Q1.

The diagram shows a cube *ABCDEFGH* with sides of length 6 cm.

Diagram NOT accurately drawn

T is the midpoint of AB and V is the midpoint of CH

Work out the distance from *T* to *V* in a straight line through the cube. Give your answer in the form \sqrt{a} cm where *a* is an integer.

..... cm

The diagram shows a triangular prism, ABCDEF, with a rectangular base ABCD

Work out the angle that *BE* makes with the plane *ABCD* Give your answer correct to one decimal place.

•_____ •

(Total for question = 4 marks)

Q2.

Q3.

A cylinder is placed on a table.

The volume of the cylinder is 1575 cm³

The force exerted by the cylinder on the table is 84 newtons.

pressure -	force
pressure -	area

Work out the pressure on the table due to the cylinder.

..... newtons/cm²

Q4.

Solid ${\boldsymbol{\mathsf{A}}}$ is similar to solid ${\boldsymbol{\mathsf{B}}}$

Here is some information about solid ${\bf A}$ and solid ${\bf B}$

	solid A	solid B
Height (cm)	3 ^x	
Area (cm ²)	7776	486
Volume (cm ³)	8 ^x	2 ^{x+4}

Work out the height of solid ${\boldsymbol{\mathsf{B}}}$

Give your answer as a decimal.

..... cm

Calculate the area of the kite.

Give your answer correct to 3 significant figures.

..... cm²

(Total for question = 3 marks)

Q5.

The diagram shows an 8-sided shape ABCDEFGH.

..... cm

(Total for question = 4 marks)

Q6.

The diagram shows isosceles triangle ABC

Diagram NOT accurately drawn

Calculate the area of triangle ABC

..... cm²

Q8.

The diagram shows a square ABCD and a circle.

Diagram NOT accurately drawn

The sides of the square are tangents to the circle.

The total area of the shaded regions is 80 cm^2

Work out the length of AC

Give your answer correct to 3 significant figures.

..... cm

Q9.

A and B are two similar vases.

Calculate the volume of vase ${\bf B}$

..... cm³

Q10.

The diagram shows quadrilateral ABCD

The angle *BCD* is acute.

Given that the area of triangle $BCD = 405 \text{ cm}^2$

work out the size of angle *ABD* Give your answer correct to one decimal place.

۰

Q11.

The diagram shows the positions of three villages, A, B and C

......minutes

Q12.

The diagram shows triangle ABC

c = 11.5 correct to one decimal place

x = 80 correct to the nearest whole number

y = 75 correct to the nearest whole number

Calculate the upper bound for the value of *b* Show your working clearly.

Give your answer correct to 3 significant figures.

.....

Q13.

Here is a parallelogram *PQRS*, in which angle *SPQ* is acute.

*P*Q = 6.1 cm *P*S = 3.8 cm

The area of the parallelogram is 18 cm^2

Work out the length of QS Give your answer correct to 3 significant figures.

..... cm

Q14.

The diagram shows triangle *PQR*

Diagram NOT accurately drawn

Angle PRQ = 18°

Given that angle *PQR* is obtuse,

work out the area of triangle *PQR* Give your answer correct to 3 significant figures.

..... cm²

Q15.

The diagram shows two solids, **A** and **B**, made from two different metals.

Solid **A** is in the shape of a cylinder with radius 3 cm and height 7 cm Solid **A** has a mass of 2000 g

Solid **B** has a mass of 3375 g Solid **B** has a volume of 450 cm^3

All of the metal from Solid A and Solid B is melted down to make a uniform Solid C

Given that there is no change to mass or volume during this process

work out the density of Solid **C** Give your answer correct to one decimal place.

..... g / cm³

Q16.

Here is a frustum of a cone.

The frustum is made by removing a small cone from a similar large cone.

 $\frac{4212}{\pi} m \text{ cm}^3$

25

The height of the large cone is 15 cm.

The radius of the base of the large cone is 6 cm.

The radius of the base of the small cone is *x* cm.

Given that the volume of the frustum is

work out the value of x

Show clear algebraic working.

x =

Q17.

A solid shape is made by removing a hemisphere, shown shaded, from a cone as shown in the diagram.

Diagram NOT accurately drawn

The radius of the hemisphere is 2x cmThe radius of the base of the cone is 5x cmThe vertical height of the cone is 6x cm

The volume of the solid shape is 6948π cm³

Work out the **total** surface area of the solid hemisphere that has been removed from the cone. Give your answer correct to the nearest integer.

..... cm²

RST, SCU and BCV are straight lines. RST is parallel to CD Angle RSC = 128° Angle UCV = 32°

Work out how many sides the polygon has. Show your working clearly.

.....

(Total for question = 4 marks)

Q18.

Q19.

The diagram shows a sector AOB of a circle with centre O

Diagram NOT accurately drawn

Angle $AOB = 67^{\circ}$ OA = OB = 5.2 cm

Calculate the perimeter of the sector. Give your answer correct to 3 significant figures.

..... cm

Q20.

The diagram shows parts of three regular polygons, A, B and C, meeting at a point.

Polygon **B** has *n* sides.

Work out the value of *n*.

n =

The diagram shows a sector OABC of a circle centre O

Diagram NOT accurately drawn

Angle $AOC = 60^{\circ}$

The area of the shaded segment ABC is 38 cm²

Work out the perimeter of the shaded segment *ABC* Give your answer correct to one decimal place.

..... cm

(Total for question = 4 marks)

Q21.

Q22.

The diagram shows two circles with centre O and a regular pentagon ABCDE

Diagram NOT accurately drawn

A, *B*, *C*, *D* and *E* are points on the larger circle. The pentagon has sides of length 8 cm.

The diagram is shaded such that

shaded area = unshaded area

Work out the radius of the smaller circle. Give your answer correct to 3 significant figures.

..... cm

Q23.

Here is a 9-sided regular polygon ABCDEFGHJ, with centre O

Diagram NOT accurately drawn

ODK and FEK are straight lines.

Work out the value of *x*

x =

Q24.

The surface area of sphere ${\bf A}$ is nine times the surface area of sphere ${\bf B}$

The difference between the volume of sphere \bm{A} and the volume of sphere \bm{B} is $117\pi\ cm^3$

Find the radius of the smaller sphere.

Show your working clearly.

..... cm

Q25.

