Health and Mortality Delta: Assessing the Welfare Cost of Household Insurance Choice

Yas Suttakulpiboon

December 8 2014

Agenda				
Introduction 0000	The Model 000000000	Data 00000	Selected Empirical Results	Application and Conclusion

Introduction ●000	The Model	Data 00000	Selected Empirical Results	Application and Conclusion
Agenda				

2 The Model

3 Data

- 4 Selected Empirical Results
- **5** Application and Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - ∽�や

Introduction 0●00	The Model 00000000	Data 00000	Selected Empirical Results	Application and Conclusion

Research Questions

How does one construct an optimal portfolio of health and longevity products?

- Life insurance, annuities, supplementary health insurance and long-term care insurance
 - Available in various maturities and payout structures
 - No clear guidance on how to choose among these policies
- Standard risk measures in the retail financial industries
 - $\bullet \ \ \mathsf{Equity \ products} \to \mathsf{Beta}$
 - $\bullet \ \ \mathsf{Fixed}\text{-income products} \to \mathsf{duration}$
 - $\bullet\,$ Health and longevity products $\rightarrow\,$ health and mortality delta
- Optimal portfolio choice as a solution to the life cycle problem: Choose a combination of policies (not necessarily unique) that replicates the optimal health and mortality delta
 - They can look at all products together whereas previous works look at each product in isolation

Introduction 0000	The Model 000000000	Data 00000	Selected Empirical Results	Application and Conclusion
Research Que	stion			

How close is the observed insurance choice to being optimal?

- Measure welfare cost of market incompleteness and suboptimal portfolio choice in the HRS
 - Comment: They cannot disentangle welfare effect between market incompleteness and suboptimal portfolio choice. They simply assume that the insurance product market is complete and go from there.

Introduction	The Model	Data	Selected Empirical Results	Application and Conclusion
0000				

Existing Literatures and Contribution

- Explain household demand for health and longevity products
 - Life insurance (Bernheim, 1991; Inkmann and Michaelides, 2011)
 - Annuities (Brown, 2001; Inkmann, Lopes, and Michaelides, 2011)
 - A key methodological contribution is to collapse household insurance choice into a pair of sufficient statistics, health and mortality delta, which explicitly account for the complementarity as well as the substitutability among different products.
- How should household pick different products?
 - A nearly rational household may hold a suboptimal portfolio of financial products even though markets are complete (Calvet, Campbell, and Sodini, 2007).
 - A key contribution here is to apply similar strategy as Calvet, Campbell, and Sodini's paper to insurance product setting.

Introduction 0000	The Model ●00000000	Data 00000	Selected Empirical Results	Application and Conclusion
Agenda				

2 The Model

3 Data

- 4 Selected Empirical Results
- **5** Application and Conclusion

・ロト ・西ト ・ヨト ・ヨー うみの

 Introduction
 The Model
 Data
 Selected Empirical Results
 Application and Conclusion

 0000
 0●0000000
 00000
 00000
 00000
 000000

A Life-Cycle Model with Health and Mortality Risk

- Household faces health and mortality risk
 - Lives for at most T periods
 - Health states:

$$H_t = \{ \text{Dead} = 1, \text{Poor} = 2, \text{Good} = 3 \}$$
(1)

• Health transition probability:

$$\pi_t(I,j) = \Pr(h_{t+1} = j | h_t = i)$$
(2)

• Out-of-pocket health expense: $M_t(h_t)$

Receives income: Y_t

• Invests in health and longevity products of maturities 1 though T - t:

- L: Life insurance: Payoff of \$1k at death.
- 2 A: Annuities: Payoff of \$1k in each period while alive.
- H: Supplementary health insurance: Payoff of M_{t+1}(Poor) - M_{t+1}(Good) in poor health.
- Also saves in ruskless bond/loan at interest rate R.

