
1 

 

Technical Report DataTAG-2004-1 
FP5/IST DataTAG Project 

 
 

A Map of the Networking Code 
in Linux Kernel 2.4.20 

 
M. Rio et al. 

 

31 March 2004 
 
 
 
 

 

            www.datatag.org 
EU grant IST 2001-32459 



2 

 

A Map of the Networking Code in Linux Kernel 2.4.20 
 

Technical Report DataTAG-2004-1, 31 March 2004 

 

 
Miguel Rio 

Department of Physics and Astronomy 
University College London 

Gower Street 
London WC1E 6BT 

UK 
E-mail: M.Rio@ee.ucl.ac.uk 

Web: http://www.ee.ucl.ac.uk/mrio/ 
 

 
Mathieu Goutelle  

LIP Laboratory, INRIA/ReSO Team 
ENS Lyon 

46 allée d'Italie  
69364 Lyon Cedex 07 

France 
E-mail: Mathieu.Goutelle@ecl2002.ec-lyon.fr 
Web: http://perso.ens-lyon.fr/mathieu.goutelle/ 

 
 

Tom Kelly 
Laboratory for Communication Engineering 

Cambridge University 
William Gates Building 

15 J.J. Thomson Avenue 
Cambridge CB3 0FD 

UK 
E-mail: ctk21@cam.ac.uk 

Web: http://www-lce.eng.cam.ac.uk/~ctk21/ 
 

 
Richard Hughes-Jones 

Department of Physics and Astronomy 
University of Manchester 

Oxford Road 
Manchester M13 9PL 

UK 
E-mail: R.Hughes-Jones@man.ac.uk 

Web: http://www.hep.man.ac.uk/~rich/ 

 
Jean-Philippe Martin-Flatin 

IT Department 
CERN 

1211 Geneva 23 
Switzerland 

E-mail: jp.martin-flatin@ieee.org 
Web: http://cern.ch/jpmf/ 

 

 
Yee-Ting Li 

Department of Physics and Astronomy 
University College London 

Gower Street 
London WC1E 6BT 

UK 
E-mail: ytl@cs.ucl.ac.uk 

Web: http://www.hep.ucl.ac.uk/~ytl/ 
 

 
Abstract 

In this technical report, we describe the structure and organization of the 
networking code of Linux kernel 2.4.20. This release is the first of the 2.4 branch 
to support network interrupt mitigation via a mechanism known as NAPI. We 
describe the main data structures, the sub-IP layer, the IP layer, and two 
transport layers: TCP and UDP. This material is meant for people who are 
familiar with operating systems but are not Linux kernel experts. 
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1 Introduction 

When we investigated the performance of gigabit networks and end-hosts in the DataTAG 
testbed, we soon realized that some losses occurred in end-hosts, and that it was not clear where 
these losses occurred. To get a better understanding of packet losses and buffer overflows, we 
gradually built a picture of how the networking code of the Linux kernel works, and instrumented 
parts of the code where we suspected that losses could happen unnoticed. 

This report documents our understanding of how the networking code works in Linux kernel 
2.4.20 [1]. We selected release 2.4.20 because, at the time we began writing this report, it was the 
latest stable release of the Linux kernel (2.6 had not been released yet), and because it was the 
first sub-release of the 2.4 tree to support NAPI (New Application Programming Interface [4]), 
which supports network interrupt mitigation and thereby introduces a major change in the way 
packets are handled in the kernel. Until 2.4.20 was released, NAPI was one of the main novelties 
in the development branch 2.5 and was only expected to appear in 2.6; it was not supported by the 
2.4 branch up to 2.4.19 included. For more introductory material on NAPI and the new 
networking features expected to appear in Linux kernel 2.6, see Cooperstein’s online tutorial [5]. 

In this document, we describe the paths through the kernel followed by IP (Internet Protocol) 
packets when they are received or transmitted from a host. Other protocols such as X.25 are not 
considered here. In the lower layers, often known as the sub-IP layers, we concentrate on the 
Ethernet protocol and ignore other protocols such as ATM (Asynchronous Transfer Mode). 
Finally, in the IP code, we describe only the IPv4 code and let IPv6 for future work. Note that the 
IPv6 code is not vastly different from the IPv4 code as far as networking is concerned (larger 
address space, no packet fragmentation, etc). 

The reader of this report is expected to be familiar with IP networking. For a primer on the 
internals of the Internet Protocol (IP) and Transmission Control Protocol (TCP), see Stevens [6] 
and Wright and Stevens [7]. Linux kernel 2.4.20 implements a variant of TCP known as 
NewReno, with the congestion control algorithm specified in RFC 2581 [2], and the selective 
acknowledgment (SACK) option, which is specified in RFCs 2018 [8] and 2883 [9]. The classic 
introductory books to the Linux kernel are Bovet and Cesati [10] and Crowcroft and Phillips [3]. 
For Linux device drivers, see Rubini et al. [11]. 

In the rest of this report, we follow a bottom-up approach to investigate the Linux kernel. In 
Section 2, we give the big picture of the way the networking code is structured in Linux. A brief 
introduction to the most relevant data structures is given in Section 3. In Section 4, the sub-IP 
layer is described. In Section 5, we investigate the network layer (IP unicast, IP multicast, ARP, 
ICMP). TCP is studied in Section 6 and UDP in Section 7. The socket Application Programming 
Interface (API) is described in Section 8. Finally, we present some concluding remarks in 
Section 9. 
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2 Networking Code: The Big Picture 

Figure 1 depicts where the networking code is located in the Linux kernel. Most of the code is in 
net/ipv4. The rest of the relevant code is in net/core and net/sched. The header files can 
be found in include/linux and include/net. 

 

Figure 1: Networking code in the Linux kernel tree 
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Figure 2 and Figure 3 present an overview of the packet flows through the kernel. They indicate 
the areas where the hardware and driver code operate, the role of the kernel protocol stack and the 
kernel/application interface. 

Figure 2: Handling of an incoming TCP segment 
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Figure 3: Handling of an outgoing TCP segment 
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3 General Data Structures 

The networking part of the kernel uses mainly two data structures: one to keep the state of a 
connection, called sock (for “socket”), and another to keep the data and status of both incoming 
and outgoing packets, called sk_buff (for “socket buffer”). Both of them are described in this 
section. We also include a brief description of tcp_opt, a structure that is part of the sock structure 
and is used to maintain the TCP connection state. The details of TCP will be presented in 
section 6. 

3.1 Socket buffers 

The sk_buff data structure is defined in include/linux/skbuff.h. 

When a packet is processed by the kernel, coming either from user space or from the network 
card, one of these data structures is created. Changing a field in a packet is achieved  by updating 
a field of this data structure. In the networking code, virtually every function is invoked with an 
sk_buff (the variable is usually called skb) passed as a parameter. 

The first two fields are pointers to the next and previous sk_buff’s in the linked list (packets are 
frequently stored in linked lists or queues); sk_buff_head points to the head of the list. 

The socket that owns the packet is stored in sk  (note that if the packet comes from the network, 
the socket owner will be known only at a later stage). 

The time of arrival is stored in a timestamp called stamp. The dev field stores the device from 
which the packet arrived, if the packet is for input. When the device to be used for transmission is 
known (for example, by inspection of the routing table), the dev field is updated correspondingly 
(see sections 4.1 and 4.3). 

struct sk_buff { 
 /* These two members must be first. */ 
 struct sk_buff *next;        /* Next buffer in list */ 
 struct sk_buff *prev;        /* Previous buffer in list */ 
 struct sk_buff_head *list;   /* List we are on */ 
 struct sock *sk;             /* Socket we are owned by */ 
 struct timeval stamp;        /* Time we arrived */ 
 struct net_device *dev;      /* Device we arrived on/are leaving by */ 

The transport section is a union that points to the corresponding transport layer structure (TCP, 
UDP, ICMP, etc). 

 /* Transport layer header */ 
 union 
 { 
  struct tcphdr  *th; 
  struct udphdr  *uh; 
  struct icmphdr *icmph; 
  struct igmphdr *igmph; 
  struct iphdr   *ipiph; 
  struct spxhdr  *spxh; 
  unsigned char  *raw; 
 } h; 
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The network layer header points to the corresponding data structures (IPv4, IPv6, ARP, raw, etc). 

