
ode for each family member used in each file, it will usually end
up wi® multiple copies of each family member, wasting space. If it
oesn’t generate that code, it risks having no copy at all of a required fam-
y member.

11-274 Advanced techniques

Inline functions present a similar problem. Normally, inline functions are
expanded like macros, but in some cases the compiler generates a conven-
tional out-of-line version of the function. If several different files use a
single header file that contains an inline function and some of them require
an out-of-line version, the same problem of code duplication arises.

Some compilers have used approaches that change the source language to
help produce object code that can be linked by *“dumb” linkers. Many re-
cent C++ systems have addressed the problem head-on, either by making
the linker smarter, or by integrating the linker with other parts of the pro-
gram development system. We look briefly at these latter approaches.

Trial linking

In systems stuck with simple-minded linkers, C++ systems have used a va-
riety of tricks to get C++ programs linked. An approach pioneered by the
original cfront implementation is to do a trial link which will generally
fail, then have the compiler driver (the program that runs the various
pieces of the compiler, assembler, and linker) extract information from the
result of that link to finish the compiling and relink, Figure 1.

Figure 11-1: Trial linking

input files pass through linker to trial output plus errors,
then inputs plus info from errors plus maybe more generat-
ed objects pass through linker to final object

o~

Advanced techniques 11-275

| source

: object files
files | “OMPUeT T Without femplates.
error. -/ linker-
\ messages
| & e -
.~ compiler.
7 template:
. exXpansion
executable
with |
templates

anonymous, but the compiler gives them distinctive names. For
examp , the GNU C++ compiler creates routines named _G.OB-
L .1. 4junkand G.OBAL_.D. _4junk todo initialization and
estructlon of variables in a class called j unk. After the trial link, the
linker driver examines the symbol table of the output file and makes lists

11-276 Advanced techniques

of the global initializer and destructor routines, writes a small source file
with those lists in arrays (in either C or assembler). Then in the relink the
C++ startup and exit code uses the contents of the arrays to call all of the
appropriate routines. This is essentially the same thing that C++-aware
linkers do, just implemented outside the linker.

For templates and extern inlines, the compiler initially doesn’t generate
any code for them at all. The trial link has undefined symbols for all of
the templates and extern inlines actually used in the program, which the
compiler driver can use to re-run the compiler and generate code for them,
then re-link.

One minor issue is to find the source code for the missing templates, since
it can be lurking in any of a potentially very large number of source files.
Cfront used a simple ad-hoc technique, scanning the header files, and
guessing that a template declared in f 0o. h is defined in f 00. cc. Re-
cent versions of GCC use a ““repository” that notes the locations of tem-
plate definitions in small files created during the compilation process. Af-
ter the trial link, the compiler driver needs only scan those small files to
find the source to the templates.

Duplicate code elimination

The trial linking approach generates as little code as possible, then goes
back after the trial link to generate any required code that was left out the
first time. The converse approach is to generate all possible code, then
have the linker throw away the duplicates, Figure 2. The compiler gener-
ates all of the expanded templates and all of the extern inlines in each file
that uses them. Each possibly redundant chunk of code is put in its own
segment with a name that uniquely identifies what it is. For example,
GCC puts each chunk in an ELF or COFF section called
.gnu. |l i nkonce. d. mangl ednanme where mangled name is the
“mangled” version of the function name with the type information added.
Some formats identify possibly redundant sections solely by name, while
Microsoft’s COFF uses COMDAT sections with explicit type flags to iden-
tify possibly redundant code sections. If there are multiple copies of a sec-
tion with the same name, the linker discards all but one of them at link
time.

o~

| source

Advanced techniques 11-277

Figure 11-2: Duplicate elimination

Input files with redundant sections pass into the linker
which collapses them into a single result (sub)section

/| compiler

files

N S

object’3 |

templates B, D

dhplicate ‘A and B removed'

11-278 Advanced techniques

This approach does a good job of producing executables with one copy of
each routine, at the cost of very large object files with many copies of tem-
plates. It also offers at least the possibility of smaller final code than the
other approaches. In many cases, code generated when a template is ex-
panded for different types is identical. For example, a template that imple-
mented a bounds-checked array of <TYPE> would generally expand to
identical code for all pointer types, since in C++ pointers all have the same
representation. A linker that’s already deleting redundant sections could
check for sections with identical contents and collapse multiple identical
sections to one. Some Windows linkers do this.