Health and Mortality Delta for Insurance Products

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction on the Model Data Selected Empirical Results Application and Conclusion ocooo Objective Function of the Households

• For each health state $h_t \in \{2,3\}$ in period t, they define the househoold's objective function recursively as:

$$U_{t}(h_{t}) = \left\{ \omega(h_{t})^{\gamma} C_{t}^{1-\gamma} + \beta \left[\pi_{t}(h_{t}, 1)\omega(1)^{\gamma} A_{t+1}(1)^{1-\gamma} + \sum_{j=2}^{3} \pi_{t}(h_{t}, j) U_{t+1}(j)^{1-\gamma} \right] \right\}^{1/(1-\gamma)}$$
(3)

• with the terminal value

$$U_{\mathcal{T}}(h_{\mathcal{T}}) = \omega(h_{\mathcal{T}})^{\gamma/(1-\gamma)} C_{\mathcal{T}}$$
(4)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ のへの

- $\omega(1)$: Bequest motive.
- ω(2) < ω(3): Consumption and health are "complements" (state-dependent utility).

Intertemporal Budget Constraint

Household maximizes subject to the inter-temporal budget constraint

$$W_{t+1} = A_{t+1} + Y_{t+1} - M_{t+1}$$
(5)

where

$$A_{t+1}(j) = B_t + \sum_{i \in L, A, H} \sum_{n=1}^{T-t} (P_{i,t+1}(n-1|j) + D_{i,t+1}(n-1|j)) B_{i,t}(n)$$
(6)

denote the household's wealth prior to receiving income and paying health expenses, if health state j is realized in period t+1.

- Bond prices at time t: B_t
- Benefits from policy i at time t: D_{i,t}
- Premium of the policy i at time t: P_{i,t}

Proposition 1: Optimal Health and Mortality Delta under Complete Markets

• Define total wealth:

$$\widehat{W}_t(h_t) = W_t + \sum_{s=1}^{T-t} \frac{\mathbb{E}_t[Y_{t+s} - M_{t+s}|h_t]}{R_s}$$
(7)

- Average propensity to consume: $c_t(h_t)$
- Optimal consumption: $C_t^* = c_t(h_t)\widehat{W}_t(h_t)$
- Health delta:

$$\Delta_t = A_{t+1}(Poor) - A_{t+1}(Good)$$
(8)

or

$$\Delta_{i,t} = P_{i,t+1}(n-1|2) + D_{i,t+1}(n-1|2) - P_{i,t+1}(n-1|3) + D_{i,t+1}(n-1|3)$$
(9)

Mortality delta:

$$\delta_t = A_{t+1}(\text{Dead}) - A_{t+1}(\text{Good}) \tag{10}$$

or

$$\delta_{i,t} = D_{i,t+1}(n-1|1) - P_{i,t+1}(n-1|3) + D_{i,t+1}(n-1|3)$$
(11)

Proposition 1: Optimal Health and Mortality Delta under Complete Markets

• Optimal health delta:

$$\begin{split} \Delta_t^* &= \frac{(\beta R)^{1\gamma} C_t^*}{\omega(h_t)} \left(\frac{\omega(\textit{Poor})}{c_{t+1}(\textit{Poor})} - \frac{\omega(\textit{Good})}{c_{t+1}(\textit{Good})} \right) + \left(\sum_{s+1}^{T-t} \frac{\mathbb{E}_{t+1}[\underline{M}_{t+s}|\textit{Poor}]}{R^{s-1}} - \sum_{s=1}^{T-t} \frac{\mathbb{E}_{t+1}[\underline{M}_{t+1}|\textit{Good}]}{R^{s-1}} \right) \end{split}$$

• Optimal mortality delta:

$$\delta_t^* = \frac{(\beta R)^{1\gamma} C_t^*}{\omega(h_t)} \left(\omega(\text{Dead}) - \frac{\omega(\text{Good})}{c_{t+1}(\text{Good})} \right) + \sum_{s=1}^{T-t} \frac{\mathbb{E}_{t+1}[Y_{t+s} - M_{t+s}|\text{Good}]}{R^{s-1}}$$

