
1

Technical Report DataTAG-2004-1
FP5/IST DataTAG Project

A Map of the Networking Code
in Linux Kernel 2.4.20

M. Rio et al.

31 March 2004

 www.datatag.org
EU grant IST 2001-32459

2

A Map of the Networking Code in Linux Kernel 2.4.20

Technical Report DataTAG-2004-1, 31 March 2004

Miguel Rio

Department of Physics and Astronomy
University College London

Gower Street
London WC1E 6BT

UK
E-mail: M.Rio@ee.ucl.ac.uk

Web: http://www.ee.ucl.ac.uk/mrio/

Mathieu Goutelle

LIP Laboratory, INRIA/ReSO Team
ENS Lyon

46 allée d'Italie
69364 Lyon Cedex 07

France
E-mail: Mathieu.Goutelle@ecl2002.ec-lyon.fr
Web: http://perso.ens-lyon.fr/mathieu.goutelle/

Tom Kelly
Laboratory for Communication Engineering

Cambridge University
William Gates Building

15 J.J. Thomson Avenue
Cambridge CB3 0FD

UK
E-mail: ctk21@cam.ac.uk

Web: http://www-lce.eng.cam.ac.uk/~ctk21/

Richard Hughes-Jones

Department of Physics and Astronomy
University of Manchester

Oxford Road
Manchester M13 9PL

UK
E-mail: R.Hughes-Jones@man.ac.uk

Web: http://www.hep.man.ac.uk/~rich/

Jean-Philippe Martin-Flatin

IT Department
CERN

1211 Geneva 23
Switzerland

E-mail: jp.martin-flatin@ieee.org
Web: http://cern.ch/jpmf/

Yee-Ting Li

Department of Physics and Astronomy
University College London

Gower Street
London WC1E 6BT

UK
E-mail: ytl@cs.ucl.ac.uk

Web: http://www.hep.ucl.ac.uk/~ytl/

Abstract

In this technical report, we describe the structure and organization of the
networking code of Linux kernel 2.4.20. This release is the first of the 2.4 branch
to support network interrupt mitigation via a mechanism known as NAPI. We
describe the main data structures, the sub-IP layer, the IP layer, and two
transport layers: TCP and UDP. This material is meant for people who are
familiar with operating systems but are not Linux kernel experts.

3

Contents

1 Introduction...4
2 Networking Code: The Big Picture..5
3 General Data Structures..8

3.1 Socket buffers...8
3.2 sock ...9
3.3 TCP options .. 10

4 Sub-IP Layer... 13
4.1 Memory management.. 13
4.2 Packet Reception... 13
4.3 Packet Transmission.. 18
4.4 Commands for monitoring and controlling the input and output network queues 19
4.5 Interrupt Coalescence .. 19

5 Network layer.. 20
5.1 IP 20
5.2 ARP... 22
5.3 ICMP... 23

6 TCP.. 25
6.1 TCP Input... 28
6.2 SACKs... 31
6.3 QuickACKs.. 31
6.4 Timeouts .. 31
6.5 ECN... 32
6.6 TCP output ... 32
6.7 Changing the congestion window ... 33

7 UDP.. 34
8 The socket API .. 35

8.1 socket() .. 35
8.2 bind() ... 36
8.3 listen().. 36
8.4 accept() and connect() ... 36
8.5 write() .. 36
8.6 close() .. 37

9 Conclusion .. 37
Acknowledgments .. 37
Acronyms .. 38
References ... 39
Biographies.. 40

4

1 Introduction

When we investigated the performance of gigabit networks and end-hosts in the DataTAG
testbed, we soon realized that some losses occurred in end-hosts, and that it was not clear where
these losses occurred. To get a better understanding of packet losses and buffer overflows, we
gradually built a picture of how the networking code of the Linux kernel works, and instrumented
parts of the code where we suspected that losses could happen unnoticed.

This report documents our understanding of how the networking code works in Linux kernel
2.4.20 [1]. We selected release 2.4.20 because, at the time we began writing this report, it was the
latest stable release of the Linux kernel (2.6 had not been released yet), and because it was the
first sub-release of the 2.4 tree to support NAPI (New Application Programming Interface [4]),
which supports network interrupt mitigation and thereby introduces a major change in the way
packets are handled in the kernel. Until 2.4.20 was released, NAPI was one of the main novelties
in the development branch 2.5 and was only expected to appear in 2.6; it was not supported by the
2.4 branch up to 2.4.19 included. For more introductory material on NAPI and the new
networking features expected to appear in Linux kernel 2.6, see Cooperstein’s online tutorial [5].

In this document, we describe the paths through the kernel followed by IP (Internet Protocol)
packets when they are received or transmitted from a host. Other protocols such as X.25 are not
considered here. In the lower layers, often known as the sub-IP layers, we concentrate on the
Ethernet protocol and ignore other protocols such as ATM (Asynchronous Transfer Mode).
Finally, in the IP code, we describe only the IPv4 code and let IPv6 for future work. Note that the
IPv6 code is not vastly different from the IPv4 code as far as networking is concerned (larger
address space, no packet fragmentation, etc).

The reader of this report is expected to be familiar with IP networking. For a primer on the
internals of the Internet Protocol (IP) and Transmission Control Protocol (TCP), see Stevens [6]
and Wright and Stevens [7]. Linux kernel 2.4.20 implements a variant of TCP known as
NewReno, with the congestion control algorithm specified in RFC 2581 [2], and the selective
acknowledgment (SACK) option, which is specified in RFCs 2018 [8] and 2883 [9]. The classic
introductory books to the Linux kernel are Bovet and Cesati [10] and Crowcroft and Phillips [3].
For Linux device drivers, see Rubini et al. [11].

In the rest of this report, we follow a bottom-up approach to investigate the Linux kernel. In
Section 2, we give the big picture of the way the networking code is structured in Linux. A brief
introduction to the most relevant data structures is given in Section 3. In Section 4, the sub-IP
layer is described. In Section 5, we investigate the network layer (IP unicast, IP multicast, ARP,
ICMP). TCP is studied in Section 6 and UDP in Section 7. The socket Application Programming
Interface (API) is described in Section 8. Finally, we present some concluding remarks in
Section 9.

5

2 Networking Code: The Big Picture

Figure 1 depicts where the networking code is located in the Linux kernel. Most of the code is in
net/ipv4. The rest of the relevant code is in net/core and net/sched. The header files can
be found in include/linux and include/net.

Figure 1: Networking code in the Linux kernel tree

The networking code of the kernel is sprinkled with netfilter hooks [16] where developers can
hang their own code and analyze or change packets. These are marked as “HOOK” in the
diagrams presented in this document.

arch

drivers

fs

include

init

ipc

kernel

lib

mm

net

scripts

asm-*

linux

math-emu

net

pcmcia

scsi

video

802

…

bridge

core

…

ipv4

ipv6

…

sched

…

wanrouter

x25

/

6

Figure 2 and Figure 3 present an overview of the packet flows through the kernel. They indicate
the areas where the hardware and driver code operate, the role of the kernel protocol stack and the
kernel/application interface.

Figure 2: Handling of an incoming TCP segment

NIC
hardware

DMA

rx_ring

device
driver

softirq

interrupt
scheduled

IP firewall
IP routing

kernel

tcp_v4_rcv

socket backlog

recv

kernel
recv

buffer
TCP

process

user

Appli-
cation read recv_backlog

7

Figure 3: Handling of an outgoing TCP segment

IP csum
IP route
IP filter

dev_xmit

kernel
send
buffer

TCP
process

user

Appli-
cation write

tx_ring NIC
hardware

DMA

device
driver

tx sntr

kernel

qdisc

completion
queue

softirq to
free

send_msg

qdisc_run
qdisc_restcut
net_tx_action

8

3 General Data Structures

The networking part of the kernel uses mainly two data structures: one to keep the state of a
connection, called sock (for “socket”), and another to keep the data and status of both incoming
and outgoing packets, called sk_buff (for “socket buffer”). Both of them are described in this
section. We also include a brief description of tcp_opt, a structure that is part of the sock structure
and is used to maintain the TCP connection state. The details of TCP will be presented in
section 6.

3.1 Socket buffers

The sk_buff data structure is defined in include/linux/skbuff.h.

When a packet is processed by the kernel, coming either from user space or from the network
card, one of these data structures is created. Changing a field in a packet is achieved by updating
a field of this data structure. In the networking code, virtually every function is invoked with an
sk_buff (the variable is usually called skb) passed as a parameter.

The first two fields are pointers to the next and previous sk_buff’s in the linked list (packets are
frequently stored in linked lists or queues); sk_buff_head points to the head of the list.

The socket that owns the packet is stored in sk (note that if the packet comes from the network,
the socket owner will be known only at a later stage).

The time of arrival is stored in a timestamp called stamp. The dev field stores the device from
which the packet arrived, if the packet is for input. When the device to be used for transmission is
known (for example, by inspection of the routing table), the dev field is updated correspondingly
(see sections 4.1 and 4.3).

struct sk_buff {
 /* These two members must be first. */
 struct sk_buff *next; /* Next buffer in list */
 struct sk_buff *prev; /* Previous buffer in list */
 struct sk_buff_head *list; /* List we are on */
 struct sock *sk; /* Socket we are owned by */
 struct timeval stamp; /* Time we arrived */
 struct net_device *dev; /* Device we arrived on/are leaving by */

The transport section is a union that points to the corresponding transport layer structure (TCP,
UDP, ICMP, etc).

 /* Transport layer header */
 union
 {
 struct tcphdr *th;
 struct udphdr *uh;
 struct icmphdr *icmph;
 struct igmphdr *igmph;
 struct iphdr *ipiph;
 struct spxhdr *spxh;
 unsigned char *raw;
 } h;

9

The network layer header points to the corresponding data structures (IPv4, IPv6, ARP, raw, etc).

 /* Network layer header */
 union
 {
 struct iphdr *iph;
 struct ipv6hdr *ipv6h;
 struct arphdr *arph;
 struct ipxhdr *ipxh;
 unsigned char *raw;
 } nh;

The link layer is stored in a union called mac. Only a special case for Ethernet is included. Other
technologies will use the raw fields with appropriate casts.

 /* Link layer header */
 union
 {
 struct ethhdr *ethernet;
 unsigned char *raw;
 } mac;

 struct dst_entry *dst;

Extra information about the packet such as length, data length, checksum, packet type, etc. is
stored in the structure as shown below.

 char cb[48];
 unsigned int len; /* Length of actual data */
 unsigned int data_len;
 unsigned int csum; /* Checksum */
 unsigned char __unused, /* Dead field, may be reused */
 cloned, /* head may be cloned (check refcnt
 to be sure) */
 pkt_type, /* Packet class */
 ip_summed; /* Driver fed us an IP checksum */
 __u32 priority; /* Packet queueing priority */
 atomic_tusers; /* User count - see datagram.c,tcp.c */
 unsigned short protocol; /* Packet protocol from driver */
 unsigned short security; /* Security level of packet */
 unsigned int truesize; /* Buffer size */
 unsigned char *head; /* Head of buffer */
 unsigned char *data; /* Data head pointer*/
 unsigned char *tail; /* Tail pointer */
 unsigned char *end; /* End pointer */

3.2 sock

The sock data structure keeps data about a specific TCP connection (e.g., TCP state) or virtual
UDP connection. Whenever a socket is created in user space, a sock structure is allocated.

The first fields contain the source and destination addresses and ports of the socket pair.

struct sock {
 /* Socket demultiplex comparisons on incoming packets. */
 __u32 daddr; /* Foreign IPv4 address */
 __u32 rcv_saddr; /* Bound local IPv4 address */
 __u16 dport; /* Destination port */
 unsigned short num; /* Local port */
 int bound_dev_if; /* Bound device index if != 0 */

10

Among many other fields, the sock structure contains protocol-specific information. These fields
contain state information about each layer.

 union {
 struct ipv6_pinfo af_inet6;
 } net_pinfo;

 union {
 struct tcp_opt af_tcp;
 struct raw_opt tp_raw4;
 struct raw6_opt tp_raw;
 struct spx_opt af_spx;
 } tp_pinfo;

};

3.3 TCP options

One of the main components of the sock structure is the TCP option field (tcp_opt). Both IP and
UDP are stateless protocols with a minimum need to store information about their connections.
TCP, however, needs to store a large set of variables. These variables are stored in the fields of
the tcp_opt structure; only the most relevant fields are shown below (comments are self-
explanatory).

struct tcp_opt {
 int tcp_header_len; /* Bytes of tcp header to send */
 __u32 rcv_nxt; /* What we want to receive next */
 __u32 snd_nxt; /* Next sequence we send */
 __u32 snd_una; /* First byte we want an ack for */
 __u32 snd_sml; /* Last byte of the most recently transmitted
 * small packet */
 __u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */
 __u32 lsndtime; /* timestamp of last sent data packet
 * (for restart window) */

 /* Delayed ACK control data */
 struct {
 __u8 pending; /* ACK is pending */
 __u8 quick; /* Scheduled number of quick acks */
 __u8 pingpong; /* The session is interactive */
 __u8 blocked; /* Delayed ACK was blocked by socket lock */
 __u32 ato; /* Predicted tick of soft clock */
 unsigned long timeout; /* Currently scheduled timeout */
 __u32 lrcvtime; /* timestamp of last received data packet */
 __u16 last_seg_size; /* Size of last incoming segment */
 __u16 rcv_mss; /* MSS used for delayed ACK decisions */
 } ack;

 /* Data for direct copy to user */
 struct {
 struct sk_buff_head prequeue;
 struct task_struct *task;
 struct iovec *iov;
 int memory;
 int len;
 } ucopy;

 __u32 snd_wl1; /* Sequence for window update */
 __u32 snd_wnd; /* The window we expect to receive */
 __u32 max_window; /* Maximal window ever seen from peer */

11

 __u32 pmtu_cookie; /* Last pmtu seen by socket */
 __u16 mss_cache; /* Cached effective mss, not including SACKS */
 __u16 mss_clamp; /* Maximal mss, negotiated at connection setup */
 __u16 ext_header_len; /* Network protocol overhead (IP/IPv6 options) */
 __u8 ca_state; /* State of fast-retransmit machine */
 __u8 retransmits; /* Number of unrecovered RTO timeouts */

 __u8 reordering; /* Packet reordering metric */
 __u8 queue_shrunk; /* Write queue has been shrunk recently */
 __u8 defer_accept; /* User waits for some data after accept() */

/* RTT measurement */

 __u8 backoff; /* backoff */
 __u32 srtt; /* smothed round trip time << 3 */
 __u32 mdev; /* medium deviation */
 __u32 mdev_max; /* maximal mdev for the last rtt period */
 __u32 rttvar; /* smoothed mdev_max */
 __u32 rtt_seq; /* sequence number to update rttvar */
 __u32 rto; /* retransmit timeout */
 __u32 packets_out; /* Packets which are "in flight" */
 __u32 left_out; /* Packets which leaved network */
 __u32 retrans_out; /* Retransmitted packets out */

/* Slow start and congestion control (see also Nagle, and Karn & Partridge) */

 __u32 snd_ssthresh; /* Slow start size threshold */
 __u32 snd_cwnd; /* Sending congestion window */
 __u16 snd_cwnd_cnt; /* Linear increase counter */
 __u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */
 __u32 snd_cwnd_used;
 __u32 snd_cwnd_stamp;

/* Two commonly used timers in both sender and receiver paths. */

 unsigned long timeout;
 struct timer_list retransmit_timer; /* Resend (no ack) */
 struct timer_list delack_timer; /* Ack delay */

 struct sk_buff_head out_of_order_queue; /* Out of order segments */
 struct tcp_func *af_specific; /* Operations which are
 * AF_INET{4,6} specific */
 struct sk_buff *send_head; /* Front of stuff to transmit */
 struct page *sndmsg_page; /* Cached page for sendmsg */
 u32 sndmsg_off; /* Cached offset for sendmsg */

 __u32 rcv_wnd; /* Current receiver window */
 __u32 rcv_wup; /* rcv_nxt on last window update sent */
 __u32 write_seq; /* Tail(+1) of data held in tcp send buffer */
 __u32 pushed_seq; /* Last pushed seq, required to talk to windows */
 __u32 copied_seq; /* Head of yet unread data */

/* Options received (usually on last packet, some only on SYN packets) */

 char tstamp_ok, /* TIMESTAMP seen on SYN packet */
 wscale_ok, /* Wscale seen on SYN packet */
 sack_ok; /* SACK seen on SYN packet */
 char saw_tstamp; /* Saw TIMESTAMP on last packet */
 __u8 snd_wscale; /* Window scaling received from sender */
 __u8 rcv_wscale; /* Window scaling to send to receiver */
 __u8 nonagle; /* Disable Nagle algorithm? */
 __u8 keepalive_probes; /* num of allowed keep alive probes */

12

/* PAWS/RTTM data */

 __u32 rcv_tsval; /* Time stamp value */
 __u32 rcv_tsecr; /* Time stamp echo reply */
 __u32 ts_recent; /* Time stamp to echo next */
 long ts_recent_stamp; /* Time we stored ts_recent (for aging) */

/* SACKs data */

 __u16 user_mss; /* mss requested by user in ioctl */
 __u8 dsack; /* D-SACK is scheduled */
 __u8 eff_sacks; /* Size of SACK array to send with next packet */
 struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */
 struct tcp_sack_block selective_acks[4]; /* The SACKs themselves */

 __u32 window_clamp; /* Maximal window to advertise */
 __u32 rcv_ssthresh; /* Current window clamp */
 __u8 probes_out; /* unanswered 0 window probes */
 __u8 num_sacks; /* Number of SACK blocks */
 __u16 advmss; /* Advertised MSS */

 __u8 syn_retries; /* num of allowed syn retries */
 __u8 ecn_flags; /* ECN status bits. */
 __u16 prior_ssthresh; /* ssthresh saved at recovery start */
 __u32 lost_out; /* Lost packets */
 __u32 sacked_out; /* SACK'd packets */
 __u32 fackets_out; /* FACK'd packets */
 __u32 high_seq; /* snd_nxt at onset of congestion */
 __u32 retrans_stamp; /* Timestamp of the last retransmit,
 * also used in SYN-SENT to remember
 * stamp of the first SYN */
 __u32 undo_marker; /* tracking retrans started here */
 int undo_retrans; /* number of undoable retransmissions */
 __u32 urg_seq; /* Seq of received urgent pointer */
 __u16 urg_data; /* Saved octet of OOB data and control flags */
 __u8 pending; /* Scheduled timer event */
 __u8 urg_mode; /* In urgent mode */
 __u32 snd_up; /* Urgent pointer */

};

13

4 Sub-IP Layer

This section describes the reception and handling of packets by the hardware and the Network
Interface Card (NIC) driver. This corresponds to layers 1 and 2 in the classical 7-layer network
model. The driver and the IP layer are tightly bound with the driver using methods from both the
kernel and the IP layer.

4.1 Memory management

The allocation of a packet descriptor is done in net/core/skbuff.c by the alloc_skb()
function. This function is used each time a new buffer is needed, especially in the driver code. It
gets the header from the pool of packets of the current processor (skb_head_from_pool). It
allocates memory for the data payload (data area) with kmalloc()and sets up the data pointer and
the state of the descriptor. It collects some memory statistics to debug all memory leaks.

Some packets are allocated through skb_clone() when only the meta-data (in the sk_buff struct)
need to be duplicated for the same packet data. This is the case for packet between TCP and IP on
the transmitter side. The difference between the two types of allocation lies in the deallocation:
skb's allocated by alloc_skb() are de-allocated at ACK arrival time, while those allocated by
skb_clone() are de-allocated after receiving transmit completion events from the NIC.

The deallocation of sk_buff is done by the internal function __kfree_skb() (called by kfree_skb()
in net/core/skbuff.c). It releases the dst fields with dst_release(). This field contains, among
other things, the destination device of the packet. The function calls skb->destructor() if present
to do some specific operations before cleaning. De-allocating an skb involves finally cleaning it
(for future reuse) with skb_headerinit(), freeing its data part if it is not a clone, and inserting it
into a free skb pool for future reuse with kfree_skbmem().

4.2 Packet Reception

The main files that deal with transmitting and receiving the frames below the IP network layer
are:

• include/linux/netdevice.h
• net/core/skbuff.c
• net/core/dev.c
• net/dev/core.c
• arch/i386/irq.c
• drivers/net/net_init.c
• net/sched/sch_generic.c

As well as containing data for the higher layers, the packets are associated with descriptors that
provide information on the physical location of the data, the length of the data, and extra control
and status information. Usually the NIC driver sets up the packet descriptors and organizes them
as ring buffers when the driver is loaded. Separate ring buffers are used by the NIC’s Direct
Memory Access (DMA) engine to transfer packets to and from main memory. The ring buffers
(both the tx_ring for transmission and the rx_ring for reception) are just arrays of skbuff’s,

14

managed by the interrupt handler (allocation is performed on reception and deallocation on
transmission of the packets).

Figure 4: Packet reception with the old API until Linux kernel 2.4.19

Figure 4 and Figure 5 show the data flows that occur when a packet is received. The following
steps are followed by a host.

Ring buffer

Interrupt
generator

Kernel
memory

NIC memory

DMA engine

Data packet

Drop if in
throttle state

IP layer ip_rcv()

Interrupt Handler
netif_rx():
 enqueue packet in backlog
 schedule softirq

Free descriptor

Updated
descriptor

backlog queue (per CPU)

Pointer to packet
descriptor

rx_softirq (net_rx_action())

Full
 packet

15

Figure 5: Packet reception with Linux kernel 2.4.20: the new API (NAPI)

4.2.1 Step 1

When a packet is received by the NIC, it is put into kernel memory by the card DMA engine. The
engine uses a list of packet descriptors that point to available areas of kernel memory where the
packet may be placed. Each available data area must be large enough to hold the maximum size
of packet that a particular interface can receive. This maximum size is specified by maxMTU
(MTU stands for Maximum Transfer Unit). These descriptors are held in the rx_ring ring buffer
in the kernel memory. The size of this ring buffer is dr iver and hardware dependent.

It is the interrupt handler (driver dependent) which first creates the packet descriptor (struct
sk_buff). Then a pointer (struct sk_buff*) is placed in the rx_ring and manipulated through the
network stack. During subsequent processing in the network stack, the packet data remains at the

Ring buffer

Interrupt
generator

netif_rx_schedule()
 enqueue device
 schedule softirq

Kernel
memory

NIC memory

Free descriptor

Interrupt Handler

DMA engine

Data packet

rx_softirq (net_rx_action):
 dev->poll

IP Layer ip_rcv()

poll_queue (per CPU)

Pointer to
Device

Updated
descriptor

Full
 packet

16

same kernel memory location. No extra copies are involved. Older cards use the Program I/O
(PIO) scheme: it is the host CPU which transfers the data from the card into the host memory.

4.2.2 Step 2

The card interrupts the CPU, which then jumps to the driver Interrupt Service Routine (ISR)
code. Here some differences arise between the old network subsystem (in kernels up to 2.4.19)
and NAPI (from 2.4.20).

4.2.2.1 For old API kernels, up to 2.4.19

Figure 4 shows the routines called for network stacks prior to 2.4.20. The interrupt handler calls
the netif_rx() kernel function (in net/dev/core.c , line 1215). The netif_rx() function enqueues
the received packet in the interrupted CPU's backlog queue and schedules a softirq1, which is
responsible for further processing of the packet (e.g. the TCP/IP processing). Only a pointer to the
packet descriptor is actually enqueued in the backlog queue. Depending on settings in the NIC,
the CPU may receive an interrupt for each packet or groups of packets (see Section 4.5).

By default, the backlog queue has a length of 300 packets, as defined in
/proc/sys/net/core/netdev_max_backlog. If the backlog queue becomes full, it enters
the throttle state and waits for being totally empty before re-entering a normal state and allowing
further packets to be enqueued (netif_rx() in net/dev/core.c). If the backlog is in the throttle
state, netif_rx drops the packet.

Backlog statistics are available from /proc/net/softnet_stat. The format of the output is
defined in net/core/dev.c , lines 1804 onward. There is one line per CPU. The columns have
the following meanings:

1. packet count;

2. drop count;

3. the time squeeze counter, i.e. the number of times the softirq took too much time to handle
the packets from the device. When the budget of the softirq (i.e., the maximum number of
packets it can dequeue in a row, which depends on the device, max = 300) reaches zero
or when its execution time lasts more than one jiffie (10 ms, the smallest time unit in the
Linux scheduler), the softirq stops dequeuing packets, increments the time squeeze
counter of the CPU and reschedules itself for later execution;

4. number of times the backlog entered the throttle state;

5. number of hits in fast routes;

6. number of successes in fast routes;

7. number of defers in fast routes;

8. number of defers out in fast routes;

9. The right-most column indicates either latency reduction in fast routes or CPU collision,
depending on a #ifdef flag.

1 A softirq (software interrupt request) is a kind of kernel thread [12] [13].

17

An example of backlog statistics is shown below:

$ cat /proc/net/softnet_stat
94d449be 00009e0e 000003cd 0000000e 00000000 00000000 00000000 00000000 0000099f
000001da 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005b
000002ca 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000b5a
000001fe 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010

4.2.2.2 For NAPI drivers, from kernel 2.4.20 onward

NAPI drivers act differently. As shown in Figure 5, the interrupt handler calls netif_rx_schedule()
(include/linux/netdevice.h, line 738). Instead of putting a pointer to the packet descriptor
in the backlog queue, it puts a reference to the device in a queue attached to the interrupted CPU
known as the poll_list (see softnet_data->poll_list in include/linux/netdevice.h,
line 496). A softirq is then scheduled, just as in the previous case, but receive interruptions are
disabled during the execution of the softirq.

To ensure backward compatibility with old drivers, the backlog queue is still implemented in
NAPI-enabled kernels, but it is considered as a device to handle the incoming packets from the
NICs whose drivers are not NAPI aware. It can be enqueued just as any other NIC device. The
netif_rx() function is used only in the case of non-NAPI drivers, and has been rewritten to
enqueue the backlog queue into the poll_list of the CPU after having enqueued the packet into the
backlog queue.

4.2.3 Step 3

When the softirq is scheduled, it executes net_rx_action() (net/core/dev.c, line 1558).
Softirqs are scheduled in do_softirq() (arch/i386/irq.c) when do_irq is called to do any
pending interrupts. They can also be scheduled through the ksoftirq process when do_softirq() is
interrupted by an interrupt, or when a softirq is scheduled outside an interrupt or a bottom-half of
a driver. The do_softirq() function processes softirqs in the following order: HI_SOFTIRQ,
NET_TX_SOFTIRQ, NET_RX_SOFTIRQ and TASKLET_SOFTIRQ. More details about
scheduling in the Linux kernel can be found in [10]. Because step 2 differs between the older
network subsystem and NAPI, step 3 does too.

For kernel versions prior to 2.4.20, net_rx_action() polls all the packets in the backlog queue and
calls the ip_rcv() procedure for each of the data packets (net/ipv4/ip_input.c, line 379).
For other types of packets (ARP, BOOTP, etc.), the corresponding ip_xx() routine is called.

For NAPI, the CPU polls the devices present in its poll_list (including the backlog for legacy
drivers) to get all the received packets from their rx_ring. The poll method of any device (poll(),
implemented in the NIC driver) or of the backlog (process_backlog() in net/core/dev.c,
line 1496) calls netif_receive_skb() (net/core/dev.c, line 1415) for each received packet,
which then calls ip_rcv().

The NAPI network subsystem is a lot more efficient than the old system, especially in a high
performance context (in our case, gigabit Ethernet). The advantages are:

• limitation of interruption rate (this may be seen as an adaptive interrupt coalescing
mechanism);

• it is not prone to receive livelock [17];
• better data and instruction locality.

18

Because a device is always handled by a CPU, there is no packet reordering or cache default. One
problem is that there is no parallelism in a Symmetric Multi-Processing (SMP) machine for traffic
coming in from a single interface.

In the old API case, if the input rate is too high, the backlog queue becomes full and packets are
dropped in the kernel, exactly between the rx_ring and the backlog in the enqueue procedure. In
the NAPI case, exceeding packets are dropped earlier, before being put into the rx_ring. In this
last case, an Ethernet pause packet halting the packet input if this feature is enabled.

4.3 Packet Transmission

All the IP packets are built using the arp_constructor() method. Each packet contains a dst field,
which provides the destination computed by the routing algorithm. The dst field provides an
output method, which is dev_queue_xmit() for IP packets.

Figure 6: Transmission of a packet

The kernel provides multiple queuing disciplines (RED, CBQ, etc.) between the kernel and the
driver. It is intended to provide QoS support. The default queuing discipline, or qdisc, consists of
three FIFO queues with strict priorities and a default length of 100 packets for each queue
(ether_setup(): dev->tx_queue_len ; drivers/net/net_init.c, line 405).

tx_ring

qdisc_restart():
while not (empty or stopped)

hard_start_xmit()

qdisc (per device)

IP Layer

enqueue (dev_queue_xmit())

Drop if full

Data packet

Kernel
memory

19

Figure 6 shows the different data flows that may occur when a packet is to be transmitted. The
following steps are followed during transmission.

4.3.1 Step 1

For each packet to be transmitted from the IP layer, the dev_queue_xmit() procedure
(net/core/dev.c , line 991) is called. It queues a packet in the qdisc associated to the output
interface (as determined by the routing). Then, if the device is not stopped (e.g., due to link
failure or the tx_ring being full), all packets present in the qdisc are handled by qdisc_restart()
(net/sched/sch_generic.c, line 77).

4.3.2 Step 2

The hard_start_xmit() virtual method is then called. This method is implemented in the driver
code. The packet descriptor, which contains the location of the packet data in kernel memory, is
placed in the tx_ring and the driver tells the NIC that there are some packets to send.

4.3.3 Step 3

Once the card has sent a packet or a group of packets, it communicates to the CPU that the
packets have been sent out by asserting an interrupt. The CPU uses this information
(net_tx_action() in net/core/dev.c, line 1326) to put the packets into a completion_queue
and to schedule a softirq for later deallocating (i) the meta-data contained in the skbuff struct and
(ii) the packet data if we are sure that we will not need this data anymore (see Section 4.1). This
communication between the card and the CPU is card and driver dependent.

4.4 Commands for monitoring and controlling the input and output
network queues

The ifconfig command can be used to override the length of the output packet queue using the
txqueuelen option. It is not possible to get statistics for the default output queue. The trick is to
replace it with the same FIFO queue using the tc command:

• to replace the default qdisc: tc qdisc add dev eth0 root pfifo limit 100
• to get stats from this qdisc: tc -s -d qdisc show dev eth0
• to recover to default state: tc qdisc del dev eth0 root

4.5 Interrupt Coalescence

Depending on the configuration set by the driver, a modern NIC can either interrupt the host for
each packet sent or received, or it can continue to transfer packets between the network and
memory, using the descriptor mechanisms described above, but only informs the CPU of progress
at intervals. This is known as interrupt coalescence and the details and options are hardware
dependent. The NIC may generate interrupts after a fixed number of packets have been processed
or after a fixed time from the first packet transferred after the last interrupt. In some cases, the
NIC dynamically changes the interrupt coalescence times depending on the packet receive rate.
Separate parameters are usually available for the transmit and receive functions of the NIC.

Interrupt coalescence, as the use of NAPI, reduces the amount of time the CPU spends context-
switching to service interrupts. It is worth noting that the size of the transmit and receive ring

20

buffers (and the kernel memory area for the packets) must be large enough to provide for the
extra packets that will be in the system.

5 Network layer

The network layer provides end-to-end connectivity in the Internet across heterogeneous
networks. It provides the common protocol (IP – Internet Protocol) used by almost all Internet
traffic. Since Linux hosts can act as routers (and they often do as they provide an inexpensive
way of building networks), an important part of the code deals with packet forwarding.

The main files that deal with the IP network layer are located in net/ipv4:
• ip_input.c – processing of the packets arriving at the host
• ip_output.c – processing of the packets leaving the host
• ip_forward.c – processing of the packets being routed by the host

Other files include:

• ip_fragment.c – IP packet fragmentation
• ip_options.c – IP options
• ipmr.c – IP multicast
• ipip.c – IP over IP

5.1 IP

5.1.1 IP Unicast

Figure 7 describes the path that an IP packet traverses inside the network layer. Packet reception
from the network is shown on the left hand side and packets to be transmitted flow down the right
hand side of the diagram. When the packet reaches the host from the network, it goes through the
functions described in Section 4; when it reaches net_rx_action(), it is passed to ip_rcv(). After
passing the first netfilter hook (see Section 2), the packet reaches ip_rcv_finish(), which verifies
whether the packet is for local delivery. If it is addressed to this host, the packet is given to
ip_local_delivery(), which in turn will give it to the appropriate transport layer function.

A packet can also reach the IP layer coming from the upper layers (e.g., delivered by TCP, or
UDP, or coming directly to the IP layer from some applications).The first function to process the
packet is then ip_queue_xmit(), which passes the packet to the output part through ip_output().

In the output part, the last changes to the packet are made in ip_finish_output() and the function
dev_queue_transmit() is called; the latter enqueues the packet in the output queue. It also tries to
run the network scheduler mechanism by calling qdisc_run(). This pointer will point to different
functions, depending on the scheduler installed. A FIFO scheduler is installed by default, but this
can be changed with the tc utility, as we have seen already.

The scheduling functions (qdisc_restart() and dev_queue_xmit_init()) are independent of the rest
of the IP code.

When the output queue is full, q->enqueue returns an error which is propagated upward on the IP
stack. This error is further propagated to the transport layer (TCP or UDP) as will be seen in
Sections 6 and 7.

21

Figure 7: Network layer data path

5.1.2 IP Routing

If an incoming packet has a destination IP address other than that of the host, the latter acts as a
router (a frequent scenario in small networks). If the host is configured to execute forwarding

fib_validate_source()

fib_lookup()

fib_rules_map_destination()

fib_rules_policy()

ip_queue_xmit
()

HOOK

ip_queue_xmit2()

dst->output
ip_output()

ip_finish_output ()

HOOK

ip_finish_output2()

skb->dst.hh.output()
dev_queue_xmit()

q->enqueue()

q->disc_run()

dev->dequeue()

qdisc_restart()

dev_queue_xmit_init()

dev->hard_start_xmit()

ip_local_delivery()

ip_route_input_mc()

ip_route_input_slow()

hash

ip_route_input() rt_hash_code()

ip_rcv_finish()

HOOK

ip_rcv()

net_rx_action()

…

cpu_raise_softirq()

skb_queue_tail()

netif_rx()

DEVICE_rx

ip_forward()

HOOK

ip_forward_finish()

ip_forward_options()

ip_send()

route.c

sch_generic.c

ip_forward.c

dev.c

fib*.c

22

(this can be seen and set via /proc/sys/net/ipv4/ip_forward), it then has to be processed
by a set of complex but very efficient functions. If the ip_forward variable is set to zero, it is not
forwarded.

The route is calculated by calling ip_route_input(), which (if a fast hash does not exist) calls
ip_route_input_slow(). The ip_route_input_slow() function calls the FIB (Forward Information
Base) set of functions in the fib*.c files. The FIB structure is quite complex [3].

If the packet is a multicast packet, the function that calculates the set of devices to transmit the
packet to is ip_route_input_mc(). In this case, the IP destination is unchanged.

After the route is calculated, ip_rcv_finished() inserts the new IP destination in the IP packet and
the output device in the sk_buff structure. The packet is then passed to the forwarding functions
(ip_forward() and ip_forward_finish()) which send it to the output components.

5.1.3 IP Multicast

The previous section dealt with unicast packets. With multicast packets, the system gets
significantly more complicated. The user level (through a daemon like gated) uses the
setsockopt() call on the UDP socket or netlink to instruct the kernel that it wants to join the group.
The set_socket_option() function calls ip_set_socket_option(), which calls ip_mc_join_group()
(or ip_mc_leave_group() when it wants to leave the group).

This function calls ip_mc_inc_group(). This makes a trigger expire and igmp_timer_expire() be
called. Then igmp_timer_expire() calls igmp_send_report().

When a host receives an IGMP (Internet Group Management Protocol) packet (that is, when we
are acting as a multicast router), net_rx_action() delivers it to igmp_rcv(), which builds the
appropriate multicast routing table information.

A more complex operation occurs when a multicast packet arrives at the host (router) or when the
host wants to send a multicast packet. The packet is handle d by ip_route_output_slow() (via
ip_route_input() if the packet is coming in or via ip_queue_xmit() if the packet is going out),
which in the multicast case calls ip_mr_input().

Next, ip_mr_input() (net/ipv4/ipmr.c, line 1301) calls ip_mr_forward(), which calls
ipmr_queue_xmit() for all the interfaces it needs to replicate the packet. This calls
ipmr_forward_finish(), which calls ip_finish_output(). The rest can be seen on Figure 7.

5.2 ARP

Because ARP (Address Resolution Protocol) converts layer-3 addresses to layer-2 addresses, it is
often said to be at layer 2.5. ARP is defined in RFC 826 and is the protocol that allows IP to run
over a variety of lower layer technologies. Although we are mostly interested in Ethernet in this
document, it is worth noting that ARP can resolve IP addresses for a wide variety of technologies,
including ATM, Frame Relay, X.25, etc.

When an ARP packet is received, it is given by nt_rx_action() to arp_rcv() which, after some
sanity checks (e.g., checking if the packet is for this host), passes it on to arp_process(). Then,
arp_process() checks which type of ARP packet it is and, if appropriate (e.g., when it is an ARP
request), sends a reply using arp_send().

23

The decision of sending an ARP request deals with a much more complex set of functions
depicted in Figure 8. When the host wants to send a packet to a host in its LAN, it needs to
convert the IP address into the MAC address and store the latter in the skb structure. When the
host is not in the LAN, the packet is sent to a router in the LAN. The function ip_queue_xmit()
(which can be seen in Figure 7) calls ip_route_output(), which calls rt_intern_hash(). This calls
arp_bind_neighbour(), which calls neigh_lookup_error().

The function neigh_lookup_error() tries to see if there is already any neighbor data for this IP
address with neigh_lookup(). If there is not, it triggers the creation of a new one with
neigh_create(). The latter triggers the creation of the ARP request by calling arp_constructor().
Then the function arp_constructor() starts allocating space for the ARP request and calls the
function neigh->ops->output(), which points to neigh_resolve_output(). When
neigh_resolve_output() is called, it invokes neigh_event_send(). This calls neigh->ops->solicit(),
which points to arp_solicit(). The latter calls arp_send(), which sends the ARP message. The skb
to be resolved is stored in a list. When the reply arrives (in arp_recv()), it resolves the skb and
removes it from the list.

Figure 8: ARP

5.3 ICMP

The Internet Control Message Protocol (ICMP) plays an important role in the Internet. Its
implementation is quite simple. Conceptually, ICMP is at the same level as IP, although ICMP
datagrams use IP packets.

Figure 9 depicts the main ICMP functions. When an ICMP packet is received, net_rx_action()
delivers it to icmp_rcv() where the ICMP field is checked; depending on the type, the appropriate
function is called (this is done by calling icmp_pointers[icmp->type].handler()). In Figure 10, we
can see the description of the main functions and types. Two of these functions, icmp_echo() and

ip_queue_xmit()

ip_route_output()

rt_intern_hash() neigh_create()

arp_constructor()

arp_solicit()

neigh_lookup_error()

arp_send()
arp_bind_neighbour()

neigh_resolve_output()

24

icmp_timestamp(), require a response to be sent to the original source. This is done by calling
icmp_reply().

Sometimes, a host needs to generate an ICMP packet that is not a mere reply to an ICMP request
(e.g., the IP layer, the UDP layer and users—through raw sockets—can send ICMP packets). This
is done by calling icmp_send().

Figure 9: ICMP functions

icmp_rcv()

icmp_discard()

icmp_unreach()

icmp_redirect()

icmp_timestamp()

icmp_address()

icmp_address_reply()

icmp_echo()

icmp_reply()

icmp_send()

UDP User IP

25

ICMP function

Description

icmp_discard() Discard the packet.

icmp_unreach() Destination unreachable, ICMP time-exceed or ICMP source
quench.

icmp_redirect() ICMP redirect error. The router to which an IP packet was sent is
saying that the datagram should have been sent to another router.

icmp_timestamp() This host is being queried about the current timestamp (usually
the number of seconds).

icmp_address() Request for a network address mask . Typically used by a diskless
system to obtain its subnet mask.

icmp_address_reply() This message contains the reply to an ICMP address request.
icmp_echo() ICMP echo command. This requires the host to send an ICMP

echo reply to the original sender. This is how the ping command
is implemented.

Figure 10: ICMP packet types

6 TCP

This section describes the implementation of the Transmission Control Protocol (TCP), which is
probably the most complex part of the networking code in the Linux kernel.

TCP contributes for the vast majority of the traffic in the Internet. It fulfills two important
functions: it establishes a reliable communication between a sender and a receiver by
retransmitting non-acknowledged packets, and it implements congestion control by reducing the
sending rate when congestion is detected.

Although both ends of a TCP connection can be sender and receiver simultaneously, we separate
our code explanations for the “receiver” behavior (when the host receives data and sends
acknowledgments) and the “sender” behavior (when the host sends data, receives
acknowledgments, retransmits lost packets and adjusts congestion window and sending rate). The
complexity of the latter is significantly higher.

The reader is assumed to be familiar with the TCP state machine, which is described in [6].

The main files of the TCP code are all located in net/ipv4, except header files which are in
include/net. They are:

• tcp_input.c – Code dealing with incoming packets from the network.
• tcp_output.c – Code dealing with sending packets to the network.
• tcp.c – General TCP code. Links with the socket layer and provides some “higher”

level functions to create and release TCP connections.
• tcp_ipv4.c – IPv4 TCP specific code.
• tcp_timer.c – Timer management.
• tcp.h – Definition of TCP constants.

Figure 11 and Figure 12 depict the TCP data path and are meant to be viewed side by side. Input
processing is described in Figure 11 and output processing is illustrated by Figure 12.

26

Figure 11: TCP: input processing

tcp_rcv_established()

tcp_check_sum_complete_user()

tcp_paws_discard()

tcp_sequence()

tcp_send_dupack()

tcp_reset()

tcp_replace_ts_recent()

tcp_urg()

tcp_data_snd_check()

tcp_ack_snd_check()

tcp_send_delayed_ack()

tp->ucopy.iov
tp->out_of_order_queue

...COPY DATA TO
USER…

tcp_data_queue()

tcp_send_ack()

tcp_may_update_window()

tcp_ack_update_window()

tcp_clean_rtx_queue()

tcp_may_raise_cwnd()

tcp_ack()

tcp_cong_avoid()

tcp_v4_do_rcv()
sk->backlog_rcv()

ip_local_delivery()

tcp_rcv_state_process()

tcp_timewait_state_process() tcp_rcv_sysent_state_process()

tcp_init_metrics()

tcp_init_buffer_space()

tcp_init_cwnd()

tcp_fixup_snd_buffer()

tcp_fixup_rcv_buffer()

tcp_ack_saw_tsamp()

tcp_store_ts_recent()

tcp_v4_rcv()
iproto->handler

27

Figure 12: TCP: output processing

sys_write()

sock_write()

sock_sendmsg()

sock->ops->sendmsg()
tcp_sendmsg()

sk->prot->sendmsg()
tcp_sendmsg()

tcp_push()

tcp_push_pending_frames()

tcp_write_xmit()

tcp_transmit_skb()

tp->af_specific->queue_xmit
ip_queue_xmit() tcp_try_undo_loss()

tcp_packet_delayed()

tcp_may_undo()

tcp_undo_recovery()

skb_timed_out()

tcp_head_timeout()

tcp_update_scoreboard()

tcp_clear_retrans()

tcp_enter_loss()

tcp_fackets_out()

tcp_time_to_recover()

tcp_try_undo_partial()

tcp_check_reno_reordering()

tcp_add_reno_sack()

tcp_fast_retrans_alert()

tcp_remove_reno_sacks()

tcp_moderate_cwnd()

tcp_rmem_shcedule()

tcp_grow_window()

tcp_incr_quick_ack()

tcp_measure_rcv_mss()

tcp_schedule_ack()

tcp_event_data_rcv()

tcp_output.c

28

6.1 TCP Input

TCP input is mainly implemented in net/ipv4/tcp_input.c. This is the largest portion of the
TCP code. It deals with the reception of a TCP packet. The sender and receiver code is tightly
coupled as an entity can be both at the same time.

Incoming packets are made available to the TCP routines from the IP layer by ip_local_delivery()
shown on the left side of Figure 11. This routine gives the packet to the function pointed by
ipproto->handler (see structures in Section 2). For the IPv4 protocol stack, this is tcp_v4_rcv(),
which calls tcp_v4_do_rcv(). The function tcp_v4_do_rcv() in turn calls another function
depending on the TCP state of the connection (for more details, see [6]).

If the connection is established (state is TCP_ESTABLISHED), it calls tcp_rcv_established().
This is the main case that we will examine from now on. If the state is TIME_WAIT, it calls
tcp_timewait_process(). All other states are processed by tcp_rcv_state_process(). For example,
this function calls tcp_rcv_sysent_state_process() if the state is SYN_SENT.

For some TCP states (e.g., CALL_SETUP), tcp_rcv_state_process() and tcp_timewait_process()
have to initialize the TCP structures. They call tcp_init_buffer_space() and tcp_init_metrics().
The latter initializes the congestion window by calling tcp_init_cwnd().

The following subsections describe the actions of the functions shown in Figure 11 and Figure 12.
The function tcp_rcv_established() has two modes of operation: fast path and slow path. We first
describe the slow path, which is easier to understand, and present the fast path afterward. Note
that in the code, the fast path is dealt with first.

6.1.1 tcp_rcv_established(): Slow Path

The slow path code follows the 7 steps defined in RFC 793, plus a few other operations:

• The checksum is calculated with tcp_checksum_complete_user() . If it is incorrect, the
packet is discarded.

• The Protection Against Wrapped Sequence Numbers (PAWS) [14] is done with
tcp_paws_discard().

STEP 1: The sequence number of the packet is checked. If it is not in sequence, the receiver sends
a DupACK with tcp_send_dupack(). The latter may have to implement a SACK
(tcp_dsack_set()) but it finishes by calling tcp_send_ack().

STEP 2: It checks the RST (connection reset) bit (th->rst). If it is on, it calls tcp_reset(). An error
must be passed on to the upper layers.

STEP 3: It is supposed to check security and precedence but this is not implemented.

STEP 4, part 1: It checks SYN bit. If it is on, it calls tcp_reset(). This synchronizes sequence
numbers to initiate a connection.

STEP 4, part 2: It calculates an estimative for the RTT (RTTM) by calling
tcp_replace_ts_recent().

STEP 5: It checks the ACK bit. If this bit is set, the packet brings an acknowledgment and
tcp_ack() is called (more details to come in Section 6.1.3).

29

STEP 6: It checks the URG (urgent) bit. If this bit is set, it calls tcp_urg(). This makes the
receiver tell the process listening to the socket that the data is urgent.

STEP 7, part 1: It processes data on the packet. This is done by calling tcp_data_queue() (more
details in Section 6.1.2 below).

STEP 7, part 2: It checks if there is data to send by calling tcp_data_snd_check(). This function
calls tcp_write_xmit() on the TCP output sector.

STEP 7, part 3: It checks if there are ACKs to send with tcp_ack_snd_check(). This may result in
sending an ACK straight away with tcp_send_ack() or scheduling a delayed ACK with
tcp_send_delayed_ack(). The delayed ACK is stored in tcp->ack.pending().

6.1.2 tcp_data_queue() & tcp_event_data_recv()

The tcp_data_queue() function is responsible for giving the data to the user. If the packet arrived
in order (all previous packets having already arrived), it copies the data to tp->ucopy.iov
(skb_copy_datagram_iovec(skb, 0, tp ->ucopy.iov, chunk)); see structure tcp_opt in Section 3.

If the packet did not arrive in order, it puts it in the out-of-order queue with tcp_ofo_queue().

If a gap in the queue is filled, Section 4.2 of RFC 2581 [2] says that we should send an ACK
immediately (tp->ack.pingpong = 0 and tcp_ack_snd_check() will send the ACK now).

The arrival of a packet has several consequences. These are dealt with by calling
tcp_event_data_recv(). This function first schedules an ACK with tcp_schedule_ack(), and then
estimates the MSS (Maximum Segment Size) with tcp_measure_rcv_mss().

In certain conditions (e.g., if we are in slow start), the receiver TCP should be in QuickACK
mode where ACKs are sent immediately. If this is the situation, tcp_event_data_recv() switches
this on with tcp_incr_quickack(). It may also have to increase the advertised window with
tcp_grow_window().

Finally tcp_data_queue() checks if the FIN bit is set; if it is, tcp_fin() is called.

6.1.3 tcp_ack()

Every time an ACK is received, tcp_ack() is called. The first thing it does is to check if the ACK
is valid by making sure it is within the right hand side of the sliding window (tp->snd_nxt) or
older than previous ACKs. If this is the case, then we can probably ignore it with goto
uninteresting_ack and goto old_ack respectively and return 0.

If everything is normal, it updates the sender’s TCP sliding window with
tcp_ack_update_window() and/or tcp_update_wl(). An ACK may be considered “normal” if it
acknowledges the next section of contiguous data starting from the pointer to the last fully
acknowledged block of data.

If the ACK is dubious, it enters fast retransmit with tcp_fastretrans_alert() (see Section 6.1.4
below). If the ACK is normal and the number of packets in flight is not smaller than the
congestion window, it increases the congestion window by entering slow start/congestion
avoidance with tcp_cong_avoid(). This function implements both the exponential increase in slow
start and the linear increase in congestion avoidance as defined in RFC 793. When we are in
congestion avoidance, tcp_cong_avoid() utilizes the variable snd_cwnd_cnt to determine when to
linearly increase the congestion window.

30

Note that tcp_ack() should not be confused with tcp_send_ack(), which is called by the "receiver"
to send ACKs using tcp_write_xmit().

6.1.4 tcp_fastretransmit_alert()

Under certain conditions, tcp_fast_retransmit_alert() is called by tcp_ack() (it is only called by
this function). To understand these conditions, we have to go through the Linux {NewReno,
SACK, FACK, ECN} finite state machine. This section is copied almost verbatim from a
comment in tcp_input.c. Note that this finite state machine (also known as the ACK state
machine) has nothing to do with the TCP finite state machine. The TCP state is usually
TCP_ESTABLISHED.

The Linux finite state machine can be in any of the following states:

• Open: Normal state, no dubious events, fast path.
• Disorder: In all respects it is "Open", but it requires a bit more attention. It is entered

when we see some SACKs or DupACKs. It is separate from "Open" primarily to move
some processing from fast path to slow path.

• CWR: The congestion window should be reduced due to some congestion notification
event, which can be ECN, ICMP source quench, three duplicate ACKs, or local device
congestion.

• Recovery: The congestion window was reduced, so now we should be fast-
retransmitting.

• Loss: The congestion window was reduced due to an RTO timeout or SACK reneging.

This state is kept in tp->ca_state as TCP_CA_Open, TCP_CA_Disorder, TCP_CA_Cwr,
TCP_CA_Recover or TCP_CA_Loss respectively.

The function tcp_fastretrans_alert() is entered if the state is not "Open", when an ACK is
received or "strange" ACKs are received (SACK, DUPACK, ECN). This function performs the
following tasks:

• It checks flags, ECN and SACK and processes loss information.
• It processes the state machine, possibly changing the state.
• It calls tcp_may_undo() routines in case the congestion window reduction was too

drastic (more on this in Section 6.7.1).
• Updates the scoreboard. The scoreboard keeps track of which packets were

acknowledged or not.
• It calls tcp_cong_down() in case we are in CWR state, and reduces the congestion

window by one every other ACK (this is known as rate halving). The function
tcp_cong_down() is smart because the congestion window reduction is applied over the
entire RTT by using snd_cwnd_cnt() to count which ACK this is.

• It calls tcp_xmit_retransmit_queue() to decide whether anything should be sent.

6.1.5 Fast path

The fast path is entered under certain conditions in tcp_rcv_established(). It uses the header
prediction technique defined in RFC 1323 [14]. This happens when the incoming packet has the
expected sequence number. Although the fast path is faster than the slow path, all of the
following operations are done in order: PAWS is checked, tcp_ack() is called if the packet was an
ACK, tcp_data_snd_check() is called to see if more data can be sent, data is copied to the user

31

with tcp_copy_to_iovec(), the timestamp is stored with tcp_store_ts_recent(),
tcp_event_data_recv() is called, and an ACK is sent in case we are the receiver.

6.2 SACKs

Linux kernel 2.4.20 fully implements SACKs (Selective ACKs) as defined in RFC 2018 [8]. The
connection SACK capabilities are stored in the tp->sack_ok field (FACKs are enabled if the 2nd
bit is set and DSACKs (delayed SACKs) are enabled if the 3rd bit is set). When a TCP connection
is established, the sender and receiver negotiate different options, including SACK.

The SACK code occupies a surprisingly large part of the TCP implementation. More than a dozen
functions and significant parts of other functions are dedicated to implementing SACK. It is still
fairly inefficient code, because the lookup of non-received blocks in the list is an expensive
process due to the linked-list structure of the sk_buff’s.

When a receiver gets a packet, it checks in tcp_data_queue() if the skb overlaps with the previous
one. If it does not, it calls tcp_sack_new_ofo_skb() to build a SACK response.

On the sender side (or receiver of SACKs), the most important function in the SACK processing
is tcp_sacktag_write_queue(); it is called by tcp_ack().

6.3 QuickACKs

At certain times, the receiver enters QuickACK mode, that is, delayed ACKS are disabled. One
example is in slow start, when delaying ACKs would delay the slow start considerably.

The function tcp_enter_quick_ack_mode() is called by tc_rcv_sysent_state_process() because, at
the beginning of the connection, the TCP state should be SYSENT.

6.4 Timeouts

Timeouts are vital for the correct behavior of the TCP functions. They are used, for instance, to
infer packet loss in the network. The events related to registering and triggering the retransmit
timer are depicted in Figure 13 and Figure 14.

Figure 13: Scheduling a timeout

tcp_push_pending_frames()

tcp_check_probe_timer()

tcp_reset_xmit_timer()

32

The setting of the retransmit timer happens when a packet is sent. The function
tcp_push_pending_frames() calls tcp_check_probe_timer(), which may call
tcp_reset_xmit_timer(). This schedules a software interrupt, which is dealt with by non-
networking parts of the kernel.

When the timeout expires, a software interrupt is generated. This interrupt calls timer_bh(),
which calls run_timer_list(). This calls timer->function(), which will in this case be pointing to
tcp_wite_timer(). This calls tcp_retransmit_timer(), which finally calls tcp_enter_loss(). The
state of the Linux machine is then set to CA_Loss and tcp_fastretransmit_alert() schedules the
retransmission of the packet.

Figure 14: Timeout arrival

6.5 ECN

Linux kernel 2.4.20 fully implements ECN (Explicit Congestion Notification) to allow ECN-
capable routers to report congestion before dropping packets. Almost all the code is in the
tcp_ecn.h in the include/net directory. It contains the code to receive and send the different
ECN packet types.

In tcp_ack(), when the ECN bit is on, TCP_ECN_rcv_ecn_echo() is called to deal with the ECN
message. This calls the appropriate ECN message handling routine.

When an ECN congestion notification arrives, the Linux host enters the CWR state. This makes
the host reduce the congestion window by one on every other ACK received. This can be seen in
tcp_fastrestrans_alert() when it calls tcp_cwnd_down().

ECN messages can also be sent by the kernel when the function TCP_ECN_send() is called in
tcp_transmit_skb().

6.6 TCP output

This part of the code (mainly net/ipv4/tcp_output.c) is illustrated in Figure 12. It deals
with packets going out of the host and includes both data packets from the "sender" and ACKs
from the "receiver". The function tcp_transmit_skb(), a crucial operation in the TCP output,
executes the following tasks:

SOFTWARE

INTERRUPT
timer_bh() run_timer_list() tp->retransmit_timer.function

tcp_write_timer()

tcp_retransmit_timer() tcp_enter_loss()

33

• Check sysctl() flags for timestamps, window scaling and SACK.
• Build TCP header and checksum.
• Set SYN packets.
• Set ECN flags.
• Clear ACK event in the socket.
• Increment TCP statistics through TCP_INC_STATS (TcpOutSegs).
• Call ip_queue_xmit().

If there is no error, the function returns; otherwise, it calls tcp_enter_cwr(). This error may
happen when the output queue is full. As we saw in Section 4.3.2, q->enqueue returns an error
when this queue is full. The error is then propagated until here and the congestion control
mechanisms react accordingly.

6.7 Changing the congestion window

The TCP algorithm adjusts its sending rate by reducing or increasing the size of the sending
window. The basic TCP operation is straightforward. When it receives an ACK, it increases the
congestion window by calling tcp_cong_avoid() either linearly or exponentially, depending on
where we are (congestion avoidance or slow start). When it detects that a packet is lost in the
network, it reduces the window accordingly.

TCP detects a packet loss when:

• The sender receives a triple ACK. This is done in tcp_fastretrans_alert() using the
is_dupack variable.

• A timeout occurs, which causes tcp_enter_loss() to be called (see Section 6.6). In this
case, the congestion window is set to 1 and ssthresh (the slow-start threshold) is set to
half of the congestion window when the packet is lost. This last operation is done in
tcp_recalc_ssthresh().

• TX Queue is full. This is detected in tcp_transmit_skb() (the error is propagated from
q->enqueue in the sub-IP layer) which calls tcp_enter_cwr().

• SACK detects a hole.

Apart from these situations, the Linux kernel modifies the congestion window in several more
places; some of these changes are based on standards, others are Linux specific. In the following
sections, we describe these extra changes.

6.7.1 Undoing the Congestion Window

One of the most logically complicated parts of the Linux kernel is when it decides to undo a
congestion window update. This happens when the kernel finds that a window reduction should
not have been made. This can be found in two ways: the receiver can inform by a duplicate
SACK (D-SACK) that the incoming segment was already received; or the Linux TCP sender can
detect unnecessary retransmissions by using the TCP timestamp option attached to each TCP
header. These detections are done in the tcp_fastretransmit_alert(), which calls the appropriate
undo operations depending in which state the Linux machine is: tcp_try_undo_recovery(),
tcp_undo_cwr(), tcp_try_undo_dsack(), tcp_try_undo_partial() or tcp_try_undo_loss(). They all
call tcp_may_undo_loss().

34

6.7.2 Congestion Window Moderation

Linux implements the function tcp_moderate_cwnd(), which reduces the congestion window
whenever it thinks that there are more packets in flight than there should be based on the value of
snd_cwnd. This feature is specific to Linux and is specified neither in an IETF RFC nor in an
Internet Draft. The purpose of the function is to prevent large transient bursts of packets from
being sent out during “dubious conditions”. This is often the case when an ACK acknowledges
more than three packets. As a result, the magnitude of the congestion window reduction can be
very large at large congestion window sizes, and hence reduce throughput.

The primary calling functions for tcp_moderate_cwnd() are tcp_undo_cwr(),
tcp_try_undo_recovery(), tcp_try_to_open() and tcp_fastretrans_alert(). In all cases, the function
call is triggered by conditions being met in tcp_fast_retrans_alert().

6.7.3 Congestion Window Validation

Linux implements congestion window validation defined in RFC 2861 [15]. With this technique,
the sender reduces the congestion window size if it has not been fully used for one RTO
estimate's worth of time.

This is done by tcp_cwnd_restart(), which is called if necessary by tcp_event_data_sent(). The
function tcp_event_data_sent() is called by tcp_transmit_skb() every time TCP transmits a
packet.

7 UDP

This section reviews the UDP part of the networking code in the Linux kernel. This is a
significantly simpler piece of code than the TCP part. The absence of reliable delivery and
congestion control allows for a very simple design.

Most of the UDP code is located in one file: net/ipv4/udp.c

The UDP layer is depicted in Figure 15. When a packet arrives from the IP layer through
ip_local_delivery(), it is passed on to udp_rcv() (this is the equivalent of tcp_v4_rcv() in the TCP
part). The function udp_rcv() puts the packet in the socket queue for the user application with
sock_put(). This is the end of the delivery of the packet.

When the user reads the packet, e.g. with the recvmsg() system call, inet_recvmsg() is called,
which in this case calls udp_recvmsg(), which calls skb_rcv_datagram(). The function
skb_rcv_datagram() then gets the packets from the queue and fills the data structure that will be
read in user space.

When a packet arrives from the user, the process is simpler. The function inet_sendmsg() calls
udp_sendmsg(), which builds the UDP datagram with information taken from the sk structure
(this information was put there when the socket was created and bound to the address).

Once the UDP datagram is built, it is passed to ip_build_xmit(), which builds the IP packet with
the possible help of ip_build_xmit_slow(). If, for some reason, the packet could not be transmitted
(e.g., if the outgoing ring buffer is full), the error is propagated to udp_sendmsg(), which updates
statistics (nothing else is done because UDP is a non-reliable protocol).

35

Once the IP packet has been built, it is passed on to ip_output(), which finalizes the delivery of
the packet to the lower layers.

Figure 15: UDP

8 The socket API

The previous sections have identified events inside the kernel. The main “actor” of the previous
sections was the packet. In this section, we explain the relationships between events in system
space and events in user space.

Applications use the socket interface to create connections to other hosts and/or to send
information to the other end. We emphasize the chain of events generated in the TCP code when
the connect() system called is used.

All network system calls reach sys_socketcall(), which gets the call parameters from the user
(copy_from_user(a, args, nargs[call])) and calls the appropriate kernel function.

8.1 socket()

When a user invokes the socket() system call, this calls sys_socket() inside the kernel (see file
net/socket.c). The sys_socket() function does two simple things. First, it calls sock_create(),
which allocates a new sock structure where all the information about the socket/connection is

inet_rcvmsg()

udp_rcvmsg()

skb_rcv_datafram()

…

sock_put()

udp_queue_rcv_skb() udp_rcv()

ip_local_delivery()

inet_sendmsg()

udp_sendmsg()

ip_build_xmit()

ip_build_xmit_slow()

skb->dst->output
ip_output()

36

stored. Second, it calls sock_map_fd(), which maps the socket to a file descriptor. In this way, the
application can access the socket as if it were a file—a typical Unix feature.

8.2 bind()

The bind() system call triggers sys_bind(), which simply puts information about the destination
address and port in the sock structure.

8.3 listen()

The listen() system call, which triggers sys_listen(), calls the appropriate listen function for this
protocol. This is pointed by sock ->ops->listen(sock, backlog). In the case of TCP, the listen
function is inet_listen(), which in turn calls tcp_listen_start().

8.4 accept() and connect()

The accept() system call triggers sys_accept(), which calls the appropriate accept function for that
protocol (see sock->ops->accept()). In the case of TCP, the accept function is tcp_accept().

When a user invokes the connect() system call, the function sys_connect() is called inside the
kernel. UDP has no connect primitive because it is a connectionless protocol. In the case of TCP,
the function tcp_connect() is called (by calling sock ->ops->connect() on the socket). The
tcp_connect() function initializes several fields of the tcp_opt structure, and an skb for the SYN
packet is filled and transmitted at the end of the function.

Meanwhile, the server has created a socket, bound it to a port and called listen() to wait for a
connection. This changed the state of the socket to LISTENING. When a packet arrives (which
will be the TCP SYN packet sent by the client), this is dealt with by tcp_rcv_state_process(). The
server then replies with a SYNACK packet that the client will process in
tcp_rcv_synsent_state_process(); this is the state that the client enters after sending a SYN
packet.

Both tcp_rcv_state_process() (in the server) and tcp_rcv_sysent_state_process() (in the client)
have to initialize some other data in the tcp_opt structure. This is done by calling
tcp_init_metrics() and tcp_initialize_rcv_mss().

Both the server and the client acknowledge these packets and enter the ESTABLISHED state.
From now on, every packet that arrives is handled by tcp_rcv_established().

8.5 write()

Every time a user writes in a socket, this goes through the socket linkage to inet_sendmsg(). The
function sk->prot->sendmsg() is called, which in turn calls tcp_sendmsg() in the case of TCP or
udp_sendmsg() in the case of UDP. The next chain of events was described in the previous
sections.

37

8.6 close()

When the user closes the file descriptor corresponding to this socket, the file system code calls
sock_close(), which calls sock_release() after checking that the inode is valid. The function
sock_release() calls the appropriate release function, in our case inet_release(), before updating
the number of sockets in use. The function inet_release() calls the appropriate protocol-closing
function, which is tcp_close() in the case of TCP. The latter function sends an active reset with
tcp_send_active_reset() and sets the state to TCP_CLOSE_WAIT.

9 Conclusion

In this technical report, we have documented how the networking code is structured in release
2.4.20 of the Linux kernel. First, we gave an overview, showing the relevant branches of the code
tree and explaining how incoming and outgoing TCP segments are handled. Next, we reviewed
the general data structures (sk_buff and sock) and detailed TCP options. Then, we described the
sub-IP layer and highlighted the difference in the handling of interrupts between NAPI-based and
pre-NAPI device drivers; we also described interrupt coalescence, an important technique for
gigabit end-hosts. In the next section, we described the network layer, which includes IP, ARP
and ICMP. Then we delved into TCP and detailed TCP input, TCP output, SACKs, QuickACKs,
timeouts and ECN; we also documented how TCP’s congestion window is adjusted. Next, we
studied UDP, whose code is easier to understand than TCP’s. Finally, we mapped the socket API,
well-known to Unix networking programmers, to kernel functions.

The need for such a document arises from the current gap between the abundant literature aimed
at Linux beginners and the Linux kernel mailing list where Linux experts occasionally distil some
of their wisdom. Because the technology evolves quickly and the Linux kernel code frequently
undergoes important changes, it would be useful to keep up-to-date descriptions of different parts
of the kernel (not just the networking code). We have experienced that this is a time-consuming
endeavor, but documenting entangled code (the Linux kernel code notoriously suffers from a lack
of code clean-up and reengineering) is the only way for projects like ours to understand in detail
what the problems are, and to devise a strategy for solving them.

For the sake of conserving time, several important aspects have not been considered in this
document. It would be useful to document how the IPv6 code is structured, as well as the Stream
Control Transmission Protocol (SCTP). The description of SACK also deserves more attention,
as we have realized that this part of the code is sub-optimal and causes problems in long-distance
gigabit networks. Last, it would be useful to update this document to a 2.6.x version of the kernel.

Acknowledgments

We would like to thank Antony Antony, Gareth Fairey, Marc Herbert, Éric Lemoine and Sylvain
Ravot for their useful feedback. Part of this research was funded by the FP5/IST Program of the
European Union (DataTAG project, grant IST-2001-32459).

38

Acronyms

ACK Acknowledgment

API Application Programming Interface

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

BOOTP Boot Protocol

CBQ Class-Based Queuing

CPU Central Processing Unit

DMA Direct Memory Access

DupACK Duplicate Acknowledgment

ECN Explicit Congestion Notification

FIB Forward Information Base

FIFO First In First Out

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IETF Internet Engineering Task Force

I/O Input/Output

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

IRQ Interrupt Request

ISR Interrupt Service Routine

LAN Local Area Network

MAC Media Access Control

MSS Maximum Segment Size

MTU Maximum Transfer Unit

39

NAPI New Application Programming Interface

NIC Network Interface Card

PAWS Protect Against Wrapped Sequence numbers

PIO Program Input/Output

QuickACK Quick Acknowledgment

RED Random Early Discard

RFC Request For Comment (IETF specification)

RST Reset (TCP state)

RTT Round Trip Time

SACK Selective Acknowledgment

SCTP Stream Control Transmission Protocol

SMP Symmetric Multi-Processing

SYN Synchronize (TCP state)

TCP Transmission Control Protocol

UDP User Datagram Protocol

References

[1] Linux kernel 2.4.20. Available from The Linux Kernel Archives at:
http://www.kernel.org/pub/linux/kernel/v2.4/patch-2.4.20.bz2

[2] M. Allman, V. Paxson and W. Stevens, RFC 2581: TCP Congestion Control, IETF, April
1999.

[3] J. Crowcroft and I. Phillips, TCP/IP & Linux Protocol Implementation: Systems Code for
the Linux Internet, Wiley, 2002.

[4] J.H. Salim, R. Olsson and A. Kuznetsov, “Beyond Softnet”. In Proc. Linux 2.5 Kernel
Developers Summit, San Jose, CA, USA, March 2001. Available at
<http://www.cyberus.ca/~hadi/usenix-paper.tgz>.

[5] J. Cooperstein, Linux Kernel 2.6 – New Features III: Networking. Axian, January 2003.
Available at <http://www.axian.com/pdfs/linux_talk3.pdf>.

[6] W.R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

[7] G.R. Wright and W.R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation,
Addison-Wesley, 1995.

40

[8] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, RFC 2018, TCP Selective
Acknowledgment Options, IETF, October 1996.

[9] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky, RFC 2883: An Extension to the
Selective Acknowledgement (SACK) Option for TCP, IETF, July 2000.

[10] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, 2nd Edition, O’Reilly,
2002.

[11] A. Rubini and J. Corbet, Linux Device Drivers, 2nd Edition, O’Reilly, 2001.

[12] http://tldp.org/HOWTO/KernelAnalysis-HOWTO-5.html

[13] http://www.netfilter.org/unreliable -guides/kernel-hacking/lk-hacking-guide.html

[14] V. Jacobson, R. Braden and D. Borman, RFC 1323: TCP Extensions for High
Performance, IETF, May 1992.

[15] M. Handley, J. Padhye and S. Floyd, RFC 2861: TCP Congestion Window Validation,
IETF, June 2000.

[16] http://www.netfilter.org/

[17] J. C. Mogul and K. K. Ramakrishnan. “Eliminating Receive Livelock in an Interrupt-
Driven Kernel”. In Proc. of the 1996 Usenix Technical Conference, pages 99–111, 1996.

Biographies

Miguel Rio is a Lecturer at the Department of Electronic and Electrical Engineering, University
College London. He previously worked on Performance Evaluation of High Speed Networks in
the DataTAG and MBNG projects and on Programmable Networks on the Promile project. He
holds a Ph.D. from the University of Kent at Canterbury, as well as M.Sc. and B.Sc. degrees from
the University of Minho, Portugal. His research interests include Programmable Networks,
Quality of Service, Multicast and Protocols for Reliable Transfers in High-Speed Networks.

Mathieu Goutelle is a Ph.D. student in the INRIA RESO team of the LIP Laboratory at ENS
Lyon. He is a member of the DataTAG Project and currently works on the behavior of TCP over
a DiffServ-enabled gigabit network. In 2002, he graduated as a generalist engineer (equiv. to an
M.Sc. in electrical and mechanical engineering) from Ecole Centrale in Lyon, France. In 2003, he
received an M.Sc. in Computer Science from ENS Lyon.

Tom Kelly received a Mathematics degree from the University of Oxford in July 1999. His Ph.D.
research on "Engineering Internet Flow Controls" was completed in February 2004 at the
University of Cambridge. He has held research positions as an intern at AT&T Labs Research in
1999, an intern at the ICSI Center for Internet Research in Berkeley during 2001, and an IPAM
research fellowship at UCLA in 2002. During the winter of 2002–03 he worked for CERN on the
EU DataTAG project implementing the Scalable TCP proposal for high-speed wide area data
transfer. His research interests include middleware, networking, distributed systems and computer
architecture.

Richard Hughes-Jones leads e-science and Trigger and Data Acquisition development in the
Particle Physics group at Manchester University. He has a Ph.D. in Particle Physics and has
worked on Data Acquisition and Network projects for over 20 years, including evaluating and

41

field-testing OSI transport protocols and products. He is secretary of the Particle Physics
Network Coordinating Group which has the remit to support networking for PPARC funded
researchers. Within the UK GridPP project he is deputy leader of the network workgroup and is
active in the DataGrid networking work package (WP7). He is also responsible for the High
Throughput investigations in the UK e-Science MB-NG project to investigate QoS and various
traffic engineering techniques including MPLS. He is a member of the Global Grid Forum and is
co-chair of the Network Measurements Working Group. He was a member of the Program
Committee of the 2003 PFLDnet workshop, and is a member of the UKLIGHT Technical
Committee. His current interests are in the areas of real-time computing and networking including
the performance of transport protocols over LANs, MANs and WANs, network management and
modeling of Gigabit Ethernet components.

J.P. Martin-Flatin is Technical Manager of the European FP5/IST DataTAG Project at CERN,
where he coordinates research activities in gigabit networking, Grid networking and Grid
middleware. Prior to that, he was a principal technical staff member with AT&T Labs Research
in Florham Park, NJ, USA, where he worked on distributed network management, information
modeling and Web-based management. He holds a Ph.D. degree in Computer Science from the
Swiss Federal Institute of Technology in Lausanne (EPFL). His research interests include
software engineering, distributed systems and IP networking. He is the author of a book, Web-
Based Management of IP Networks and Systems, published in 2002 by Wiley. He is a senior
member of the IEEE and a member of the ACM. He is a co-chair of the GGF Data Transport
Research Group and a member of the IRTF Network Management Research Group. He was a co-
chair of GNEW 2004 and PFLDnet 2003.

Yee-Ting Li received an M.Sc. degree in Physics from the University of London in August 2001.
He is now studying for a Ph.D. with the Centre of Excellence in Networked Systems at University
College London, UK. His research interests include IP-based transport protocols, network
monitoring, Quality of Service (QoS) and Grid middleware.