Database approaches

The GCC respository is a simple version of a database. In the longer run,
tool vendors are moving toward database storage of source and object
code, such as the Montana environment in IBM’s Visual Age C++. The
database tracks the location of each declaration and definition, which
makes it possible after a source change to figure out what the individual
routine dependencies are and recompile and relink just what has changed.

Incremental linking and relinking

For a long time, some linkers have permitted incremental linking and re-
linking. Unix linkers provide a - r flag that tells the linker to keep the
symbol and relocation information in the output file, so the output can be
used as the input to a subsequent link.

IBM mainframes have always had a *““linkage editor,” rather than a linker.
In the IBM object format, the segments in each input file (IBM calls the
segments control sections or CSECTS) retain their individual identities in
the output file. One can re-edit a linked program and replace or delete
control sections. This feature was widely used in the 1960s and early
1970s when compiling and linking were slow enough that it was worth the
manual effort needed to arrange to relink a program, replacing just the
CSECTS that had been recompiled. The replacement CSECTs need not
be the same size as the originals; the linker adjusts all of the relocation in-
formation in the output file as needed to account for the different locations
of CSECTs than have moved.

Advanced techniques 11-279

In the mid to late 1980s, Quong and Linton at Stanford did experiments
with incremental linking in a UNIX linker, to try and speed up the com-
pile-link-debug cycle. The first time their linker runs, it links a conven-
tional statically linked executable, then stays active in the background as a
daemon with the program’s symbol table remaing in memory. On s
gent links, it only treats the input files that have changed, replaci

fixing up references to symbols that have moved. Since se
the recompiled files usually don’t change very much from
next, they build the initial version of the output file with 3

the slop amount, the changed files’ segments repla
in the output file. If they have grown past the end O
linker moves the subsequent segments |
space. If more than a small number 4 segments need to be moved, the
linker gives up and relinks from scra

picture of 4
ments, an
ones

with slop between seg-
ents pointing to replace old

11-280 Advanced techniques

incrementally
by LE Lan d?r'lmked i1a bepot A :?kl{pda.tEd
S sohlots o T XOEEON
WA | ﬁ‘\a Hi

I Brelinked in
| place/replaces
. old B-and‘part~

P

e s | kb 5

The authors did considerable instrumentation to collect data on the number
of files compiled between linker runs in typical development activities and
the change in segment sizes. They found that typically only one or two
files change, and the segments grow only by a few bytes if at all. By
putting 100 bytes of slop between segments, they avoided almost all re-
linking. They also found that creating the output file’s symbol table,
which is essential for debugging, was as much work as creating the seg-
ments, and used similar techniques to update the symbol table incremen-
tally. Their performance results were quite dramatic, with links that took
20 or 30 seconds to do conventionally dropping to half a second for an in-

Advanced techniques 11-281

cremental link. The primary drawback of their scheme was that the linker
used about eight megabytes to keep all of the symbols and other informa-
tion about the output file, which at the time was a lot of memory (worksta-
tions rarely had more than 16MB.)

Some modern systems do incremental linking in much the same wa

circumstances move an updated moduls from one part of th
another, putting in some glue code at the old address.

Link time gar bage collection

the program. Several linkers offer an
code from object files.

what symbols each proce-
references at all is unused and

dure references. Any proc
can safely be discaig

should recompute the procedure just discarded might
have had the onl ome other procedure which can in turn be
discarded.