Introduction Ocoo Data Selected Empirical Results Application and Conclusion Ocoo Ocoo

Proposition 2: Optimal Portfolio Allocation

• Define health and mortality delta for each policy $i = \{L, A, H\}$ of term n:

$$\Delta_{i,t}(n) = \mathsf{Payoff}_{i,t+1}(n-1|\mathsf{Poor}) - \mathsf{Payoff}_{i,t+1}(n-1|\mathsf{Good})$$
(12)

$$\delta_{i,t}(n) = \mathsf{Payoff}_{i,t+1}(n-1|\mathsf{Dead}) - \mathsf{Payoff}_{i,t+1}(n-1|\mathsf{Good}) \tag{13}$$

• A feasible portfolio policy (that satisfies the budget constraint and borrowing/portfolio constraints) is optimal if:

$$\Delta_t^* = \sum_{i \in \{L,A,H\}} \sum_{n=1}^{T-t} \Delta_{i,t}(n) B_{i,t}(n)$$
(14)

$$\delta_t^* = \sum_{i \in \{L, A, H\}} \sum_{n=1}^{T-t} \delta_{i,t}(n) B_{i,t}(n)$$
(15)

<ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < 〇 14/31

Introduction 0000	The Model 00000000●	Data 00000	Selected Empirical Results	Application and Conclusion

Proposition 3: Welfare Cost of Deviations from the Optimal Health and Mortality Delta

- V_t^* under optimal policy $\{\Delta_{t+s-1}^*, \delta_{t+s-1}^*\}_{s=1}^n$
- V_t under alternative policy $\{\Delta_{t+s-1}, \delta_{t+s-1}\}_{s=1}^n$
- Welfare cost over n periods:

$$\begin{split} L_t(n) &= \frac{V_t}{V_t^*} - 1 \\ &\approx \frac{1}{2} \sum_{s=1}^n \sum_{i=2}^3 \left[\frac{\partial^2 L_t(n)}{\Delta_{t+s-1}(i)^2} (\Delta_{t+s-1}(i) - \Delta_{t+s-1}^*(i))^2 \right. \\ &+ \frac{\partial^2 L_t(n)}{\delta_{t+s-1}(i)^2} (\delta_{t+s-1}(i) - \delta_{t+s-1}^*(i))^2 \\ &+ 2 \frac{\partial^2 L_t(n)}{\partial \Delta_{t+s-1}(i) \partial \delta_{t+s-1}(i)} (\Delta_{t+s-1}(i) - \Delta_{t+s-1}^*(i)) \\ &\times (\delta_{t+s-1}(i) - \delta_{t+s-1}^*(i)) \right] \end{split}$$

Introduction 0000	The Model	Data ●0000	Selected Empirical Results	Application and Conclusion
Agenda				

・ロト <
ゆ ト <
き ト く
き ト き の
へ
や 16/31
</p>

Introduction 0000	The Model 000000000	Data o●ooo	Selected Empirical Results	Application and Conclusion
Health and F	Retirement Stur	łv		

- Representative panel of U.S. households whose primary respondent is aged 51 and older, interviewed every 2 years since 1992.
- Focus on sub-sample males.
- Use a profit model to estimate mortality rate as a function of observed health problems.
- Define 3 health states:

- Predicted mortality rate is higher than median, and
- Ratio of health expenses to income in higher than median.
- Good:
 - Alive and not in poor health.

Introduction 0000	The Model 000000000	Data 00●00	Selected Empirical Results	Application and Conclusion

Key Input for the Welfare Calculation

- Estimated for each cohort
 - Health and transition probabilities
 - Out-of-pocket health expenses (after employer-provided insurance and Medicare)
 - Income including Social Securities (exclude annuities and private pensions)
 - Actuarially fair prices for health and longevity products
 - They claim that the results are not sensitive to the loadings
- Observed for each household:
 - Term- and whole-life insurance
 - 2 Annuities including private insurance
 - Supplementary health (Medigap) insurance
 - 4 Long-term care insurance

Ownership Rate of Health and Longevity Products

Age

Health and Mortality Delta Implied by the Observed Household Portfolios

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへ(?)