Here is a cuboid ABCDEFGH

Diagram NOT accurately drawn

AB = 15 cm, *BC* = 4 cm, *CF* = 9 cm

(a) Work out the length of BE

Give your answer correct to 3 significant figures.

..... cm (2)

Here is a cuboid *PQRSTUVW*

Diagram NOT accurately drawn

PR = 42 cm

The size of the angle between PU and the plane PQRS is 30°

M is the midpoint of PR

(b) Work out the size of angle UMR

Give your answer correct to 3 significant figures.

۰.....

(3)

Q26.

The diagram shows a roof support.

Diagram NOT accurately drawn

The roof support is made from four lengths of wood, AB, AC, BC and MC

AC = BC = 9 m AB = 12 mangle $AMC = 90^{\circ}$

Lewis is going to buy lengths of wood to make the roof support.

The wood costs 21.50 euros per metre. Each length of wood he buys has to be a whole number of metres.

Work out the total cost of the wood Lewis needs to buy. Show your working clearly.

..... euros

Q27.

The diagram shows triangle ABC and triangle ECD

Give your answer correct to one decimal place.

w =

Q28.

ABCD is a trapezium.

BC is parallel to AD

Find the size of the largest angle inside the trapezium.

۰

Q29.

Here is a triangular prism ABCDEF

Diagram NOT accurately drawn

AD = 53 cm

DF = 28 cm

Angle $FDE = 30^{\circ}$

Work out the volume of the triangular prism.

Give your answer correct to the nearest whole number.

..... cm³

<u>Mark Scheme</u>

Q1.

Q	Working	Answer	Mark	c I	Notes	
	eg $(BV^2 =)3^2 + 6^2 (= 45)$ or		4	M1	a correct expression for eg BV^2 or	M3 for
	$(CT^2 =)3^2 + 6^2 (= 45)$ or				CT^2	$(VT =)\sqrt{6^2 + 3^2 + 3^2}$
	$(DH^2 =) 6^2 + 6^2 (= 72)$				DH^{-} of MV^{-} where M is the midpoint of DC	(-3.6 or 7.34)
	or $(MV^2 =)3^2 + 3^2 (= 18)$				or a correct expression for [length] ²	(- 540 01 7.54)
	di (117 –)5 +5 (–10)				for any length in the cube using	(M2 for
					Pythagoras	$(VT^2 =)$
	$(PV_{-})\sqrt{2^2+6^2}$			M1	for a complete method for	$6^2 + 3^2 + 3^2 (= 54))$
	$eg (DV =) \sqrt{3 + 0}$				eg BV or CT or DH or MV or any	
	$(=\sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70)$)			length in the cube using Pythagoras	
	or $(CT =)\sqrt{3^2 + 6^2}$					
	$(=\sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70)$)				
	or $(DH =)\sqrt{6^2 + 6^2}$					
	$(=\sqrt{72} \text{ or } 6\sqrt{2} \text{ or } 8.48)$					
	or $(MV =)\sqrt{3^2 + 3^2}$					
	$(=\sqrt{18} \text{ or } 3\sqrt{2} \text{ or } 4.24)$					
				M 1	for a correct expression for VT	
	$(VT =) \sqrt{"45"+3^2}$				(condone missing brackets around $\Gamma_{\mu\nu} = \Gamma_{\mu\nu}$	
					3√5 <u>or</u> 3√2	
	$\left(\sqrt[9]{72} \right)^{2}$				or $\frac{\sqrt{72}}{2}$	
	or $\sqrt{\frac{2}{2}}$ + 0				2	
	or $\sqrt{"18"+6^2}$					
	or 316 or 7.34					
		$\sqrt{54}$		A1	if $\sqrt{54}$ seen and answer then	
					given as $3\sqrt{6}$ isw and award	
					full marks	
						Total 4 marks

Q2.

Q	Working	Answer	Mark		Notes
	$(AD =) \frac{2.2}{\tan 18}$ (= 6.77) or $(EA =) \frac{2.2}{\sin 18}$ (= 7.11)		4	M1	a correct method to find <i>AD</i> or <i>AE</i>
	$(DB =)\sqrt{("6.77")^2 + 6^2}$ (= 9.04) or $(EB =)\sqrt{6^2 + "7.11"^2}$ (= 9.31) or $(EB =)\sqrt{6^2 + "6.77"^2 + 2.2^2}$ (= 9.31)			M1	a correct method to find <i>DB</i> or <i>EB</i>
	$\tan DBE = \frac{2.2}{"9.04"} \text{ or}$ $\sin DBE = \frac{2.2}{"9.31"} \text{ or}$ $\sin DBE = \frac{2.2 \sin 90}{"9.31"}$ $\cos DBE = \frac{"9.04"}{"9.31"} \text{ or use of cosine}$ rule			M1	complete method to find one of tan <i>DBE</i> or sin <i>DBE</i> or cos <i>DBE</i> – NB: if using cosine, the student will need to have found <i>DB</i> and <i>EB</i> previously
	Correct answer scores full marks (unless from obvious incorrect working)	13.7		A1	Allow answers in range 13.59 – 13.8
					Total 4 marks

Q3.

Q	Working	Answer	Mark	Notes
	$1575 = (\text{area}) \times 21 \text{ oe}$ or (area =) 75 or $1575 = \pi \times r^2 \times 21 \text{ oe}$ or $r^2 = \frac{1575}{21\pi} (= 23.8(732)) \text{ oe}$ or $r = \sqrt{1575} (= 4.88(602)) \text{ oe}$		3	M1 for finding the area using Vol = cross sectional area × height or finding r or r^2 using vol = $\pi r^2 h$ NB r^2 and r can be rounded or truncated
	$\sqrt{21\pi}$ (-4.88(002)) be			
	$\frac{84}{75"}$ oe or $\frac{84}{\pi"4.88"^2}$ oe or $\frac{84}{\pi"23.8"}$ oe			M1 for area of circle
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	1.12		A1 accept 1.06 – 1.121
				Total 3 marks

Q4.

Q	Working	Answer	Mark		Notes
	$\sqrt{\frac{7776}{486}} \text{ or } \sqrt{16} \text{ or } 4 \text{ oe or}$ $\sqrt{\frac{486}{7776}} \text{ or } \sqrt{\frac{1}{16}} \text{ or } \frac{1}{4} \text{ oe}$	<u>Alternative for M2</u> a correct equation linking area and volume $(486)^3 (2^{x+4})^2$		5	M1 for a correct linear scale factor
	$8^{x} = "\left(\sqrt{\frac{7776}{486}}\right)^{3} " \times 2^{x+4} \text{ oe}$ $eg_{8^{x}} = 4^{3} \times 2^{x+4} \text{ oe}$ or $\frac{1}{8^{x}} = "\left(\sqrt{\frac{486}{7776}}\right)^{3} " \times \frac{1}{2^{x+4}} \text{ oe}$	$\left(\frac{7776}{7776}\right)^{3} = \left(\frac{8^{x}}{8^{x}}\right)^{2} \text{ oe}$ or $\left(\frac{7776}{486}\right)^{3} = \left(\frac{8^{x}}{2^{x+4}}\right)^{2} \text{ oe}$			M1 for setting up a correct equation for volume
	eg $2^{3x} = 2^6 \times 2^{x+4}$ or $(4^{\frac{3}{2}})^x = 4^3 \times 4^{\frac{1}{2}(x+4)}$ $\frac{1}{2^{3x}} = \frac{1}{2^6} \times \frac{1}{2^{x+4}}$ oe or 3x = 6 + x + 4 oe or x = 5	$\frac{1}{2^{12}} = \frac{2^{2x+8}}{2^{6x}} \text{ oe or}$ $2^{12} = \frac{2^{6x}}{2^{2x+8}} \text{ oe or}$ $12 = 6x - 2x - 8 \text{ oe or}$ $x = 5$			M1 for a correct equation using just powers of 2 or powers of 4 (or 8 or 16) or a correct linear equation in x or the correct value for x
	$3^5 \div 4 \text{ or}$ $3^5 \times \frac{1}{4}$	e or De			M1 a correct calculation for the height of solid B
			60.75		A1 oe accept 60.8 or 61 (from correct working)
					Total 5 marks

Q5.

Q	Working	Answer	Mark		Notes
	$\frac{1}{2} \times 6 \times 11 \times \sin 118 (= 29.1)$		3	M1	for the area of half of the kite
	eg $2 \times \frac{1}{2} \times 6 \times 11 \times \sin 118$			M1	for a complete method
		58.3		A1	accept 58.2 - 58.3
					Total 3 marks

Q6.

Q	Working	Answer	Mark		Notes
	28 × 12 (=336) or 5 × 12 (= 60) or 18 × 12 (= 216) or 28 × 20 (=560) or $\frac{1}{2}(CD + "18")"8"$ oe eg 72 +4CD [numbers in "" come from correct working]		4	M1	For a correct method to find the area of a rectangle (may be seen as part calculation) or a correct expression for the area of the trapezium with numbers substituted.
	Check diagram for areas				Allow for other correct methods to find area linked to this shape.
	"336" + 0.5("18" + CD)"8" = 434 oe eg 4("18" + CD) = 98 or eg 0.5("18" + CD)"8" = "98" oe eg $\frac{1}{2}(18 + CD) = 12.25$ or "560"-2(0.5(5+x)"8") = 434 oe (where x is horizontal from D to perp with AF) [numbers in " " come from correct working]			M1	correct use of their values from correct working for an equation involving <i>CD</i> (<i>CD</i> could be labelled with any letter)
	eg $(CD =) \frac{196 - 144}{8} \left(= \frac{52}{8}\right)$ or $(CD =) \frac{98 - 72}{4} \left(= \frac{26}{4}\right)$ or $(CD =) \frac{434 + 152 - 560}{4}$ or $(CD =) 2 \times 12.25 - 18$ or $98 \times 2(=196)$, "196"÷8(= 24.5), "24.5"-18			M1	a correct process to solve a correct equation or a correct process to find <i>CD</i> using correct values
		6.5		A1	oe
					Total 4 marks

Q7.

Q	Working	Answer	Mark		Notes
	17.5 ² - 14 ² (= 110.25)		4	M1	or for use of cosine rule to find one of
					the angles
					eg $28^2 = 17.5^2 + 17.5^2 - 2 \times 17.5 \times 17.5$
					× cosA
					or eg $\cos B = \frac{14}{12}$
					17.5
	$\sqrt{17.5^2 - 14^2}$ (=10.5)			M1	or for rearranging the cosine rule to
					$17.5^2 + 17.5^2 - 28^2$
					eg $\cos A = \frac{1}{2 \times 17.5 \times 17.5}$ (A =
					106.26)
					or eg $B = \cos^{-1}(\frac{14}{17.5})$ (= 36.86)
	0.5 × 28 × "10.5" oe			M1	or for 0.5 × 17.5 × 17.5 × sin106.26
					oe
					eg $0.5 \times 17.5 \times 28 \times \sin 36.86$
					[clear use of Heron's formula:
					M1 for $S = 0.5(17.5 + 17.5 + 17.5)$
					28)(=31.5)
					M2 for
					$\sqrt{"31.5"("31.5"-17.5)^2("31.5"-28)}$
					oe]
		147		A1	accept awrt 147
					Total 4 marks

Q8.

Q		Working	Answer	Mark	Notes
	$(2r)^2 - \pi r^2$ oe or		5	M1	A correct expression for the area of the
					shaded parts in one variable only
	$x^2 - \pi \times (0.5x)^2$				for this mark only, accept without brackets
					$(\text{eg } 2r^2 - \pi r^2 \text{ or } x^2 - \pi \times \frac{1}{2}x^2)$
					(any letter can be used eg AB, x, y etc,
					here, $r = radius$, $x = side of square$)
	$4r^2 - \pi r^2 = 80$ oe eg $r^2 - 0.25\pi r^2 = 20$ or			M1	A correct equation in one variable with
	$x^2 - 0.25\pi x^2 = 80$ or $4x^2 - \pi x^2 = 320$ oe				brackets expanded (may be seen later in working)
	80			M1	A correct expression for the radius squared
	$r^2 = \frac{1}{4-\pi} (= 93.19)$ or $r = \sqrt{4-\pi} (= 9.65)$				or radius or for the side of the square
	$x^2 = \frac{80}{1 - 0.25\pi} (= 372.78)$ or $x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307)$				squared of for the side of the square
	oe eg				
	320				
	$\sqrt{4-\pi}$				
	$(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2}$ oe or			M1	For a correct calculation to find the length of AC
	$(AC =) 2 \times \sqrt{9.65^{2} + 9.65^{2}}$				
	$(AC =)\sqrt{19.307^{2} + 19.307^{2}}$ or erg $\sqrt{8 \times \frac{80}{4-\pi}}$ or or				
	$(AC =) \frac{2 \times "9.65"}{\sin 45}$ or $\frac{2 \times "9.65"}{\cos 45}$				

incorrect working)				Total 5 marks
Correct answer scores full marks (unless from obvious	27.3	A1	27.3 - 27.5	

Q9.

Q	Working	Answer	Mark	Notes
	eg $\sqrt{\frac{25}{64}} \left(= \frac{5}{8} = 0.625 \right)$ or $\sqrt{\frac{64}{25}} \left(= \frac{8}{5} = 1.6 \right)$ or		4	M1 for a correct scale factor for length – may
	$\sqrt{25}:\sqrt{64}$ (5:8) or $\sqrt{64}:\sqrt{25}$ (8:5) or			be given as a fraction or decimal or ratio
	$\frac{(\sqrt{25})^3}{(\sqrt{64})^3} = \left(\frac{125}{512} = 0.244140625\right) \text{ or } \frac{512}{125} = 4.096$ $\frac{25^3}{64^3} = \frac{(\text{vol of } \mathbf{B})^2}{(\text{vol of } \mathbf{B} + 541.8)^2} \text{ or } \frac{25}{64} = \frac{(\text{vol of } \mathbf{B})^{\frac{2}{3}}}{(\text{vol of } \mathbf{B} + 541.8)^{\frac{2}{3}}} \text{ oe}$			or a correct scale factor for volume given as a fraction or decimal or ratio or a correct equation for the volume of vase B
	eg B $\left(\frac{512}{125} - 1\right) = 541.8$ or 3.096B=541.8 oe			M1 For a correct equation for the volume of B
	or eg A $\left(1 - \frac{125}{512}\right) = 541.8$ or $\frac{387}{512}$ A = 541.8			for the volume of A
	$(8^3)k - (5^3)k (= 387k) = 541.8$			
	or eg $(k=)\frac{541.8}{387}\left(=\frac{7}{5}\right)$			
	eg (B) 541.8 ÷ " $\frac{387}{125}$ " or 541.8 ÷ "3.096" or eg 125×" $\frac{7}{5}$ " or			M1 For a completely correct method to find
	(A) $541.8 \div "\frac{387}{512}"(=716.8)$ oe			the volume of vase B or vase A
	Correct answer scores full marks (unless from obvious incorrect working)	175		A1 cao
				Total 4 marks

Q10.

Q	Woi	Α	Μ	Notes	
	$\frac{1}{2} \times 45 \times 36 \times \sin'C' \ (= 405)$ $\sin'C' = \frac{405 \times 2}{100} (C' = 30) \ ce$	alternative $\frac{2 \times 405}{36} (= 22.5)$ or $\frac{2 \times 405}{45} (= 18)$	07)		M1 correct substitution into the sine area formula, with their choice of symbol to represent C.or work out the perpendicular height with BC or CD as the base. M1 correct
	45×36	or $\sqrt{36^2 - 18^2} \left(=\sqrt{972} = 31.17\right)$)		rearrangement to make sin C the subject or use Pythagoras with their found perpendicular height.
(B (= (=	$D = \sqrt{45^2 + 36^2 - 2 \times 45 \times 36 \times \cos' 30'}$ = $\sqrt{3321 - 3240 \times \cos' 30'}$ $\sqrt{515.077} = 22.695$	$\sqrt{('38.97'-36)^2 + 22.5^2} \left(=\sqrt{5}\right)$ or $\sqrt{('45'-31.17)^2 + 18^2} \left(=\sqrt{5}\right)$	15.07	7)	M1 (dep on 1st M1, ft 30) correct expression for <i>BD</i> ft their <i>C</i> (must be less than 90°). or use Pythagoras to find an expression for <i>BD</i> .

$\cos' ABD' = \left(\frac{'22.695'^2 + 19^2 - 28^2}{2 \times '22.695' \times 19}\right)$		M1 for a complete method tofind angle ABD
leading to 'ABD' = or (BAD =) $\cos \left(\frac{28^2 + 19^2 - '22.695'^2}{2 \times 28 \times 19} \right)$ (= 53.7) and		
$\sin' ABD' = \frac{\sin' 53.7'}{'22.695'} \times 28$ leading to 'ABD' =		
	83. 9	A1 accept 83.85 - 83.9
		Total 5 marks

Q	Working	Answer	Mark	Notes
	(angle ABC =) 54 + (180 - 132) (= 102)		5	M1 for finding angle ABC
	$(AC^2 =)3.6^2 + 8.4^2 - 2 \times 3.6 \times 8.4 \times \cos[102]$			M1 for applying the
				cosine rule correctly
				ft their 102 provided less
				than 180 and not 90
				M1 for finding AC
	$(AC =)$ $36^{2} + 84^{2} - 2 \times 36 \times 84 \times \cos[102]$			ft their 102 provided less
				than 180 and not 90
	or √96.094 or 9.8(02)			
	$([9.8]+8.4+3.6) \div 6 (= 3.63(3))$ or			M1 dep on previous
				M1M1 for finding the
	$21.8(02) \div 0 (= 3.03(3))$ oe			time taken to complete the
				journey (may be done in
				parts)
	Working not required, so correct answer	3 hours and		A1
	scores full marks (unless from obvious	38 minutes		Allow 3 hours and (37 -
	incorrect working)			38) minutes
				Total 5 marks

Q12.

Q	Working	Answer	Mark	Notes
	11.45 or 11.55 or 79.5 or 80.5 or 74.5 or 75.5		4	B1 Accept 11.549 for 11.55 80.49 for 80.5 75.49 for 75.5
	180 - (74.5 + 79.5) (= 26)			M1 for a correct calculation to find the upper bound of angle B NB 180° – (LB of 75° + LB of 80°)
	$\frac{(AC)}{\sin(26)} = \frac{11.55}{\sin(74.5)} \text{ oe or}$ $\frac{(AC)}{\sin(180 - 74.5 - 79.5)} = \frac{11.55}{\sin(74.5)}$			M1 for substituting the correct bounds into the sine rule $\frac{(YZ)}{\sin("26")} = \frac{UB_1}{\sin(LB_2)} \text{ oe where}$ $11.5 < UB_1 \le 11.55 \text{ and}$ $74.5 \le LB_2 < 75$
		5.25		A1 awrt 5.25 from correct working
				Total 4 marks

Q13.

Q	Working		Answe	er N	fark	Notes
	(area $PQS =$) $\frac{1}{2} \times 6.1 \times 3.8 \times \sin P = 9$ or (area $PQRS =$) $6.1 \times 3.8 \times \sin P = 18$	$\frac{1}{2} \times 6.1 \times SX = 9 \text{ or}$ $(SX =) \frac{9}{\frac{1}{2} \times 6.1} (= 2.95)$ or $6.1 \times SX = 18$ or $(SX =) 18 \div 6.1 (= 2.95)$		5	5 M1	correct equation for the area of the triangle or parallelogram or a calculation to find the height of the parallelogram (where X is the point vertically below S on PQ)
	eg (sin P =) $\frac{9}{\frac{1}{2} \times 6.1 \times 3.8}$ $\left(= 0.776 \text{ or } \frac{900}{1159}\right)$ or (sin P =) $\frac{18}{6.1 \times 3.8}$ $\left(= 0.776 \text{ or } \frac{900}{1159}\right)$	$(PX^2 =)3.8^2 - "2.95"^2 (= 5.73)$ or $(PX =)\sqrt{3.8^2 - "2.95"^2} (= 2.39)$)		M1	correct expression for sin <i>P</i> OR for start of Pythagoras method to find length of <i>PX</i> (where <i>X</i> is the point vertically below <i>S</i> on <i>PQ</i>)
	(P =) sin ⁻¹ "0.776" (= 50.9)	$(QX =)6.1 - \sqrt{5.73''} (= 3.70)$ or $(QX =)6.1 - 2.39'' (= 3.70)$			M1	for complete method to find angle <i>P</i> OR for method to find length of <i>OX</i>
√ [!]	$(QS^{2} =)3.8^{2} + 6.1^{2} - 2 \times 3.8 \times 6.1 \times \cos("50.9") = 22.4)$ or $(QS =)$ $3.8^{2} + 6.1^{2} - 2 \times 3.8 \times 6.1 \times \cos(-1)$	$(QS^2 =)$ "2.95" ² +"3.70" ² (= 22 or $(QS =)\sqrt{"2.95"^2 + "3.70"^2}$	4)		M1	correct expression for QS ² (or QS)
			4.3	74	A1	accept 4.73 - 4.74
						Total 5 marks

Q14.

Q	Working	Answer	Mark		Notes
	$\frac{\sin Q}{4.2} = \frac{\sin 18}{1.6} \text{ oe or}$		6	M1	correct sine ratio - could be rearranged or correct substitution into
	$1.0^{-} = 4.2^{-} + RQ^{-} - 2 \times 4.2 \times RQ \times \cos 18$ oe				the cosine rule using angle <i>R</i>
	$\sin^{-1}\left(\frac{4.2 \times \frac{\sin 18}{1.6}}{1.6}\right)$ (= 54.2) or $\sin^{-1}(0.811)$			M1	
	$\frac{2 \times 4.2 \times \cos 18 \pm \sqrt{(2 \times 4.2 \times \cos 18)^2 - 4 \times 1 \times 15.08}}{2}$				
	180 - 54.2 (=125.8) or RQ = 3.0585 and 4.933			M1	This can be implied by the correct value(s) (125.8 or 3.0585) used later
	(P =) 180 - 125.8" - 18 (=36.2) or $RQ = \sqrt{4.2^2 + 1.6^2 - 2 \times 4.2 \times 1.6 \times \cos^{13} 6.2"} (= 3.0585)$ or 3.0585 chosen as value from cosine rule above			M1	
	or perpendicular height = 4.2sin"36.2" (= 2.4805) (where "36.2" comes from correct working)				
	(Area =) $\frac{1}{2} \times 4.2 \times 1.6 \times \sin("36.2")$			M1	
	or $(\text{Area} =) \frac{1}{2} \times 4.2 \times "3.0585" \times \sin 18$				
	or (Area = $\sum_{2}^{1} \times 1.6 \times "2.4805"$				
		1.98		A1	awrt 1.98
					Total 6 marks

Q15.

Q	Working	Answer	Mark	Notes
	eg $\pi \times 3^2 \times 7$ (= 63 π or 197.9)		3	M1 for method to find the volume of Solid A
	$eg \frac{2000}{[vol A]} \text{ or } \frac{3375}{450} (= 7.5 \text{ oe}) \text{ or} \\ \frac{2000 + 3375}{[vol A] + 450}$			M1 (indep) for method to find the density of Solid A, B or C, allow use of their volume for Solids A and C
	Correct answer scores full marks (unless from obvious incorrect working)	8.3		A1 accept 8.29 – 8.31
				Total 3 marks

Q16.

Question	Working	Answer	Mark	Notes
	$V = \frac{1}{3}\pi \times 6^2 \times 15 (=180\pi = 565.48)$		5	M1 a correct expression for volume of large cone
	$\frac{6}{15} = \frac{x}{\text{height}} \text{ or height} = \frac{15}{6}x = \frac{5}{2}x \text{ oe used or}$ (vol sml cone =) $\left(\frac{x}{6}\right)^3 V \text{ or } \left(\frac{x}{6}\right)^3 \times 180\pi \text{ or}$			M1 working with the scale factor (where V = vol of large cone) or formula for volume of sml cone, (ft their vol of large cone dep on a correct method)
	(vol sml cone ="180 π " - $\frac{4212}{25}\pi \left(=\frac{288}{25}\pi=11.52\pi=36.19\right)$			(NB: $\frac{4212}{25} = 168.48$, $\frac{4212}{25}\pi = 529.29$)
	eg $\frac{1}{3}\pi \times x^2 \times \frac{5}{2}x$ (= $\frac{5}{6}\pi x^3$) oe or linear SF = $\sqrt[3]{\frac{180\pi}{25}\pi}$ (= 2.5) oe or $\sqrt[3]{\frac{288}{25}}$ (= 0.4) oe			M1 dep on previous M1 correct formula for volume of small cone in terms of x only, could be seen as part of an equation and π could be cancelled out or Correct calculation for linear SF of ν to V
	2.5 and 0.4 must be from correct working seen to award the			
	mark (not from height/radius)			
	eg $\frac{1}{3} \times \pi \times 6^2 \times 15 - \frac{1}{3} \times \pi \times x^2 \times \frac{5}{2} x = \frac{4212}{25} \pi$ or $180 - \frac{5}{6} x^3 = \frac{4212}{25}$ oe or $\left[1 - \left(\frac{x}{6}\right)^3\right] 180\pi = \frac{4212}{25} \pi$ oe or $6 = x^{15} + \frac{15}{25} = 6 = x^{15} + \frac{1}{25} = 288 = 6 + 11 + 52 = 3$			M1 dep on M3 A correct equation in x (if using 2.5 this must come from a correct method)
	$x = \frac{1}{2.5}$ or $n = \frac{1}{2.5} = 0$ and $\frac{1}{3}nx = \frac{1}{25}n(=11.52\pi)$			
	Working required	2.4		Aloe dep on M3
				Total 5 marks

Q17.

Q	Working	Answer	M	ark	Notes
	$\frac{1}{3}\pi \times (5x)^2 \times 6x$ oe or $50\pi x^3$ oe		5	M1 hen	for finding the volume of cone or nisphere or sphere
	or $\frac{1}{2} \times \frac{4}{3} \times \pi \times (2x)^3 \text{ or } \frac{16}{3} \pi x^3 \text{ oe}$			NB and	Ignore missing brackets around 5x 2x for this mark
	or $\frac{4}{3} \times \pi \times (2x)^3$ or $\frac{32}{3} \pi x^3$ oe				
	$\frac{1}{3}\pi \times (5x)^2 \times 6x - \frac{1}{2} \times \frac{4}{3} \times \pi \times (2x)^3 = 6948\pi \text{ oe}$			M1 volu	for a correct equation for the ume of the shape
	or $50\pi x^3 - \frac{16}{3}\pi x^3 = 6948\pi$			NB mus	If not expanded at this stage then st see brackets
	or $\frac{134}{3}\pi x^3 = 6948\pi$ oe				
	$(x^3 =) \frac{6948\pi \times 3}{134\pi} \left(= \frac{10422}{67} = 155.(552) \right)$ oe or			M1 to fi	for rearranging the correct equation ind the value of x^3 or x
	$(x=)\sqrt[3]{\frac{6948\pi \times 3}{134\pi}}$			Acc	cept 5.4 or better
	$\left(=\sqrt[3]{\frac{10422}{67}}=\sqrt[3]{155.(552)}=5.37(8)\right)$ oe				
	$3 \times \pi \times (2 \times "5.37(8)")^2$ oe or			M1 hen	for finding the surface area of the nisphere
	$12 \times \pi \times 5.3 / (8)^{-2}$ oe Working not required, so correct	1090		A1	allow 1086 – 1100
	answer scores full marks (unless from obvious incorrect working)			Spe SC x = SC	cial case for using 6948 without π B3 for $x^3 = 49.5(138)$ or 3.67(205) B4 for awrt 508
					Total 5 marks

Q18.

Q	Working	Answer	Mark		Not	es
	$SCD = 128^{\circ} \text{ or } BCS = 32^{\circ}$		4	M1	angles need to be	M2 for
	or TSC = 180 - 128 (= 52)				identified or may be	(BCD =) 128 +
					seen marked on the	32 (= 160) or
					diagram	(DCV=) 52 -
	eg (int $\angle =$)128 + 32(=160)			M1	(dep on previous M1)	32 (= 20) (may
	or				for method to find the	be seen marked
	$(ext \angle =)180 - (128 + 32)(= 20)$				size of one interior or	on the
	or $(ext \angle =)$ 52"-32(= 20)				exterior angle, may	diagram). To
					be seen marked on	award these
					the diagram.	marks 160 or
						20 must be
						clearly used or
						identified as
						the interior or
						exterior angle.
	eg 180(n-2) = "160"n or			M1	for setting up an equati	on for the sum of
	360 ÷ "20"				interior angles or 360 +	- "20"
	Working required	18		A1	dep on M2	
						Total 4 marks

Q19.

Q	Working	Answer	Mark		Notes
	2× 7×5 2(-22 6 ⁵² 7)		3	M1	for finding the whole
	eg $2 \times \pi \times 5.2 (= 32.0\text{or} - \frac{\pi}{5} \pi)$ oe				circumference or the arc length
	67				
	$\frac{1}{360} \times 2 \times \pi \times 5.2 (= 6.08\text{ or } \frac{1}{450} \pi)$ oe				
	67 22 7 25 2 1 2 25 2 22			M1	for a complete method
	$\frac{360}{360}$ × 2× π × 5.2 + 2× 5.2 Ge				
		16.5		A1	accept 16.4 - 16.5
					(not in terms of π)
					Total 3 marks

Q20.

Q	Working	Answer	Mark		Notes
	7x + 3x + 8x = 360 oe		4	M1	M2 for $7x = 140$
	$(x =) 360 \div 18 (= 20)$			M1	(140 can be on diagram)
	360 ÷ (180 − 7 × "20") oe or 360 ÷ (180 − "140")			M1 for	r 360 ÷ exterior angle
	$\frac{(n-2)\times180}{2} = 7\times"20"$ oe or 360 ÷ 40				
	n				
		9		A1	
					Total 4 marks

Q21.

Q	Working	Answer	Mark	Notes
	eg		4	M1 for a correct expression for
	$\frac{1}{2}$ 60 1 $\frac{1}{2}$ 60 c 1			the area of the segment
	$\frac{1}{360} - \frac{1}{2}$ sin do de			Expression may be embedded
	or			in an equation, eg
	$\frac{\pi r^2}{6} - \frac{\sqrt{3}}{4} r^2 \text{ oe}$			$\pi r^2 \times \frac{60}{360} - \frac{1}{2}r^2 \sin 60 = 38 \text{ or}$
	о т			$\pi r^2 \times \frac{60}{360} = 38 + \frac{1}{2}r^2 \sin 60$ or
				$\pi r^2 \times \frac{60}{360} - 38 = \frac{1}{2}r^2\sin 60$
	eg			M1 dep on M1 for a correct
	$(r^2 =)38 \div \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) (= 38 \div 0.09(058)) (=$			expression for r^2 or r
	419(.490)) oe			
	or			
	$(r=)\sqrt{38 \div \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)}$ (= 20.4(81))oe			
	$\frac{\pi}{6}$ × "20.4(81)"×2 (= 21.4(48)) oe or			M1 for using the value of r to find arc length
	Working not required, so correct answer scores full marks (unless from obvious	41.9		A1 allow 41 - 42
	incorrect working)			
				Total 4 marks

Q22.

Q	Working	Answer	Mark		Notes
	(radius of large circle =) $\frac{4}{\cos 54}$ or $\frac{4}{\sin 36}$ or $\frac{8 \sin 54}{\sin 72}$ or $\sqrt{\frac{8^2}{2-2\cos 72}}$ (= 6.805) or (height of 1 triangle within pentagon =) 4tan54 (=5.505) oe		6	M1	for a complete method to find the radius of the large circle or the perpendicular height of one triangle within the pentagon
	(area of large circle =) $\pi \times ("6.805")^2$ (= 145.489) oe or (area of sector =) $\frac{72}{360} \times \pi \times ("6.805")^2$ (= 29.097) oe			M1	for a complete method to find the area of the large circle or the area of a sector of the large circle
	(area of pentagon =) $5 \times \frac{1}{2} \times 8 \times 5.505$ " (= 80tan54 = 110.11) or $10 \times \frac{1}{2} \times 4 \times 5.505$ " (= 80tan54 = 110.11) or $5 \times \frac{1}{2} \times 6.805$ " × "6.805" × sin72 (= 110.11) oe OR (area of one triangle =) $\frac{1}{2} \times 8 \times 5.505$ " (= 22.022) or $\frac{1}{2} \times 6.805$ " × "6.805" × sin72 (= 22.022) or $\frac{1}{2} \times 6.805$ " × 8 × sin54 (= 22.022) oe			M1	for a complete method to find the area of the pentagon OR the area of one triangle eg <i>OED</i> or equivalent
	"145 489 "-"110 11 "+ πr^2 = "110 11 "- πr^2 or			M1	for a correct equation for
	or $5 \times ("29.097" - "22.022") + \pi r^2 = 5 \times "22.022" - \pi$ oe	r^2			the radius of the smaller circle
	$2\pi r^2 = 2 \times "110.11" - "145.489" (= 74.731)$ oe			M1	for a correct rearranged equation with the area of the circle the subject or better
	Correct answer scores full marks (unless from obvious incorrect working)	s 3.45		A1	accept 3.43 – 3.45
					Total 6 marks

Q	Working	Answer	Mai	rk 👘	Notes
	(DEK) 360 40		3	M1	method to find interior
	$eg(DEK =) - \frac{1}{9}$ or 40				or exterior angle or
	$(9 - 2) \times 180$				correct interior or
	or (interior angle =) $\frac{(2-2) \times 100}{2}$ or 140				exterior angle stated or
	g				shown correctly on
	or				diagram or for using
	$OFK = 140 \div 2 (= 70)$				70° for OFK or 80° for
	or				FOK or 110 for EDK
	$FOK = \frac{2}{3} \times 360 (= 80)$				
	9				If a student has only
	or				found an interior or
	$EDK = 180 - 0.5 \times 140 \ (=110)$				exterior angle and has
					clearly mixed up
	Angles marked correctly (any exterior or				interior and exterior
	interior angle) gains this mark				angles this mark cannot
					be awarded but can still
					be awarded for any of
				1.01	the other angles stated
	EDK = 110 and $DEK = 40$			MI	For two correct angles
	OF				that can lead directly to
	FOK = 80 and $OFK = 70$				the answer in a single
	OF TO IDEK 10				step (eg 180 – both
	ODE = 70 and $DEK = 40$				angles or one angle
	Of = 140 - 1 EDK - 110				minus the other)
	FED = 140 and $EDK = 110$ oe	20			
	Correct answer scores full marks (unless from	30		AI	
	obvious incorrect working)				T (10)
					Total 3 marks

Q24.

eg		5	M1	M2 for
$4\pi R^2 = 9 \times 4\pi r^2$ oe or				$(\text{vol SF} =) 27 \text{ or } \frac{1}{27} \text{ or } \frac{1}{27}$
R = 3r oe or			M1 (a correct	3 ³ or 1
1:3 or 3:1 or 3 or 1			scale factor of 3	3,
3			or $K = 37$ oe	
			M1)	
eg			M1 for a correct	equation based on
$\frac{4}{\pi}(3r)^3 - \frac{4}{\pi}r^3 = 117\pi$ oe or			volumes with onl	y one variable eg R or r
			OF X (M3 for	
$\frac{4}{-\pi r^3\pi} - \frac{1}{-r} = 117\pi \text{ or}$			$26 \times \frac{4}{\pi r^3} = 117\pi$. 08. 0F
3 3 (3)			3	00 01
$27 \times \frac{9}{2}\pi r^3 - \frac{9}{2}\pi r^3 = 117\pi$ oe or			$26 \times (Vol)_{s} = 117$	π or
$4 \pi r^3 - 1 \times 4 \pi r^3 = 117 \pi \text{ oe or}$			26 4	
3 27 3			$\frac{20}{27} \times \frac{4}{2} \pi r^3 = 117$	πoeor
oe			26 (11-1) 117	-
			$\frac{1}{27} \times (Vol)_{3} = 117$	π
$(r=)\sqrt[3]{\frac{117\times3}{104}} = \sqrt[3]{\frac{27}{8}}$ or			M1 dep on previo	ous M mark
$(R = \sqrt[3]{\frac{117 \times 81}{104}} \left(= \sqrt[3]{\frac{729}{8}} = \frac{9}{2} \right)$				
Working required	$\frac{3}{2}$		A1 oe dep on M2	
				Total 5 marks

Q25.

(a)	$\sqrt{4^{2} + 9^{2} + 15^{2}} \left(= \sqrt{322} = 17.9(443)\right) \text{ or }$ $\sqrt{15^{2} + 4^{2}} \left(= \sqrt{241} = 15.5(241)\right) \text{ and }$ $\sqrt{9^{2} + \left(\sqrt[n]{\sqrt{241^{n}}}\right)^{2}} \left(= \sqrt{322} = 17.9(443)\right)$		2	M1
		17.9		A1 awrt 17.9
(б)	$(UR =)$ 42 tan 30 (= 14 $\sqrt{3}$ = 24.2(487)) or $(UR =) \frac{42 \times \sin 30}{\sin (90 - 30)}$ (= 14 $\sqrt{3}$ = 24.2(487))		3	MI
	$\tan (UMR) = \left(\frac{"24.248"}{42 + 2}\right) \text{ or}$ $\tan (UMR) = \left(\frac{"24.248"}{21}\right) \text{ or}$ $\tan (UMR) = \left(\frac{"14}{\sqrt{21}}\right) \text{ or}$ $\left(\frac{21}{\sqrt{21}}\right) + \left(\frac{1}{\sqrt{21}}\right) \text{ or}$ $\left(\frac{21}{\sqrt{21}}\right) + \left(\frac{1}{\sqrt{21}}\right) \text{ or}$ $\left(\frac{21}{\sqrt{21}}\right) + \left(\frac{1}{\sqrt{21}}\right) \text{ or}$ $\sin (UMR) = \left(\frac{"14}{\sqrt{21}}\right) \text{ or } \cos(UMR) = \left(\frac{21}{\sqrt{21}}\right)$			M1
	Correct answer scores full marks (unless from obvious incorrect working)	49.1		A1 awrt 49.1
				Total 5 marks

Q26.

Q	Working	Answer	M	ark	Notes
	$(CM)^{2} + (12 \div 2)^{2} = 9^{2}$ oe or		4	M1	M2 for
	$(12)^{2}$ $(12)^{2}$ $(11)^{2}$ $(12)^{2}$			AM	$(\cos^{-1}(CAM) =) \frac{12 \div 2}{12 \div 2} = 48.1(896)$
	$9^{2} - (12 \div 2) (= 81 - 36 = 45)$			=	$\left(\cos\left(\sin^{2}\right)^{2}\right)^{2}$ 9 = $\cos^{2}\left(\cos^{2}\right)^{2}$
				MB	and
				CAM	$(CM =)(12 \div 2) \times \tan^{48.1}(=$
					6.7)
<u> </u>				CBM	or
	$\sqrt{9^2 - (12 \div 2)^2}$ oe			мі	$(CM =) 9 \times \sin^{11} 48.1" (= 6.7)$
	$(=\sqrt{81-36}=\sqrt{45}=3\sqrt{5}=6.7(08))$				
	("7"+9+9+12) × 21.5(0) or			M1	
	37 × 21.5(0)				
	Working required	795.5(0)		A1 de	p on M2
				SC B3	for awrt 789 for using 6.7
					Total 4 marks

Q27.

Qu	Working	Answ	Ma	Notes
esti		er	rk	
on				
	$10^2 - 8^2 (=36)$ or $8^2 + BC^2 = 10^2$ or or $\cos BAC = \frac{8}{10}$ (BAC = 36.869)		4	M1
	$\sqrt{10^2 - 8^2}$ (= 6) or tan"36.869" × 8 (= 6) or sin"36.869" × 10 (= 6)			M1 (beware that 14 - 8 = 6 has been seen and scores zero)
	$w = \sqrt{(5 + "6")^2 + 14^2} \left(=\sqrt{317}\right)$			M1 Allow use of <i>their</i> ft value of <i>BC</i>
	or $EDC = \tan^{-1} \left(\frac{5 + 6''}{14} \right) (= 38.157) \text{ and } w = \frac{111''}{\sin 38.157}$ or $w = \frac{14}{\cos 38.157}$ or $CED = \tan^{-1} \left(\frac{14}{11''} \right) (= 51.84) \text{ and } w = \frac{11}{\cos 51.84} \text{ or } w = \frac{11}{\cos 51.84}$	17.0		
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	17.8		A1 awrt 17.8 if no other marks scored then B1 for 22.6(5)
				Total 4 marks

WATCH OUT FOR $\sqrt{10^2 + 8^2}(12.8...) + 5 = 17.8$ (which is the same as the answer....but a completely wrong method)

Q28.

Q	Working	Answer	Mark		Notes
	(4x - 27) + (3x + 46) = 180 oe or "expression for C" + $(3x + 10) = 180$ or 7x + 19 = 180 or 3x + 46 + 4x - 27 + 3x + 10 + [" $180 - (3x + 10)$ "]= 360		4	M1	Sum angles A and B to 180, or find an expression for BCD and sum all angles to 360. [condone missing brackets and condone use of any letter for angle C (even x or BCD)]
				A1	<i>x</i> = 23
	eg 3 ×"23" + 46 (= 115) or eg 180 - (3 ×"23" + 10) (= 101)			M1ft	dep on M1 using their x to calculate a value for angle B or C (cannot be a negative value and cannot just be x)
	Correct answer scores full marks (unless from obvious incorrect working)	115		A1	Allow $3x + 46$ or <i>ABC</i> if 115 is clearly seen in working or on diagram
					Total 4 marks

Q29.

Q	Working	Answer	Mark	Notes
	$(FE =) 28 \sin 30 (= 14)$ or		5	M1 for a method to find
	$(FE =) 28\cos 60 (= 14)$ or			FE or DE
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$			
	$(FE =) 28 \sin 30 (= 14)$ or			M1 for a method to find
	$(FE =) 28\cos 60(=14)$ or			FE and DE (can now use their FE or
	$(FE =)\sqrt{28^2 - "24.2"} (=\sqrt{196} = 14)$			DE found for first M1)
	and			
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =)\sqrt{28^2 - "14"^2} (=\sqrt{588} = 14\sqrt{3} = 24.2(48))$			
	$(AF =)\sqrt{53^2 - 28^2} \left(=\sqrt{2809 - 784} = \sqrt{2025} = 45\right)$			M1 (indep) for finding AF
	$\frac{1}{2}$ × "14" ×" 14 $\sqrt{3}$ " ×" 45" oe or			M1 for finding the volume of the prism
	$\frac{1}{2}$ × "14 "×" 24.2 "×" 45 "			
	Working not required, so correct answer scores full	7638		A1 allow in the range
	marks (unless from obvious incorrect working)			7623 – 7639
				Total 5 marks