 /* Network layer header */ 
 union 
 { 
  struct iphdr   *iph; 
  struct ipv6hdr *ipv6h; 
  struct arphdr  *arph; 
  struct ipxhdr  *ipxh; 
  unsigned char  *raw; 
 } nh; 

The link layer is stored in a union called mac. Only a special case for Ethernet is included. Other 
technologies will use the raw fields with appropriate casts. 

 /* Link layer header */ 
 union  
 {  
    struct ethhdr *ethernet; 
    unsigned char *raw; 
 } mac; 
 
 struct  dst_entry *dst; 

Extra information about the packet such as length, data length, checksum, packet type, etc. is 
stored in the structure as shown below. 

 char  cb[48]; 
 unsigned int  len;         /* Length of actual data */ 
 unsigned int  data_len; 
 unsigned int csum;        /* Checksum */ 
 unsigned char  __unused,    /* Dead field, may be reused */ 
          cloned,      /* head may be cloned (check refcnt 
         to be sure) */ 
          pkt_type,    /* Packet class */ 
          ip_summed;   /* Driver fed us an IP checksum */ 
 __u32  priority;    /* Packet queueing priority */ 
 atomic_tusers;              /* User count - see datagram.c,tcp.c */ 
 unsigned short protocol;    /* Packet protocol from driver */ 
 unsigned short security;    /* Security level of packet */ 
 unsigned int truesize;    /* Buffer size */ 
 unsigned char *head;        /* Head of buffer */ 
 unsigned char *data;        /* Data head pointer*/ 
 unsigned char *tail;        /* Tail pointer */ 
 unsigned char *end;         /* End pointer */ 

3.2 sock 

The sock data structure keeps data about a specific TCP connection (e.g., TCP state) or virtual 
UDP connection. Whenever a socket is created in user space, a sock  structure is allocated. 

The first fields contain the source and destination addresses and ports of the socket pair. 

struct sock { 
 /* Socket demultiplex comparisons on incoming packets. */ 
 __u32          daddr;   /* Foreign IPv4 address */ 
 __u32          rcv_saddr;  /* Bound local IPv4 address */ 
 __u16          dport;   /* Destination port  */ 
 unsigned short num;   /* Local port */ 
 int            bound_dev_if; /* Bound device index if != 0 */ 
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Among many other fields, the sock  structure contains protocol-specific information. These fields 
contain state information about each layer. 

 union { 
  struct ipv6_pinfo af_inet6; 
 } net_pinfo; 
 
 union { 
  struct tcp_opt  af_tcp; 
  struct raw_opt  tp_raw4; 
  struct raw6_opt  tp_raw; 
  struct spx_opt  af_spx; 
 } tp_pinfo; 
 
}; 

3.3 TCP options 

One of the main components of the sock  structure is the TCP option field (tcp_opt). Both IP and 
UDP are stateless protocols with a minimum need to store information about their connections. 
TCP, however, needs to store a large set of variables. These variables are stored in the fields of 
the tcp_opt structure; only the most relevant fields are shown below (comments are self-
explanatory). 

struct tcp_opt { 
 int tcp_header_len; /* Bytes of tcp header to send */ 
 __u32 rcv_nxt;  /* What we want to receive next  */ 
 __u32 snd_nxt;  /* Next sequence we send  */ 
 __u32 snd_una;  /* First byte we want an ack for */ 
 __u32 snd_sml; /* Last byte of the most recently transmitted 
       * small packet */ 
 __u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */ 
 __u32 lsndtime; /* timestamp of last sent data packet 
       * (for restart window) */ 
 
 /* Delayed ACK control data */ 
 struct { 
  __u8 pending;    /* ACK is pending */ 
  __u8 quick;     /* Scheduled number of quick acks */ 
  __u8 pingpong;    /* The session is interactive */ 
  __u8 blocked;    /* Delayed ACK was blocked by socket lock */ 
  __u32 ato;     /* Predicted tick of soft clock */ 
  unsigned long timeout; /* Currently scheduled timeout */ 
  __u32 lrcvtime;    /* timestamp of last received data packet */ 
  __u16 last_seg_size;  /* Size of last incoming segment */ 
  __u16 rcv_mss;    /* MSS used for delayed ACK decisions */  
 } ack; 
 
 /* Data for direct copy to user */ 
 struct { 
  struct sk_buff_head prequeue; 
  struct task_struct *task; 
  struct iovec  *iov; 
  int   memory; 
  int   len; 
 } ucopy; 
 
 __u32 snd_wl1;    /* Sequence for window update */ 
 __u32 snd_wnd;    /* The window we expect to receive */ 
 __u32 max_window;    /* Maximal window ever seen from peer  */ 
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 __u32 pmtu_cookie;    /* Last pmtu seen by socket */ 
 __u16 mss_cache;    /* Cached effective mss, not including SACKS */ 
 __u16 mss_clamp;    /* Maximal mss, negotiated at connection setup */ 
 __u16 ext_header_len; /* Network protocol overhead (IP/IPv6 options) */ 
 __u8 ca_state;    /* State of fast-retransmit machine */ 
 __u8 retransmits;    /* Number of unrecovered RTO timeouts */ 
 
 __u8 reordering;    /* Packet reordering metric */ 
 __u8 queue_shrunk;   /* Write queue has been shrunk recently */ 
 __u8 defer_accept;    /* User waits for some data after accept() */ 
 
/* RTT measurement */ 
 
 __u8 backoff; /* backoff     */ 
 __u32 srtt;  /* smothed round trip time << 3  */ 
 __u32 mdev;  /* medium deviation    */ 
 __u32 mdev_max; /* maximal mdev for the last rtt period */ 
 __u32 rttvar; /* smoothed mdev_max    */ 
 __u32 rtt_seq; /* sequence number to update rttvar */ 
 __u32 rto;  /* retransmit timeout   */ 
 __u32 packets_out; /* Packets which are "in flight"  */ 
 __u32 left_out; /* Packets which leaved network  */ 
 __u32 retrans_out; /* Retransmitted packets out  */ 
 
/* Slow start and congestion control (see also Nagle, and Karn & Partridge) */ 
 
  __u32 snd_ssthresh;    /* Slow start size threshold   */ 
  __u32 snd_cwnd;    /* Sending congestion window   */ 
  __u16 snd_cwnd_cnt;    /* Linear increase counter   */ 
 __u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */ 
 __u32 snd_cwnd_used; 
 __u32 snd_cwnd_stamp; 
 
/* Two commonly used timers in both sender and receiver paths. */ 
 
 unsigned long  timeout; 
  struct timer_list retransmit_timer; /* Resend (no ack) */ 
  struct timer_list delack_timer;  /* Ack delay */ 
 
 struct sk_buff_head out_of_order_queue; /* Out of order segments */ 
 struct tcp_func *af_specific;  /* Operations which are 
                                 * AF_INET{4,6} specific */ 
 struct sk_buff  *send_head;  /* Front of stuff to transmit */ 
 struct page  *sndmsg_page;  /* Cached page for sendmsg */ 
 u32   sndmsg_off;  /* Cached offset for sendmsg */ 
 
  __u32 rcv_wnd; /* Current receiver window     */ 
 __u32 rcv_wup; /* rcv_nxt on last window update sent   */ 
 __u32 write_seq; /* Tail(+1) of data held in tcp send buffer  */ 
 __u32 pushed_seq; /* Last pushed seq, required to talk to windows */ 
 __u32 copied_seq; /* Head of yet unread data     */ 
 
/* Options received (usually on last packet, some only on SYN packets) */ 
 
 char tstamp_ok, /* TIMESTAMP seen on SYN packet  */ 
   wscale_ok, /* Wscale seen on SYN packet  */ 
   sack_ok; /* SACK seen on SYN packet   */ 
 char saw_tstamp; /* Saw TIMESTAMP on last packet  */ 
      __u8 snd_wscale; /* Window scaling received from sender */ 
      __u8 rcv_wscale; /* Window scaling to send to receiver */ 
 __u8 nonagle; /* Disable Nagle algorithm?             */ 
 __u8 keepalive_probes; /* num of allowed keep alive probes */ 
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/* PAWS/RTTM data */ 
 
        __u32 rcv_tsval; /* Time stamp value               */ 
        __u32 rcv_tsecr; /* Time stamp echo reply          */ 
        __u32 ts_recent; /* Time stamp to echo next   */ 
        long ts_recent_stamp; /* Time we stored ts_recent (for aging) */ 
 
/* SACKs data */ 
 
 __u16 user_mss;   /* mss requested by user in ioctl  */ 
 __u8 dsack;  /* D-SACK is scheduled   */ 
 __u8 eff_sacks; /* Size of SACK array to send with next packet */ 
 struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */ 
 struct tcp_sack_block selective_acks[4]; /* The SACKs themselves */ 
 
 __u32 window_clamp; /* Maximal window to advertise  */ 
 __u32 rcv_ssthresh; /* Current window clamp   */ 
 __u8 probes_out; /* unanswered 0 window probes  */ 
 __u8 num_sacks; /* Number of SACK blocks   */ 
 __u16 advmss; /* Advertised MSS    */ 
 
 __u8 syn_retries;  /* num of allowed syn retries   */ 
 __u8 ecn_flags;  /* ECN status bits.    */ 
 __u16 prior_ssthresh; /* ssthresh saved at recovery start */ 
 __u32 lost_out;  /* Lost packets    */ 
 __u32 sacked_out;  /* SACK'd packets    */ 
 __u32 fackets_out;  /* FACK'd packets    */ 
 __u32 high_seq;  /* snd_nxt at onset of congestion  */ 
 __u32 retrans_stamp; /* Timestamp of the last retransmit, 
         * also used in SYN-SENT to remember 
         * stamp of the first SYN   */ 
 __u32 undo_marker; /* tracking retrans started here   */ 
 int undo_retrans; /* number of undoable retransmissions  */ 
 __u32 urg_seq; /* Seq of received urgent pointer   */ 
 __u16 urg_data; /* Saved octet of OOB data and control flags */ 
 __u8 pending; /* Scheduled timer event    */ 
 __u8 urg_mode; /* In urgent mode     */ 
 __u32 snd_up; /* Urgent pointer     */ 
 
}; 
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4 Sub-IP Layer 

This section describes the reception and handling of packets by the hardware and the Network 
Interface Card (NIC) driver. This corresponds to layers 1 and 2 in the classical 7-layer network 
model. The driver and the IP layer are tightly bound with the driver using methods from both the 
kernel and the IP layer. 

4.1 Memory management 

The allocation of a packet descriptor is done in net/core/skbuff.c by the alloc_skb() 
function. This function is used each time a new buffer is needed, especially in the driver code. It 
gets the header from the pool of packets of the current processor (skb_head_from_pool). It 
allocates memory for the data payload (data area) with kmalloc()and sets up the data pointer and 
the state of the descriptor. It collects some memory statistics to debug all memory leaks. 

Some packets are allocated through skb_clone() when only the meta-data (in the sk_buff struct) 
need to be duplicated for the same packet data. This is the case for packet between TCP and IP on 
the transmitter side. The difference between the two types of allocation lies in the deallocation: 
skb's allocated by alloc_skb() are de-allocated at ACK arrival time, while those allocated by 
skb_clone() are de-allocated after receiving transmit completion events from the NIC. 

The deallocation of sk_buff is done by the internal function __kfree_skb() (called by kfree_skb() 
in net/core/skbuff.c). It releases the dst fields with dst_release(). This field contains, among 
other things, the destination device of the packet. The function calls skb->destructor() if present 
to do some specific operations before cleaning. De-allocating an skb involves finally cleaning it 
(for future reuse) with skb_headerinit(), freeing its data part if it is not a clone, and inserting it 
into a free skb pool for future reuse with kfree_skbmem(). 

4.2 Packet Reception 

The main files that deal with transmitting and receiving the frames below the IP network layer 
are: 

• include/linux/netdevice.h 
• net/core/skbuff.c 
• net/core/dev.c 
• net/dev/core.c 
• arch/i386/irq.c  
• drivers/net/net_init.c 
• net/sched/sch_generic.c 

As well as containing data for the higher layers, the packets are associated with descriptors that 
provide information on the physical location of the data, the length of the data, and extra control 
and status information. Usually the NIC driver sets up the packet descriptors and organizes them 
as ring buffers when the driver is loaded. Separate ring buffers are used by the NIC’s Direct 
Memory Access (DMA) engine to transfer packets to and from main memory. The ring buffers 
(both the tx_ring for transmission and the rx_ring for reception) are just arrays of skbuff’s, 
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managed by the interrupt handler (allocation is performed on reception and deallocation on 
transmission of the packets). 

 

 

Figure 4: Packet reception with the old API until Linux kernel 2.4.19 

 
Figure 4 and Figure 5 show the data flows that occur when a packet is received. The following 
steps are followed by a host. 

 

Ring buffer 

Interrupt 
generator 

Kernel 
memory 

NIC memory 

DMA engine 

Data packet 

Drop if in 
throttle state 

IP layer ip_rcv() 

Interrupt Handler 
netif_rx(): 
 enqueue packet in backlog  
 schedule softirq 

Free descriptor 
 

Updated  
descriptor 
 

backlog queue (per CPU) 

Pointer to packet 
descriptor 

rx_softirq (net_rx_action()) 
 

Full 
 packet 



15 

 

 
Figure 5: Packet reception with Linux kernel 2.4.20: the new API (NAPI) 
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same kernel memory location. No extra copies are involved. Older cards use the Program I/O 
(PIO) scheme: it is the host CPU which transfers the data from the card into the host memory. 

4.2.2 Step 2 

The card interrupts the CPU, which then jumps to the driver Interrupt Service Routine (ISR) 
code. Here some differences arise between the old network subsystem (in kernels up to 2.4.19) 
and NAPI (from 2.4.20).  

4.2.2.1 For old API kernels, up to 2.4.19 

Figure 4 shows the routines called for network stacks prior to 2.4.20. The interrupt handler calls 
the netif_rx() kernel function (in net/dev/core.c , line 1215). The netif_rx() function enqueues 
the received packet in the interrupted CPU's backlog queue and schedules a softirq1, which is 
responsible for further processing of the packet (e.g. the TCP/IP processing). Only a pointer to the 
packet descriptor is actually enqueued in the backlog queue. Depending on settings in the NIC, 
the CPU may receive an interrupt for each packet or groups of packets (see Section 4.5). 

By default, the backlog queue has a length of 300 packets, as defined in 
/proc/sys/net/core/netdev_max_backlog. If the backlog queue becomes full, it enters 
the throttle state and waits for being totally empty before re-entering a normal state and allowing 
further packets to be enqueued (netif_rx() in net/dev/core.c). If the backlog is in the throttle 
state, netif_rx drops the packet. 

Backlog statistics are available from /proc/net/softnet_stat. The format of the output is 
defined in net/core/dev.c , lines 1804 onward. There is one line per CPU. The columns have 
the following meanings: 

1. packet count; 

2. drop count; 

3. the time squeeze counter, i.e. the number of times the softirq took too much time to handle 
the packets from the device. When the budget of the softirq (i.e., the maximum number of 
packets it can dequeue in a row, which depends on the device, max = 300) reaches zero 
or when its execution time lasts more than one jiffie (10 ms, the smallest time unit in the 
Linux scheduler), the softirq stops dequeuing packets, increments the time squeeze 
counter of the CPU and reschedules itself for later execution; 

4. number of times the backlog entered the throttle state; 

5. number of hits in fast routes; 

6. number of successes in fast routes; 

7. number of defers in fast routes; 

8. number of defers out in fast routes; 

9. The right-most column indicates either latency reduction in fast routes or CPU collision, 
depending on a #ifdef flag. 

                                                 
1 A softirq  (software interrupt request) is a kind of kernel thread [12] [13]. 
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An example of backlog statistics is shown below: 

$ cat /proc/net/softnet_stat 
94d449be 00009e0e 000003cd 0000000e 00000000 00000000 00000000 00000000 0000099f 
000001da 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005b 
000002ca 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000b5a 
000001fe 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010 

4.2.2.2 For NAPI drivers, from kernel 2.4.20 onward 

NAPI drivers act differently. As shown in Figure 5, the interrupt handler calls netif_rx_schedule() 
(include/linux/netdevice.h, line 738). Instead of putting a pointer to the packet descriptor 
in the backlog queue, it puts a reference to the device in a queue attached to the interrupted CPU 
known as the poll_list (see softnet_data->poll_list in include/linux/netdevice.h, 
line 496). A softirq is then scheduled, just as in the previous case, but receive interruptions are 
disabled during the execution of the softirq. 

To ensure backward compatibility with old drivers, the backlog queue is still implemented in 
NAPI-enabled kernels, but it is considered as a device to handle the incoming packets from the 
NICs whose drivers are not NAPI aware. It can be enqueued just as any other NIC device. The 
netif_rx() function is used only in the case of non-NAPI drivers, and has been rewritten to 
enqueue the backlog queue into the poll_list of the CPU after having enqueued the packet into the 
backlog queue. 

4.2.3 Step 3 

When the softirq is scheduled, it executes net_rx_action() (net/core/dev.c, line 1558). 
Softirqs are scheduled in do_softirq() (arch/i386/irq.c) when do_irq is called to do any 
pending interrupts. They can also be scheduled through the ksoftirq process when do_softirq() is 
interrupted by an interrupt, or when a softirq is scheduled outside an interrupt or a bottom-half of 
a driver. The do_softirq() function processes softirqs in the following order: HI_SOFTIRQ,  
NET_TX_SOFTIRQ, NET_RX_SOFTIRQ and TASKLET_SOFTIRQ. More details about 
scheduling in the Linux kernel can be found in [10]. Because step 2 differs between the older 
network subsystem and NAPI, step 3 does too. 

For kernel versions prior to 2.4.20, net_rx_action() polls all the packets in the backlog queue and 
calls the ip_rcv() procedure for each of the data packets  (net/ipv4/ip_input.c, line 379). 
For other types of packets (ARP, BOOTP, etc.), the corresponding ip_xx() routine is called.  

For NAPI, the CPU polls the devices present in its poll_list (including the backlog for legacy 
drivers) to get all the received packets from their rx_ring. The poll method of any device (poll(), 
implemented in the NIC driver) or of the backlog (process_backlog() in net/core/dev.c, 
line 1496) calls netif_receive_skb() (net/core/dev.c, line 1415) for each received packet, 
which then calls ip_rcv(). 

The NAPI network subsystem is a lot more efficient than the old system, especially in a high 
performance context (in our case, gigabit Ethernet). The advantages are: 

• limitation of interruption rate (this may be seen as an adaptive interrupt coalescing 
mechanism); 

• it is not prone to receive livelock [17]; 
• better data and instruction locality. 
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Because a device is always handled by a CPU, there is no packet reordering or cache default. One 
problem is that there is no parallelism in a Symmetric Multi-Processing (SMP) machine for traffic 
coming in from a single interface. 

In the old API case, if the input rate is too high, the backlog queue becomes full and packets are 
dropped in the kernel, exactly between the rx_ring and the backlog in the enqueue procedure. In 
the NAPI case, exceeding packets are dropped earlier, before being put into the rx_ring. In this 
last case, an Ethernet pause packet halting the packet input if this feature is enabled. 

4.3 Packet Transmission 

All the IP packets are built using the arp_constructor() method. Each packet contains a dst field, 
which provides the destination computed by the routing algorithm. The dst field provides an 
output method, which is dev_queue_xmit() for IP packets. 

 
Figure 6: Transmission of a packet 

The kernel provides multiple queuing disciplines (RED, CBQ, etc.) between the kernel and the 
driver. It is intended to provide QoS support. The default queuing discipline, or qdisc, consists of 
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(ether_setup(): dev->tx_queue_len ; drivers/net/net_init.c, line 405).  
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Figure 6 shows the different data flows that may occur when a packet is to be transmitted. The 
following steps are followed during transmission. 

4.3.1 Step 1 

For each packet to be transmitted from the IP layer, the dev_queue_xmit() procedure 
(net/core/dev.c , line 991) is called. It queues a packet in the qdisc associated to the output 
interface (as determined by the routing). Then, if the device is not stopped (e.g., due to link 
failure or the tx_ring being full), all packets present in the qdisc are handled by qdisc_restart() 
(net/sched/sch_generic.c, line 77). 

4.3.2 Step 2 

The hard_start_xmit() virtual method is then called. This method is implemented in the driver 
code. The packet descriptor, which contains the location of the packet data in kernel memory, is 
placed in the tx_ring and the driver tells the NIC that there are some packets to send. 

4.3.3 Step 3 

Once the card has sent a packet or a group of packets, it communicates to the CPU that the 
packets have been sent out by asserting an interrupt. The CPU uses this information 
(net_tx_action() in net/core/dev.c, line 1326) to put the packets into a completion_queue 
and to schedule a softirq for later deallocating (i) the meta-data contained in the skbuff struct and 
(ii) the packet data if we are sure that we will not need this data anymore (see Section 4.1). This 
communication between the card and the CPU is card and driver dependent. 

4.4 Commands for monitoring and controlling the input and output 
network queues 

The ifconfig command can be used to override the length of the output packet queue using the 
txqueuelen option. It is not possible to get statistics for the default output queue. The trick is to 
replace it with the same FIFO queue using the tc command: 

• to replace the default qdisc:  tc qdisc add dev eth0 root pfifo limit 100 
• to get stats from this qdisc:   tc -s -d qdisc show dev eth0 
• to recover to default state:    tc qdisc del dev eth0 root 

4.5 Interrupt Coalescence 

Depending on the configuration set by the driver, a modern NIC can either interrupt the host for 
each packet sent or received, or it can continue to transfer packets between the network and 
memory, using the descriptor mechanisms described above, but only informs the CPU of progress 
at intervals. This is known as interrupt coalescence and the details and options are hardware 
dependent. The NIC may generate interrupts after a fixed number of packets have been processed 
or after a fixed time from the first packet transferred after the last interrupt. In some cases, the 
NIC dynamically changes the interrupt coalescence times depending on the packet receive rate. 
Separate parameters are usually available for the transmit and receive functions of the NIC. 

Interrupt coalescence, as the use of NAPI, reduces the amount of time the CPU spends context-
switching to service interrupts. It is worth noting that the size of the transmit and receive ring 
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buffers (and the kernel memory area for the packets) must be large enough to provide for the 
extra packets that will be in the system. 

5 Network layer 

The network layer provides end-to-end connectivity in the Internet across heterogeneous 
networks. It provides the common protocol (IP – Internet Protocol) used by almost all Internet 
traffic. Since Linux hosts can act as routers (and they often do as they provide an inexpensive 
way of building networks), an important part of the code deals with packet forwarding. 

The main files that deal with the IP network layer are located in net/ipv4: 
• ip_input.c – processing of the packets arriving at the host 
• ip_output.c – processing of the packets leaving the host 
• ip_forward.c – processing of the packets being routed by the host 

Other files include: 

• ip_fragment.c – IP packet fragmentation 
• ip_options.c – IP options 
• ipmr.c – IP multicast 
• ipip.c – IP over IP 

5.1 IP 

5.1.1 IP Unicast 

Figure 7 describes the path that an IP packet traverses inside the network layer. Packet reception 
from the network is shown on the left hand side and packets to be transmitted flow down the right 
hand side of the diagram. When the packet reaches the host from the network, it goes through the 
functions described in Section 4; when it reaches net_rx_action(), it is passed to ip_rcv(). After 
passing the first netfilter hook (see Section 2), the packet reaches ip_rcv_finish(), which verifies 
whether the packet is for local delivery. If it is addressed to this host, the packet is given to 
ip_local_delivery(), which in turn will give it to the appropriate transport layer function. 

A packet can also reach the IP layer coming from the upper layers (e.g., delivered by TCP, or 
UDP, or coming directly to the IP layer from some applications).The first function to process the 
packet is then ip_queue_xmit(), which passes the packet to the output part through ip_output(). 

In the output part, the last changes to the packet are made in ip_finish_output() and the function 
dev_queue_transmit() is called; the latter enqueues the packet in the output queue. It also tries to 
run the network scheduler mechanism by calling qdisc_run(). This pointer will point to different 
functions, depending on the scheduler installed. A FIFO scheduler is installed by default, but this 
can be changed with the tc utility, as we have seen already.  

The scheduling functions (qdisc_restart() and dev_queue_xmit_init()) are independent of the rest 
of the IP code.  

When the output queue is full, q->enqueue returns an error which is propagated upward on the IP 
stack. This error is further propagated to the transport layer (TCP or UDP) as will be seen in 
Sections 6 and 7. 
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Figure 7: Network layer data path 
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(this can be seen and set via /proc/sys/net/ipv4/ip_forward), it then has to be processed 
by a set of complex but very efficient functions. If the ip_forward variable is set to zero, it is not 
forwarded. 

The route is calculated by calling ip_route_input(), which (if a fast hash does not exist) calls 
ip_route_input_slow(). The ip_route_input_slow() function calls the FIB (Forward Information 
Base) set of functions in the fib*.c files. The FIB structure is quite complex [3]. 

If the packet is a multicast packet, the function that calculates the set of devices to transmit the 
packet to is ip_route_input_mc(). In this case, the IP destination is unchanged. 

After the route is calculated, ip_rcv_finished() inserts the new IP destination in the IP packet and 
the output device in the sk_buff structure. The packet is then passed to the forwarding functions 
(ip_forward() and ip_forward_finish()) which send it to the output components. 

5.1.3 IP Multicast 

The previous section dealt with unicast packets. With multicast packets, the system gets 
significantly more complicated. The user level (through a daemon like gated) uses the 
setsockopt() call on the UDP socket or netlink to instruct the kernel that it wants to join the group. 
The set_socket_option() function calls ip_set_socket_option(), which calls ip_mc_join_group() 
(or ip_mc_leave_group() when it wants to leave the group). 

This function calls ip_mc_inc_group(). This makes a trigger expire and igmp_timer_expire() be 
called. Then igmp_timer_expire() calls igmp_send_report(). 

When a host receives an IGMP (Internet Group Management Protocol) packet (that is, when we 
are acting as a multicast router), net_rx_action() delivers it to igmp_rcv(), which builds the 
appropriate multicast routing table information. 

A more complex operation occurs when a multicast packet arrives at the host (router) or when the 
host wants to send a multicast packet. The packet is handle d by ip_route_output_slow() (via 
ip_route_input() if the packet is coming in or via ip_queue_xmit() if the packet is going out), 
which in the multicast case calls ip_mr_input(). 

Next, ip_mr_input() (net/ipv4/ipmr.c, line 1301) calls ip_mr_forward(), which calls 
ipmr_queue_xmit() for all the interfaces it needs to replicate the packet. This calls 
ipmr_forward_finish(), which calls ip_finish_output(). The rest can be seen on Figure 7. 

5.2 ARP 

Because ARP (Address Resolution Protocol) converts layer-3 addresses to layer-2 addresses, it is 
often said to be at layer 2.5. ARP is defined in RFC 826 and is the protocol that allows IP to run 
over a variety of lower layer technologies. Although we are mostly interested in Ethernet in this 
document, it is worth noting that ARP can resolve IP addresses for a wide variety of technologies, 
including ATM, Frame Relay, X.25, etc. 

When an ARP packet is received, it is given by nt_rx_action() to arp_rcv() which, after some 
sanity checks (e.g., checking if the packet is for this host), passes it on to arp_process(). Then, 
arp_process() checks which type of ARP packet it is and, if appropriate (e.g., when it is an ARP 
request), sends a reply using arp_send(). 
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The decision of sending an ARP request deals with a much more complex set of functions 
depicted in Figure 8. When the host wants to send a packet to a host in its LAN,  it needs to 
convert the IP address into the MAC address and store the latter in the skb structure. When the 
host is not in the LAN, the packet is sent to a router in the LAN. The function ip_queue_xmit() 
(which can be seen in Figure 7) calls ip_route_output(), which calls rt_intern_hash(). This calls 
arp_bind_neighbour(), which calls neigh_lookup_error(). 

The function neigh_lookup_error() tries to see if there is already any neighbor data for this IP 
address with neigh_lookup(). If there is not, it triggers the creation of a new one with 
neigh_create(). The latter triggers the creation of the ARP request by calling arp_constructor(). 
Then the function arp_constructor() starts allocating space for the ARP request and calls the 
function neigh->ops->output(), which points to neigh_resolve_output(). When 
neigh_resolve_output() is called, it invokes neigh_event_send(). This calls neigh->ops->solicit(), 
which points to arp_solicit(). The latter calls arp_send(), which sends the ARP message. The skb 
to be resolved is stored in a list. When the reply arrives (in arp_recv()), it resolves the skb and 
removes it from the list. 

 

Figure 8: ARP 
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icmp_timestamp(), require a response to be sent to the original source. This is done by calling 
icmp_reply(). 

Sometimes, a host needs to generate an ICMP packet that is not a mere reply to an ICMP request 
(e.g., the IP layer, the UDP layer and users—through raw sockets—can send ICMP packets). This 
is done by calling icmp_send(). 

Figure 9: ICMP functions 
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ICMP function 
 

Description 

icmp_discard() Discard the packet. 

icmp_unreach() Destination unreachable, ICMP time-exceed or ICMP source 
quench. 

icmp_redirect() ICMP redirect error. The router to which an IP packet was sent is 
saying that the datagram should have been sent to another router. 

icmp_timestamp() This host is being queried about the current timestamp (usually 
the number of seconds). 

icmp_address() Request for a network address mask . Typically used by a diskless 
system to obtain its subnet mask. 

icmp_address_reply() This message contains the reply to an ICMP address request. 
icmp_echo() ICMP echo command. This requires the host to send an ICMP 

echo reply to the original sender. This is how the ping command 
is implemented. 

Figure 10: ICMP packet types 

6 TCP 

This section describes the implementation of the Transmission Control Protocol (TCP), which is 
probably the most complex part of the networking code in the Linux kernel. 

TCP contributes for the vast majority of the traffic in the Internet. It fulfills two important 
functions: it establishes a reliable communication between a sender and a receiver by 
retransmitting non-acknowledged packets, and it implements congestion control by reducing the 
sending rate when congestion is detected. 

Although both ends of a TCP connection can be sender and receiver simultaneously, we separate 
our code explanations for the “receiver” behavior (when the host receives data and sends 
acknowledgments) and the “sender” behavior (when the host sends data, receives 
acknowledgments, retransmits lost packets and adjusts congestion window and sending rate). The 
complexity of the latter is significantly higher. 

The reader is assumed to be familiar with the TCP state machine, which is described in [6]. 

The main files of the TCP code are all located in net/ipv4, except header files which are in 
include/net. They are: 

• tcp_input.c – Code dealing with incoming packets from the network. 
• tcp_output.c – Code dealing with sending packets to the network. 
• tcp.c – General TCP code. Links with the socket layer and provides some “higher” 

level functions to create and release TCP connections. 
• tcp_ipv4.c – IPv4 TCP specific code. 
• tcp_timer.c – Timer management. 
• tcp.h  – Definition of TCP constants. 

Figure 11 and Figure 12 depict the TCP data path and are meant to be viewed side by side. Input 
processing is described in Figure 11 and output processing is illustrated by Figure 12. 
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Figure 11: TCP: input processing 
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Figure 12: TCP: output processing 
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6.1 TCP Input 

TCP input is mainly implemented in net/ipv4/tcp_input.c. This is the largest portion of the 
TCP code. It deals with the reception of a TCP packet. The sender and receiver code is tightly 
coupled as an entity can be both at the same time. 

Incoming packets are made available to the TCP routines from the IP layer by ip_local_delivery() 
shown on the left side of Figure 11. This routine gives the packet to the function pointed by 
ipproto->handler (see structures in Section 2). For the IPv4 protocol stack, this is tcp_v4_rcv(), 
which calls tcp_v4_do_rcv(). The function tcp_v4_do_rcv() in turn calls another function 
depending on the TCP state of the connection (for more details, see [6]).  

If the connection is established (state is TCP_ESTABLISHED), it calls tcp_rcv_established(). 
This is the main case that we will examine from now on. If the state is TIME_WAIT, it calls 
tcp_timewait_process(). All other states are processed by tcp_rcv_state_process(). For example, 
this function calls tcp_rcv_sysent_state_process() if the state is SYN_SENT. 

For some TCP states (e.g., CALL_SETUP),  tcp_rcv_state_process() and tcp_timewait_process() 
have to initialize the TCP structures. They call tcp_init_buffer_space() and tcp_init_metrics(). 
The latter initializes the congestion window by calling tcp_init_cwnd(). 

The following subsections describe the actions of the functions shown in Figure 11 and Figure 12. 
The function tcp_rcv_established() has two modes of operation: fast path and slow path. We first 
describe the slow path, which is easier to understand, and present the fast path afterward. Note 
that in the code, the fast path is dealt with first. 

6.1.1 tcp_rcv_established(): Slow Path 

The slow path code follows the 7 steps defined in RFC 793, plus a few other operations: 

• The checksum is calculated with tcp_checksum_complete_user() . If it is incorrect, the 
packet is discarded.  

• The Protection Against Wrapped Sequence Numbers (PAWS) [14] is done with 
tcp_paws_discard().  

STEP 1: The sequence number of the packet is checked. If it is not in sequence, the receiver sends 
a DupACK with tcp_send_dupack(). The latter may  have to implement a SACK 
(tcp_dsack_set()) but it finishes by calling tcp_send_ack(). 

STEP 2: It checks the RST (connection reset) bit (th->rst). If it is on, it calls tcp_reset(). An error 
must be passed on to the upper layers. 

STEP 3: It is supposed to check security and precedence but this is not implemented. 

STEP 4, part 1: It checks SYN bit. If it is on, it calls tcp_reset(). This synchronizes sequence 
numbers to initiate a connection. 

STEP 4, part 2: It calculates an estimative for the RTT (RTTM) by calling 
tcp_replace_ts_recent(). 

STEP 5: It checks the ACK bit. If this bit is set, the packet brings an acknowledgment and 
tcp_ack() is called (more details to come in Section 6.1.3). 
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STEP 6: It checks the URG (urgent) bit. If this bit is set, it calls tcp_urg(). This makes the 
receiver tell the process listening to the socket that the data is urgent. 

STEP 7, part 1: It processes data on the packet. This is done by calling tcp_data_queue() (more 
details in Section 6.1.2 below).  

STEP 7, part 2: It checks if there is data to send by calling tcp_data_snd_check(). This function 
calls tcp_write_xmit() on the TCP output sector. 

STEP 7, part 3: It checks if there are ACKs to send with tcp_ack_snd_check(). This may result in 
sending an ACK straight away with tcp_send_ack() or scheduling a delayed ACK with 
tcp_send_delayed_ack(). The delayed ACK is stored in tcp->ack.pending(). 

6.1.2 tcp_data_queue() & tcp_event_data_recv() 

The tcp_data_queue() function is responsible for giving the data to the user. If the packet arrived 
in order (all previous packets having already arrived), it copies the data to tp->ucopy.iov 
(skb_copy_datagram_iovec(skb, 0, tp ->ucopy.iov, chunk)); see structure tcp_opt  in Section 3.  

If the packet did not arrive in order, it puts it in the out-of-order queue with tcp_ofo_queue(). 

If a gap in the queue is filled, Section 4.2 of RFC 2581 [2] says that we should send an ACK 
immediately (tp->ack.pingpong = 0 and tcp_ack_snd_check() will send the ACK now). 

The arrival of a packet has several consequences. These are dealt with by calling 
tcp_event_data_recv(). This function first schedules an ACK with tcp_schedule_ack(), and then 
estimates the MSS (Maximum Segment Size) with tcp_measure_rcv_mss(). 

In certain conditions (e.g., if we are in slow start), the receiver TCP should be in QuickACK 
mode where ACKs are sent immediately. If this is the situation,  tcp_event_data_recv() switches 
this on with tcp_incr_quickack(). It may also have to increase the advertised window with 
tcp_grow_window().  

Finally tcp_data_queue() checks if the FIN bit is set; if it is, tcp_fin() is called. 

6.1.3 tcp_ack() 

Every time an ACK is received, tcp_ack() is called. The first thing it does is to check if the ACK 
is valid by making sure it is within the right hand side of the sliding window (tp->snd_nxt) or 
older than previous ACKs. If this is the case, then we can probably ignore it with goto 
uninteresting_ack and goto old_ack  respectively and return 0. 

If everything is normal, it updates the sender’s TCP sliding window with 
tcp_ack_update_window()  and/or tcp_update_wl(). An ACK may be considered “normal” if it 
acknowledges the next section of contiguous data starting from the pointer to the last fully 
acknowledged block of data. 

If the ACK is dubious, it enters fast retransmit with tcp_fastretrans_alert() (see Section 6.1.4 
below). If the ACK is normal and the number of packets in flight is not smaller than the 
congestion window, it increases the congestion window by entering slow start/congestion 
avoidance with tcp_cong_avoid(). This function implements both the exponential increase in slow 
start and the linear increase in congestion avoidance as defined in RFC 793. When we are in 
congestion avoidance, tcp_cong_avoid() utilizes the variable snd_cwnd_cnt to determine when to 
linearly increase the congestion window. 
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Note that tcp_ack() should not be confused with tcp_send_ack(), which is called by the "receiver" 
to send ACKs using tcp_write_xmit(). 

6.1.4 tcp_fastretransmit_alert() 

Under certain conditions, tcp_fast_retransmit_alert() is called by tcp_ack() (it is only called by 
this function). To understand these conditions, we have to go through the Linux {NewReno, 
SACK, FACK, ECN} finite state machine. This section is copied almost verbatim from a 
comment in tcp_input.c. Note that this finite state machine (also known as the ACK state 
machine) has nothing to do with the TCP finite state machine. The TCP state is usually 
TCP_ESTABLISHED. 

The Linux finite state machine can be in any of the following states: 

• Open: Normal state, no dubious events, fast path. 
• Disorder: In all respects it is "Open", but it requires a bit more attention. It is entered 

when we see some SACKs or DupACKs. It is separate from "Open" primarily to move 
some processing from fast path to slow path. 

• CWR: The congestion window should be reduced due to some congestion notification 
event, which can be ECN, ICMP source quench, three duplicate ACKs, or local device 
congestion. 

• Recovery: The congestion window was reduced, so now we should be fast-
retransmitting. 

• Loss: The congestion window was reduced due to an RTO timeout or SACK reneging. 

This state is kept in tp->ca_state  as TCP_CA_Open, TCP_CA_Disorder, TCP_CA_Cwr, 
TCP_CA_Recover or TCP_CA_Loss respectively. 

The function tcp_fastretrans_alert() is entered if the state is not "Open", when an ACK is 
received or "strange" ACKs are received (SACK, DUPACK, ECN). This function performs the 
following tasks: 

• It checks flags, ECN and SACK and processes loss information. 
• It processes the state machine, possibly changing the state. 
• It calls tcp_may_undo() routines in case the congestion window reduction was too 

drastic (more on this in Section 6.7.1). 
• Updates the scoreboard. The scoreboard keeps track of which packets were 

acknowledged or not. 
• It calls tcp_cong_down() in case we are in CWR state, and reduces the congestion 

window by one every other ACK (this is known as rate halving). The function 
tcp_cong_down() is smart because the congestion window reduction is applied over the 
entire RTT by using snd_cwnd_cnt() to count which ACK this is. 

• It calls tcp_xmit_retransmit_queue() to decide whether anything should be sent. 

6.1.5 Fast path 

The fast path is entered under certain conditions in tcp_rcv_established(). It uses the header 
prediction technique defined in RFC 1323 [14]. This happens when the incoming packet has the 
expected sequence number. Although the fast path is faster than the slow path, all of the 
following operations are done in order: PAWS is checked, tcp_ack() is called if the packet was an 
ACK, tcp_data_snd_check() is called to see if more data can be sent, data is copied to the user 
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with tcp_copy_to_iovec(), the timestamp is stored with tcp_store_ts_recent(), 
tcp_event_data_recv() is called, and an ACK is sent in case we are the receiver. 

6.2 SACKs 

Linux kernel 2.4.20 fully implements SACKs (Selective ACKs) as defined in RFC 2018 [8]. The 
connection SACK capabilities are stored in the tp->sack_ok field (FACKs are enabled if the 2nd 
bit is set and DSACKs (delayed SACKs) are enabled if the 3rd bit is set). When a TCP connection 
is established, the sender and receiver negotiate different options, including SACK. 

The SACK code occupies a surprisingly large part of the TCP implementation. More than a dozen 
functions and significant parts of other functions are dedicated to implementing SACK. It is still 
fairly inefficient code, because the lookup of non-received blocks in the list is an expensive 
process due to the linked-list structure of the sk_buff’s. 

When a receiver gets a packet, it checks in tcp_data_queue() if the skb overlaps with the previous 
one. If it does not, it calls tcp_sack_new_ofo_skb() to build a SACK response. 

On the sender side (or receiver of SACKs), the most important function in the SACK processing 
is tcp_sacktag_write_queue(); it is called by tcp_ack(). 

6.3 QuickACKs 

At certain times, the receiver enters QuickACK mode, that is, delayed ACKS are disabled.  One 
example is in slow start, when delaying ACKs would delay the slow start considerably. 

The function tcp_enter_quick_ack_mode() is called by tc_rcv_sysent_state_process() because, at 
the beginning of the connection, the TCP state should be SYSENT.  

6.4 Timeouts 

Timeouts are vital for the correct behavior of the TCP functions. They are used, for instance, to 
infer packet loss in the network. The events related to registering and triggering the retransmit 
timer are depicted in Figure 13 and Figure 14. 

Figure 13: Scheduling a timeout 

tcp_push_pending_frames() 

tcp_check_probe_timer() 

tcp_reset_xmit_timer() 
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The setting of the retransmit timer happens when a packet is sent. The function 
tcp_push_pending_frames() calls tcp_check_probe_timer(), which may call 
tcp_reset_xmit_timer(). This schedules a software interrupt, which is dealt with by non-
networking parts of the kernel. 

When the timeout expires, a software interrupt is generated. This interrupt calls  timer_bh(), 
which calls run_timer_list(). This calls timer->function(),  which will in this case be pointing to 
tcp_wite_timer(). This calls tcp_retransmit_timer(), which finally calls  tcp_enter_loss(). The 
state of the Linux machine is then set to CA_Loss and tcp_fastretransmit_alert() schedules the 
retransmission of the packet. 

 

 

Figure 14: Timeout arrival 

6.5 ECN 

Linux kernel 2.4.20 fully implements ECN (Explicit Congestion Notification) to allow ECN-
capable routers to report congestion before dropping packets. Almost all the code is in the 
tcp_ecn.h in the include/net directory. It contains the code to receive and send the different 
ECN packet types. 

In tcp_ack(), when the ECN bit is on, TCP_ECN_rcv_ecn_echo() is called to deal with the ECN 
message. This calls the appropriate ECN message handling routine. 

When an ECN congestion notification arrives, the Linux host enters the CWR state. This makes 
the host reduce the congestion window by one on every other ACK received. This can be seen in 
tcp_fastrestrans_alert() when it calls tcp_cwnd_down(). 

ECN messages can also be sent by the kernel when the function TCP_ECN_send() is called in 
tcp_transmit_skb(). 

6.6 TCP output 

This part of the code (mainly net/ipv4/tcp_output.c) is illustrated in Figure 12. It deals 
with packets going out of the host and includes both data packets from the "sender" and ACKs 
from the "receiver". The function tcp_transmit_skb(), a crucial operation in the TCP output, 
executes the following tasks: 

SOFTWARE 

INTERRUPT 
timer_bh() run_timer_list() tp->retransmit_timer.function 

tcp_write_timer() 

tcp_retransmit_timer() tcp_enter_loss() 
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• Check sysctl() flags for timestamps, window scaling and SACK. 
• Build TCP header and checksum. 
• Set SYN packets. 
• Set ECN flags. 
• Clear ACK event in the socket. 
• Increment TCP statistics through TCP_INC_STATS (TcpOutSegs). 
• Call ip_queue_xmit(). 

If there is no error, the function returns; otherwise, it calls tcp_enter_cwr(). This error may 
happen when the output queue is full. As we saw in Section 4.3.2, q->enqueue returns an error 
when this queue is full. The error is then propagated until here and the congestion control 
mechanisms react accordingly. 

6.7 Changing the congestion window 

The TCP algorithm adjusts its sending rate by reducing or increasing the size of the sending 
window. The basic TCP operation is straightforward. When it receives an ACK, it increases the 
congestion window by calling tcp_cong_avoid() either linearly or exponentially, depending on 
where we are (congestion avoidance or slow start). When it detects that a packet is lost in the 
network, it reduces the window accordingly. 

TCP detects a packet loss when: 

• The sender receives a triple ACK. This is done in tcp_fastretrans_alert() using the 
is_dupack variable. 

• A timeout occurs, which causes tcp_enter_loss() to be called (see Section 6.6). In this 
case, the congestion window is set to 1 and ssthresh (the slow-start threshold) is set to 
half of the congestion window when the packet is lost. This last operation is done in 
tcp_recalc_ssthresh(). 

• TX Queue is full. This is detected in tcp_transmit_skb()  (the error is propagated from 
q->enqueue in the sub-IP layer) which calls tcp_enter_cwr().  

• SACK detects a hole. 

Apart from these situations, the Linux kernel modifies the congestion window in several more 
places; some of these changes are based on standards, others are Linux specific. In the following 
sections, we describe these extra changes. 

6.7.1 Undoing the Congestion Window 

One of the most logically complicated parts of the Linux kernel is when it decides to undo a 
congestion window update. This happens when the kernel finds that a window reduction should 
not have been made. This can be found in two ways: the receiver can inform by a duplicate 
SACK (D-SACK) that the incoming segment was already received; or the Linux TCP sender can 
detect unnecessary retransmissions by using the TCP timestamp option attached to each TCP 
header. These detections are done in the tcp_fastretransmit_alert(), which calls the appropriate 
undo operations depending in which state the Linux machine is: tcp_try_undo_recovery(), 
tcp_undo_cwr(), tcp_try_undo_dsack(), tcp_try_undo_partial() or tcp_try_undo_loss(). They all 
call tcp_may_undo_loss().  
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6.7.2 Congestion Window Moderation 

Linux implements the function tcp_moderate_cwnd(), which reduces the congestion window 
whenever it thinks that there are more packets in flight than there should be based on the value of 
snd_cwnd. This feature is specific to Linux and is specified neither in an IETF RFC nor in an 
Internet Draft. The purpose of the function is to prevent large transient bursts of packets from 
being sent out during “dubious conditions”. This is often the case when an ACK acknowledges 
more than three packets. As a result, the magnitude of the congestion window reduction can be 
very large at large congestion window sizes, and hence reduce throughput. 

The primary calling functions for tcp_moderate_cwnd() are tcp_undo_cwr(), 
tcp_try_undo_recovery(), tcp_try_to_open() and tcp_fastretrans_alert(). In all cases, the function 
call is triggered by conditions being met in tcp_fast_retrans_alert(). 

6.7.3  Congestion Window Validation 

Linux implements congestion window validation defined in RFC 2861 [15]. With this technique, 
the sender reduces the congestion window size if it has not been fully used for one RTO 
estimate's worth of time. 

This is done by tcp_cwnd_restart(), which is called if necessary by tcp_event_data_sent(). The 
function tcp_event_data_sent() is called by tcp_transmit_skb() every time TCP transmits a 
packet. 

7 UDP 

This section reviews the UDP part of the networking code in the Linux kernel. This is a 
significantly simpler piece of code than the TCP part. The absence of reliable delivery and 
congestion control allows for a very simple design. 

Most of the UDP code is located in one file: net/ipv4/udp.c 

The UDP layer is depicted in Figure 15. When a packet arrives from the IP layer through 
ip_local_delivery(), it is passed on to udp_rcv() (this is the equivalent of tcp_v4_rcv() in the TCP 
part). The function udp_rcv() puts the packet in the socket queue for the user application with 
sock_put(). This is the end of the delivery of the packet. 

When the user reads the packet, e.g. with the recvmsg() system call, inet_recvmsg() is called, 
which in this case calls udp_recvmsg(), which calls skb_rcv_datagram(). The function 
skb_rcv_datagram() then gets the packets from the queue and fills the data structure that will be 
read in user space. 

When a packet arrives from the user, the process is simpler. The function inet_sendmsg() calls 
udp_sendmsg(), which builds the UDP datagram with information taken from the sk  structure 
(this information was put there when the socket was created and bound to the address). 

Once the UDP datagram is built, it is passed to ip_build_xmit(), which builds the IP packet with 
the possible help of ip_build_xmit_slow(). If, for some reason, the packet could not be transmitted 
(e.g., if the outgoing ring buffer is full), the error is propagated to udp_sendmsg(), which updates 
statistics (nothing else is done because UDP is a non-reliable protocol). 
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Once the IP packet has been built, it is passed on to ip_output(), which finalizes the delivery of 
the packet to the lower layers. 

 

 

 

Figure 15: UDP 

 

8 The socket API 

The previous sections have identified events inside the kernel. The main “actor” of the previous 
sections was the packet. In this section, we explain the relationships between events in system 
space and events in user space. 

Applications use the socket interface to create connections to other hosts and/or to send 
information to the other end. We emphasize the chain of events generated in the TCP code when 
the connect() system called is used.   

All network system calls reach sys_socketcall(), which gets the call parameters from the user 
(copy_from_user(a, args, nargs[call])) and calls the appropriate kernel function. 

8.1 socket() 

When a user invokes the socket() system call, this calls sys_socket() inside the kernel (see file 
net/socket.c). The sys_socket() function does two simple things. First, it calls sock_create(), 
which allocates a new sock  structure where all the information about the socket/connection is 

inet_rcvmsg() 

udp_rcvmsg() 

skb_rcv_datafram() 

… 

sock_put() 

udp_queue_rcv_skb() udp_rcv() 

ip_local_delivery() 

inet_sendmsg() 

udp_sendmsg() 

ip_build_xmit() 

ip_build_xmit_slow() 

skb->dst->output 
ip_output() 
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stored. Second, it calls sock_map_fd(), which maps the socket to a file descriptor. In this way, the 
application can access the socket as if it were a file—a typical Unix feature. 

8.2 bind() 

The bind() system call triggers sys_bind(), which simply puts information about the destination 
address and port in the sock structure. 

8.3 listen() 

The listen() system call, which triggers sys_listen(), calls the appropriate listen function for this 
protocol. This is pointed by sock ->ops->listen(sock, backlog). In the case of TCP, the listen 
function is inet_listen(), which in turn calls tcp_listen_start(). 

8.4 accept() and connect() 

The accept() system call triggers sys_accept(), which calls the appropriate accept function for that 
protocol (see sock->ops->accept()). In the case of TCP, the accept function is tcp_accept(). 

When a user invokes the connect() system call, the function sys_connect() is called inside the 
kernel. UDP has no connect primitive because it is a connectionless protocol. In the case of TCP, 
the function tcp_connect() is called (by calling sock ->ops->connect() on the socket). The 
tcp_connect() function initializes several fields of the tcp_opt structure, and an skb for the SYN 
packet is filled and transmitted at the end of the function. 

Meanwhile, the server has created a socket, bound it to a port and called listen() to wait for a 
connection. This changed the state of the socket to LISTENING. When a packet arrives (which 
will be the TCP SYN packet sent by the client), this is dealt with by tcp_rcv_state_process(). The 
server then replies with a SYNACK packet that the client will process in 
tcp_rcv_synsent_state_process(); this is the state that the client enters after sending a SYN 
packet. 

Both tcp_rcv_state_process() (in the server) and tcp_rcv_sysent_state_process() (in the client) 
have to initialize some other data in the tcp_opt structure. This is done by calling 
tcp_init_metrics() and tcp_initialize_rcv_mss(). 

Both the server and the client acknowledge these packets and enter the ESTABLISHED state. 
From now on, every packet that arrives is handled by tcp_rcv_established(). 

8.5 write() 

Every time a user writes in a socket, this goes through the socket linkage to inet_sendmsg(). The 
function sk->prot->sendmsg() is called, which in turn calls tcp_sendmsg() in the case of TCP or 
udp_sendmsg() in the case of UDP. The next chain of events was described in the previous 
sections. 
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8.6 close() 

When the user closes the file descriptor corresponding to this socket, the file system code calls 
sock_close(), which calls sock_release() after checking that the inode is valid. The function 
sock_release() calls the appropriate release function, in our case inet_release(), before updating 
the number of sockets in use. The function inet_release() calls the appropriate protocol-closing 
function, which is tcp_close() in the case of TCP. The latter function sends an active reset with 
tcp_send_active_reset() and sets the state to TCP_CLOSE_WAIT. 

9 Conclusion 

In this technical report, we have documented how the networking code is structured in release 
2.4.20 of the Linux kernel. First, we gave an overview, showing the relevant branches of the code 
tree and explaining how incoming and outgoing TCP segments are handled. Next, we reviewed 
the general data structures (sk_buff and sock) and detailed TCP options. Then, we described the 
sub-IP layer and highlighted the difference in the handling of interrupts between NAPI-based and 
pre-NAPI device drivers; we also described interrupt coalescence, an important technique for 
gigabit end-hosts. In the next section, we described the network layer, which includes IP, ARP 
and ICMP. Then we delved into TCP and detailed TCP input, TCP output, SACKs, QuickACKs, 
timeouts and ECN; we also documented how TCP’s congestion window is adjusted. Next, we 
studied UDP, whose code is easier to understand than TCP’s. Finally, we mapped the socket API, 
well-known to Unix networking programmers, to kernel functions. 

The need for such a document arises from the current gap between the abundant literature aimed 
at Linux beginners and the Linux kernel mailing list where Linux experts occasionally distil some 
of their wisdom. Because the technology evolves quickly and the Linux kernel code frequently 
undergoes important changes, it would be useful to keep up-to-date descriptions of different parts 
of the kernel (not just the networking code). We have experienced that this is a time-consuming 
endeavor, but documenting entangled code (the Linux kernel code notoriously suffers from a lack 
of code clean-up and reengineering) is the only way for projects like ours to understand in detail 
what the problems are, and to devise a strategy for solving them. 

For the sake of conserving time, several important aspects have not been considered in this 
document. It would be useful to document how the IPv6 code is structured, as well as the Stream 
Control Transmission Protocol (SCTP). The description of SACK also deserves more attention, 
as we have realized that this part of the code is sub-optimal and causes problems in long-distance 
gigabit networks. Last, it would be useful to update this document to a 2.6.x version of the kernel. 
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Acronyms 

ACK Acknowledgment 

API Application Programming Interface 

ARP Address Resolution Protocol 

ATM Asynchronous Transfer Mode 

BOOTP Boot Protocol 

CBQ Class-Based Queuing 

CPU Central Processing Unit 

DMA Direct Memory Access 

DupACK Duplicate Acknowledgment 

ECN Explicit Congestion Notification 

FIB Forward Information Base 

FIFO First In First Out 

ICMP Internet Control Message Protocol 

IGMP Internet Group Management Protocol 

IETF Internet Engineering Task Force 

I/O Input/Output 

IP Internet Protocol 

IPv4 IP version 4 

IPv6 IP version 6 

IRQ Interrupt Request 

ISR Interrupt Service Routine 

LAN Local Area Network 

MAC Media Access Control 

MSS Maximum Segment Size 

MTU Maximum Transfer Unit 
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NAPI New Application Programming Interface 

NIC Network Interface Card 

PAWS Protect Against Wrapped Sequence numbers 

PIO Program Input/Output 

QuickACK Quick Acknowledgment 

RED Random Early Discard 

RFC Request For Comment (IETF specification) 

RST Reset (TCP state) 

RTT Round Trip Time 

SACK Selective Acknowledgment 

SCTP Stream Control Transmission Protocol 

SMP Symmetric Multi-Processing 

SYN Synchronize (TCP state) 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 
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