Introduction 0000	The Model	Data 00000	Selected Empirical Results ●0000	Application and Conclusion
Agenda				

2 The Model

- 4 Selected Empirical Results
- **5** Application and Conclusion

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	The Model	Data	Selected Empirical Results	Appli
			0000	

Application and Conclusion

Determinants of the Observed Health and Mortality Delta

Explanatory variable		Healt	a delta			Mortali	ty delta	
	-	1)		(2)		3)		4)
Poor health	1.13	(3.13)	0.91	(2.49)	-15.50	(-3.42)	-1.98	(-0.44
65 or older	-10.46	(-4.34)	-4.40	(-1.79)	-150.00	(-11.28)	-100.00	(-7.49)
Married			-0.13	(-0.29)			42.60	(7.69
Has living children			0.98	(1.69)			33.49	(4.27
Education:								
High school graduate			-0.39	(-1.02)			21.09	(5.54)
College graduate			3.27	(5.68)			126.00	(20.08)
Self-reported health status:								
Poor			1.16	(2.15)			39.46	(5.65)
Fair			0.13	(0.28)			19.60	(3.51
Very good			0.02	(0.04)			-15.05	(-2.51
Excellent			1.90	(2.68)			-11.77	(-1.73
(Age = 51)/10	-1.79	(-1.28)	17.02	(8.59)	-23.93	(-1.67)	151.59	(8.98
× Poor health	-2.68	(-3.79)	-4.35	(-6.14)	-1.69	(-0.31)	-19.97	(-3.71
× 65 or older	-3.16	(-1.34)	-11.34	(-4.64)	44.85	(2.64)	-17.43	G-1.01
× Married	0.10	(101)	-2.82	(-3.77)		(1104)	-40.07	6.6.8!
× Has living children			-5.02	(4.57)			-40.17	(-4.65
× High school graduate			-7.60	(-12.23)			-49.33	(-11.65
× College graduate			-19.95	(-18.75)			-170.00	(-22.15
v Poor			2.20	(2.78)			28.20	(4.21
× 1001			1.02	(2.10)			-35.35	(2.02
× Vary good			2 72	(4.20)			21.04	(4.45
× very good			4.72	(4.20)			20.20	(5.91
(A 51)2 (100	6.44	(5.71)	10.20	(4.30)	20.05	(4.00)	69.60	(0.01
(Age = 51) / 100	-0.44	(-0.71)	-12.00	(-10.32)	-38.03	(1.00)	-03.09	(-0.42
× Foor health	0.01	(3.24)	1.14	(0.04)	1.00	(1.20)	0.81	(4.0)
× 65 of older	0.04	(0.62)	0.01	(9.32)	36.79	(3.91)	00.30	(0.22
× Married			0.81	(4.24)			7.98	(0.0)
× Has living children			1.38	(4.88)			8.79	(4.48
× High school graduate			1.93	(11.93)			11.45	(11.4)
× College graduate			4.39	(15.50)			33.97	(18.40
× Poor			0.94	(3.02)			8.21	(3.73
× Fair			0.63	(2.68)			4.89	(3.02
× Very good			-1.04	(-4.64)			-7.01	(-4.6)
× Excellent			-1.41	(-5.21)			-9.95	(-5.89
Birth cohort:								
1911-1915	-0.70	(-1.27)	-0.79	(-1.49)	0.25	(0.13)	-0.96	(-0.49
1916-1920	-4.67	(-7.23)	-3.54	(-5.79)	-10.97	(-4.63)	-6.97	(-3.06
1921-1925	-5.83	(-7.94)	-3.58	(-5.14)	-16.26	(-5.96)	-7.23	(-2.76)
1926-1930	-9.07	(-10.53)	-5.59	(-6.76)	-25.71	(-7.61)	-11.78	(-3.59
1931-1935	-7.00	(-7.41)	-3.63	(-4.00)	-19.33	(-4.85)	-4.81	(-1.24
1936-1940	-6.56	(-6.55)	-2.48	(-2.57)	-6.43	(-1.43)	9.93	(2.26)
1941-1945	-6.51	(-6.36)	-2.22	(-2.23)	15.17	(3.09)	30.23	(6.23
1946-1950	-6.40	(-6.32)	-2.12	(-2.16)	37.09	(6.28)	48.77	(8.40
1951-1955	-6.79	(-6.60)	-2.72	(-2.73)	27.15	(3.25)	43.84	(5.28
R^2 (%)	6.60		13.00		12.08		15.83	
Observations	32,778		32,341		32,778		32,341	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