Plo do link-time garbage collection is IBM’s
object files put each procedure in a separate sectlon

' mreferenced procedures are discarded, although the pro-
mer can use linker switches to tell it not to garbage collect at all, or to
specific files or sections from collection.

Several Windows linkers, including Codewarrior, the Watcom linker, and
nker in recent versions of Microsoft’s Visual C++ can also garbage col-
ect. A optional compiler switch creates objects with "packaged” func-

11-282 Advanced techniques

tions, each procedure in a separate section of the object file. The linker
looks for sections with no references and deletes them. In most cases, the
linker looks at the same time for multiple procedures with identical con-
tents (usually from template expansions, mentioned above) and collapses
them as well.

An alternative to a garbage collecting linker is more extensive use of li-
braries. A programmer can turn each of the object files linked into a pro-
gram into a library with one procedure per library member, then link from
those libraries so the linker pulls in procedures as needed, but skips the
ones with no references. The hardest part is to make each procedure a
separate object file. It typically requires some fairly messy preprocessing
of the source code to break multi-procedure source files into several small
single procedure files, replicating the the data declarations and "include”
lines for header files in each one, and renaming internal procedures to pre-
vent name collisions. The result is a minimum size executable, at the cost
of considerably slower compiling and linking. This is a very old trick; the
DEC TOPS-10 assembler in the late 1960s could be directed to generate
an object file with multiple independent sections that the linker would treat
as a searchable library.

Link time optimization

On most systems, the linker is the only program in the software building
process that sees all of the pieces of a program that it is building at the
same time. That means that it has opportunities to do global optimization
that no other component can do, particularly if the program combines
modules written in different languages and compiled with different com-
pilers. For example, in a language with class inheritance, calls to class
methods generally use indirect calls since a method may be overridden in
a subclass. But if there aren’t any subclasses, or there are subclasses but
none of them override a particular method, the calls can be direct. A link-
er could make special case optimizations like this to avoid some of the in-
efficiencies otherwise inherent in object oriented languages. Fernandez at
Princeton wrote an optimizing linker for Modula-3 that was able to turn
79% of indirect method calls into direct calls as well as reducing instruc-
tions executed by over 10%.

Advanced techniques 11-283

A more aggressive approach is to perform standard global optimizations
on an entire program at link time. Srivastava and Wall wrote an optimiz-
ing linker that decompiled RISC architecture object code into an interme-
diate form, applied high-level optimizations such as inlining and low-level
optimizations such as substituting a faster but more limited instructio
a slower and more general one, then regenerated the object code.
larly on 64 bit architectures, the speedups from these optimizati

dress any static or global data, or any procedure, is to lo
pointer to the item from a pointer pool in memory into

located close enough to each other that they can all
to the same pointer, and rewrites object ¢
from the global pool. It also looks fogrocedure calls that are within the
32 bit address range of the branch-to i
that for a load and indirect call. It

ultiple references. Using
timizatigns, OM achieves significant im-
W any as 11% of all instructions in

these and some other standa
provements in exec

The Tera comput
mization tQ

ong modules and generates all of the object code. It
procedures, both within a single module and among
e code generator handles the entire program at once. To
reasonable compilation performance, the system uses incremental
tion and linking. On a recompile, the linker starts with the previ-
ion of the executable, rewrites the code for the source files that
ave changed (which, due to the optimization and in-lining, may be in

de generated from files that haven’t changed) and creates a new, updat-
ed, executable. Few of the compilation or linking techniques in the Tera

11-284 Advanced techniques

system are new, but to date it’s unique in its combination of so many ag-
gressive optimization techniques in a single system.

Other linkers have done other architecture-specific optimizations. The
Multiflow VLIW machine had a very large number of registers, and regis-
ter saves and restores could be a major bottleneck. An experimental tool
used profile data to figure out what routines frequently called what other
routines. It modified the registers used in the code to minimize the over-
lapping registers used by both a calling routine and its callee, thereby min-
imizing the number of saves and restores.

Link time code generation

Many linkers generate small amounts of the output object code, for exam-
ple the jump entries in the PLT in Unix ELF files. But some experimental
linkers do far more code generation than that.

The Srivastava and Wall optimizing linker starts by decompiling object
files back into intermediate code. In most cases, if the linker wants inter-
mediate code, it’d be just as easy for compilers to skip the code generation
step, create object files of intermediate code, and let the linker do the code
generation. That’s actually what the Fernandez optimizer described above
did. The linker can take all the intermediate code, do a big optimization
pass over it, then generate the object code for the output file.

There’s a couple of reasons that production linkers rarely do code genera-
tion from intermediate code. One is that intermediate languages tend to be
related to the compiler’s source language. While it’s not too hard to devise
an intermediate language that can handle several Fortran-like languages
including C and C++, it’s considerably harder to devise one that can han-
dle those and also handle less similar languages such as Cobol and Lisp.
Linkers are generally expected to link object code from any compiler or
assembler, making language-specific intermediates problematical.

Link-time profiling and instrumentation

Several groups have written link-time profiling and optimization tools.
Romer et al. at the University of Washington wrote Etch, an instrumenta-
tion tool for Windows x86 executables. It analyzes ECOFF executables to
find all of the executable code (which is typically intermixed with data) in

Advanced techniques 11-285

the main executable as well as in DLL libraries it calls. It has been used to
build a call graph profiler and an instruction scheduler. The lack of struc-
ture in ECOFF executables and the complexity of the x86 instruction en-
coding were the major challenges to creating Etch.

Cohn et al. at DEC wrote Spike, a Windows optimization tool for
NT executables. It performed both instrumentation, to add profil
to executables and DLLs, as well as optimization, using the pr,
improve register allocation and to reorganize executables to §
locality.

Link time assembler

output file. Minix, a small Unix-like
Linux did that.

limination, rearrangement, and some
weII as gtandard assembler optimization

kinds of strength reductlon
g instruction that has enough bits

such as choosmg th

ce assembly can be very fast, particularly
ol a tokenized assembler rather than full as-
Bers, as in most othter compilers, the initial to-
slowest part of the entire process.)

eration

er Power PC Macs. A slim binary is actually a compactly encod-
d version of an abstract parse for a program module. The program loader
ads and expands the slim binary and generates the object code for the
module in memory, which is then executable. The inventors of slim bina-

11-286 Advanced techniques

ries make the plausible claim that modern CPUs are so much faster than
disks that program loading time is dominated by disk /O, and even with
the code generation step, slim binaries are about as fast to load because as
standard binaries because their disk files are small.

Slim binaries were originally created to support Oberon, a strongly typed
Pascal-like language, on the Macintosh and later Windows for the x86, and
they apparently work quite well on those platforms. The authors also ex-
pect that slim binaries will work equally well with other source languages
and other architectures. This is a much less credible claim; Oberon pro-
grams tend to be very portable due to the strong typing and the consistent
runtime environment, and the three target machines are quite similar with
identical data and pointer formats except for byte order on the x86. A
long series of "universal intermediate language™ projects dating back to the
UNCOL project in the 1950s have failed after promising results with a
small number of source and target languages, and there’s no reason to
think that slim binaries wouldn’t meet the same result. But as a distribu-
tion format for a set of similar target environments, e.g. Macs with 68K or
PPC, or Windows with x86, Alpha, or MIPS, it should work well.

The IBM System/38 and AS/400 have used a similar technique for many
years to provide binary program compatibility among machines with dif-
ferent hardware architectures. The defined machine language for the S/38
and AS/400 is a virtual architecture with a very large single level address
space, never actually implemented in hardware. When a S/38 or AS/400
binary program is loaded, the loader translates the virtual code into the ac-
tual machine code for whatever processor the machine on which it is run-
ning contains. The translated code is cached to speed loading on subse-
quent runs of the program. This has allowed IBM to evolve the S/38 and
then AS/400 line from a midrange system with multi-board CPUs to a
deskside system using a power PC CPU, maintaining binary compatibility
throughout. The virtual architecture is very tightly specified and the trans-
lations very complete, so programers can debug their program at the virtu-
al architecture level without reference to the physical CPU. This scheme
probably wouldn’t have worked without a single vendor’s complete con-
trol over the virtual architecture and all of the models of the computers on
which it runs, but it’s a very effective way to get a lot of performance out

Advanced techniques 11-287

of modestly priced hardware.
The Java linking model

The Java programming language has a sophisticated and interesting load-
ing and linking model. The Java source language is a strongly type
Ject orlented language W|th a syntax 5|m|Iar to C++ What makes 4 i

tual machine that executes programs in that binary format,
system that permits a Java program to add code to itself on t

Java organizes a program into classes, with each clasgg

some other class, with all classes bein dants from tf
class Object. A class inherits all of
class, and can add new fields and
methods in the superclass.

Java loads one class at a ti
class in an implementation-
classes, the other cl

starts by loading an initial
If that class refers to other

ocal disk, or it can provide its own class
eve classes any way it wants. Most com-

ally"Well generate code on the fly or extract code from
pted files. When a class is loaded due to a reference
he system uses same loader that loaded the referring

rom the disk and one run over the net have identically
classes or class members, there’s no name collision.

definition specifies the loading and linking process in consider-
ble detail. When the virtual machine needs to use a class, first it loads

e class by calling the class loader. Once a class is loaded, the linking
process includes verification that the binary code is valid, and preparation,

11-288 Advanced techniques

allocating the static fields of the class. The final step of the process is ini-
tialization, running any routines that initialize the static fields, which hap-
pens the first time that an instance of the class is created or a static func-
tion of the class is run.

L oading Java classes

Loading and linking are separate processes because any class needs to en-
sure that all of its superclasses are loaded and linked before linking can
start. This means that the process conceptually crawls up and then down
the class inheritance tree, Figure 4. The loading process starts by calling
the classLoader procedure with the name of the class. The class loader
produces the class’ data somehow, then calls def i neCl ass to pass the
data to the virtual machine. defi neCl ass parses the class file and
checks for a variety of format errors, throwing an exception if it finds any.
It also extracts the name of the class’ superclass. If the superclass isn’t al-
ready loaded, it calls classLoader recursively to load the superclass. When
that call returns, the superclass has been loaded and linked, at which point
the Java system proceeds to link the current classs.

Figure 11-4: Loading and linking a Java class file

crawling up and down the tree

Advanced techniques 11-289

Glass ’trée

-k

Object a

'f Artist: this is a wavy
(’»?\/ to show stuff is omj
Loading walks !
up the‘class tree supﬁupclass

The next step, v
such as eqomm

e these checks need not be made when the code is run.
verifiy errors, it throws an exception. Then preparation allo-

dard default values, typically zero. Most Java implementations cre-
thod table at this point that contains pointers to all of the methods
defined for this class or inherited from a superclass.

g

11-290 Advanced techniques

The final stage of Java linking is resolution, which is analogous to dynam-
ic linking in other languages. Each class includes a constant pool that
contains both conventional constants such as numbers and strings, and the
references to other classes. All references in a compiled class, even to its
superclass, are symbolic, and are resolved after the class is loaded. (The
superclass might have been changed and recompiled after the class was,
which is valid so long as every field and method to which the class refers
remains defined in a compatible way.) Java allows implementations to re-
solve references at any time from the moment after verification, to the mo-
ment when an instruction actually uses the reference, such as calling a
function defined in a superclass or other class. Regardless of when it actu-
ally resolves a reference, a failed reference doesn’t cause an exception un-
til it’s used, so the program behaves as though Java uses lazy just-in-time
resolution. This flexibility in resolution time permits a wide variety of
possible implementations. One that translated the class into native ma-
chine code could resolve all of the references immediately, so the address-
es and offsets could be embedded into the translated code, with jumps to
an exception routine at any place where a reference couldn’t be resolved.
A pure interpreter might instead wait and resove references as they’re en-
countered as the code is interpreted.

The effect of the loading and linking design is that classes are loaded and
resolved as needed. Java’s garbage collection applies to classes the same
as it applies to all other data, so if all references to a class are deleted, the
class itself can get unloaded.

The Java loading and linking model is the most complex of any we’ve seen
in this book. But Java attempts to satisfy some rather contradictory goals,
portable type-safe code and also reasonably fast execution. The loading
and linking model supports incremental loading, static verification of most
of the type safety criteria, and permits class-at-a-time translation to ma-
chine code for systems that want programs to run fast.

Exercises

How long does the linker you use take to link a fairly large program? In-
strument your linker to see what it spends its time doing. (Even without
linker source code you can probably do a system call trace which should

Advanced techniques 11-291

give you a pretty good idea.)

Look at the generated code from a compiler for C++ or another object ori-
ented language. How much better could a link time optimizer make it?
What info could the compiler put in the object module to make it easier for
the linker to do interesting optimizations? How badly do shared lib
mess up this plan?

Sketch out a tokenized assembler language for your favorite
an object language. What’s a good way to handle symb
gram?

The AS/400 uses binary translation to provide bi

vantages of the AS/400 scheme? Of
computer architecture today, which

Project
Project 11-1: Add a garbagg collector to t

mark the startup stub as referenced.
(What would hapge ’t?) After the garbage collector runs, up-

date the segment

f structuglfto remove references from logically deleted segments
nd run YeueRing®peating until nothing is deleted.

References 12-293

Chapter 12
References

$Revision: 2.1 $
$Date: 1999/06/04 20:30:28 $

IBM, MVS/ESA Linkage Editor and Loader User’s Guide, Order number
SC26-4510, 1991. Also available as http://www.ibm.com/

AT&T, System V Application Binary Interface, UNIX Press/Prentice Hall,
ISBN 0-13-877598-2, 1990.

AT&T, System V ABI Motorola 68000 Processor Family Supplement,
UNIX Press/Prentice Hall, ISBN 0-13-877663-6, 1990.

AT&T, System V ABI Intel386 Architecture Processor Family Supple-
ment, Intel, Order number 465681, 1990.

Tool Interface Standard (TIS) Portable Formats Specification Version 1.1,
Intel order number 241597, 1993. Also at htt p:// devel oper.in-
tel.conmfvtune/tis. htm Describes ELF, DWARF, and OMF for
x86.

Tool Interface Standard (T1S) Formats Specification for Windows Version
1.0, Intel order number 241597, 1993. Describes PE format and debug
symbols, Ithough Microsoft has changed them since this came out.”

Randy Kath, The Portable Executable File Format from Top to Bottom,
http://prem um m crosoft.conm nsdn/li -
brary/techart/ nsdn_pefil e. ht m1993.

Matt Pietrek, Peering Inside the PE: A Tour of the Win32 Portable Exe-
cutable File Format, http://prem um m crosoft.com ns-
dn/library/techart/ nmsdn_peeri ngpe. ht m 1994.

Microsoft Portable Executable and Common Object File Format Specifica-
tion, Revision 5.0, htt p: // prem um m crosoft.com nsdn/|i -
brary/ specs/ pecof f/ m crosoft port abl eexecut abl eand-
commonobj ectfi |l ef or mat speci fi cati on. ht m October 1997

12-294 References

Daniel Barlow, The Linux GCC HOWTO, ht t p: / / www. | i nux- how-
t 0. conl LDP/ HOMQ GCC- HOMO. ht ml , 1996.

Matt Pietrek, Windows 95 System Programming Secrets, IDG Books, |S-
BN 1-56884-318-6, 1995.

Intel, 8086 Relocatable Object Module Formats, Order number
1981.

Ellis and Stroustrup, The Annotated C++ Reference M
Wesley, ISBN 0-201-51459-1, 1990. Includes the C++ na
algorithm.

David Gries, Compiler Construction for Digital (
0-471-32776-X, 1971. Contains one of the best 2
IBM card image object format.

Mary Fernandez, Simple and effective 4
programs, PLDI 95 Proceedings (A
1996), pp. 102-115.

pp. 1-18.

tion and Computg
96-24, 1996.

0N On a'® Architecture,” Programming Language Design and Imple-
tation, Orlando, FL, June 1994.

er, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong,

Hank Levy, and Brian Bershad, Instrumentation and Optimization of
in32/Intel Executables Using Etch, In USENIX Windows NT Work-
op, August 11-13, 1997.

References 12-295

Christopher Fraser and David Hanson A Machine-Independent Linker
Software Practice and Experience, Vol 12, pp. 351-366, 1982.

Tim Lindholm and Frank Yellin , The Java[tm] Virtual Machine Specifica-
tion, Second Edition, Addison-Wesley, 1999, ISBN,0-201-43294-3.

Bill Venners, Inside the Java Virtual Machine, second edition. McGraw-
Hill, 1999. ISBN 0-07-135093-4.

Apple Computer, Inside Macintosh: MacOS Runtime Architectures,
http://developer.apple.com/techpubs/mac/runtimehtml/RTArch-2.html.

Perl books

Larry Wall, Tom Christiansen, and Randal Schwartz, Programming Perl,
Second Edition, O’Reilly, 1996, ISBN 1-56592-149-6.

Randal Schwartz, Learning Perl, O’Reilly, 1993, ISBN 1-56592-042-2.

Paul Hoffman, Perl for Dummies, IDG Books, 1998, ISBN
0-7645-0460-6.

Linkers & Loaders

R. LEVINE

|"[I m i-.ll amant H‘I';'J | '|'Ilr."! s

Whatever your programming language, whatever your platform, you probably tap inte linker » . toader
functions all the time. But do you know how ho use them fo their greatest pessible advaniep” Only now,
with the publication of Linkers & Looders, is there an authoritotive book devoted enfired o these ¢ s
seated compile-fime and run-time processes.

Linkers and Looders begins with o detailed ond comperotive account of linking » .wou. *hath o

the differences omong various compilers ond operaling systems. On top ¢ a3 foundatic the o. ar
presants clear practical advice to help you create faster, deaner code. You'll, o to avoid the, falls asse-
ciated with Windows DiLs, take udwnhge of the spoce-saving, pﬂfu:rmuntn raving poct ues sup-
ported by many modern linkers, make the best use of the UNIX ELF librory sch. ~. and - <h more. If
you're serious obout programming, you'll devour this unique guide to one of the i " st understoad
topics. Linkers & Loaders is also an ideal supplementary text” . cwnpiler and operating systems courses.

Covers dynamic linking in Windows, UNIX, Linux, B _ _, and other serafing systems,
Explains the Java linking model and how it figures in network or _ets and extensible Java code.
Helps you write more elegant and eFf ive code, and buil. - .pfications thot compile, lead, and
run more efficiently.

AMER: » Includes a linker consiruction p~'-=t writle. ~ Perl, w" . project files available for download.

John Levine is the outhor or a-outhor of m v boows, induding lex & yoce [O'Reilly], Pregramming
for Grophics Files in C and C++ Wiley], ond The wernet for Dummies (IDG). He is also publisher emeri-
tus of the Journal of € language wslation, lorv ime moderator of the comp.compilers nowsgroup, and
the creator of ene of -~ ~-amn, el Forb- /7 compilers. He holds a Ph.D. in compuler science from

> Il

3 Al a1]

Programming
Operating Systems I‘ I

P 408N GUFMANN PUBLISHERS

AN IHFRLIN., P ACADIHMIC FENELE

4 HiFesinry SEiEnes i ~ehnialagy Camginy