. C

Introdu 0000		The I	Model	Data 00000		Selecte 00000	d E	Empir	ical Results	A	pplicati	on and	d Conc	lusion

How close is the observed insurance choice to being optimal?

- Welfare cost depends on preferences:
 - Risk aversion: $\gamma = 4$ based on Barsky et al. (1997)
 - Estimate ω(1) and ω(2) to minimize the welfare cost per period, summed across all households:

$$\frac{1}{H}\sum_{h=1}^{H}L_{h}(\omega(1),\omega(2))$$
(16)

Parameters	Symbol	Value
Subjective discount factor	β	0.96
Relative risk aversion	γ	4
Utility weight for death	$\omega(1)$	5.00
	х	(0.13)
Utility weight for poor health	$\omega(2)$	0.84
	х	(0.02)
Utility weight for good health	$\omega(3)$	1.00

Welfare Cost of the Observed Health and Mortality Delta

Introduction	The Model	Data	Selected Empirical Results	Application and Conclusion
0000	000000000	00000	0000●	
Extensions a	nd Robustness			

extensions and Robustness

- They show that the results are robust to:
 - Non-actuarial pricing of insurance policies
 - 2 Different strengths of the bequest motives
 - Including heterogeneous preference parameters is computationally challenging, but preliminary results indicate that:

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

- Most heterogeneity in $\omega(1)$, the bequest motive
- Welfare costs do not reduce by much

Introduction	The Model	Data	Selected Empirical Results	Application and Conclusion
0000	000000000	00000		●00000
Agenda				

2 The Model

4 Selected Empirical Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Introduction 0000	The Model 00000000	Data 00000	Selected Empirical Results	Application and Conclusion

How does one construct an optimal portfolio of health and longevity products?

- Male born 1936-1940:
 - Good health and initial wealth of \$66,000 at age 51
 - Lives at most 30 periods, each corresponding to 2 years

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

- Death with certainty at age 111.
- Policy choice:
 - Short-term (2-year) life insurance
 - 2 Deferred (until age 65) annuity
 - Short-term (2-year) health insurance
 - Bond at interest rate of 2%

Optimal Health and Mortality Delta over the Life Cycle

・ロト ・四ト ・ヨト ・ヨト ・ うくの・

Introduction 0000	The Model	Data 00000	Selected Empirical Results	Application and Conclusion
Conclusion				

- Retail financial advisors and insurance companies should report the health and mortality delta of their health and longevity products.
 - Just as mutual fund companies report beta and duration.
- These risk measures will:
 - Facilitate stadardization of products.
 - Identify overlap between existing products.
 - $\bullet\,$ Identify risks that are not insured by existing products $\rightarrow\,$ new product development

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへの

Introduction 0000	The Model	Data 00000	Selected Empirical Results	Application and Conclusion
Conclusion				

- Potential welfare gains from completing missing markets and by eliminating suboptimal portfolio choice.
 - Lifetime welfare cost about 27% of wealth at age 51-58
- Alternatively, evidence for preference heterogeneity that is uncorrelated with marital status, children, private information about health...

Question?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで