Power Flow

Introduction to Power Flow Studies

- Purpose: Analyzes the power system under normal steady-state conditions.
- Goals: Determine voltage (V), current (I), real power (P), and reactive power (Q).
- Applications:
- $\circ~$ Evaluate current system operation.
- $\circ~$ Establish benchmarks for normal operation.
- $\circ~$ Plan future expansions.
- Develop contingencies for emergencies (e.g., loss of transformer, transmission line).
- Method: Uses non-linear analysis techniques, typically performed with software tools like ETAP[®], SKM[®], and Easy Power[®].
- Also Known As: Commonly referred to as a Load Flow Study

Power Flow in a Transmission Line

Short Transmission Line Model

Simplified model with R = 0

$$P_{s} = \frac{|V_{s}||V_{r}|}{X_{L}}\sin\delta \qquad P_{r} = -\frac{|V_{s}||V_{r}|}{X_{L}}\sin\delta \qquad P_{3\phi,s} = 3\frac{|V_{s}||V_{r}|}{X_{L}}\sin\delta \qquad P_{3\phi,r} = -3\frac{|V_{s}||V_{r}|}{X_{L}}\sin\delta$$

$$Q_s = \frac{V_s^2 - |V_s||V_r|}{X_L} \cos \delta \qquad Q_r = \frac{V_r^2 - |V_s||V_r|}{X_L} \cos \delta$$

Copyrighted Material © www.studyforfe.com

Power Flow

- Sending-End Power $P_{3\phi,s} = 3 \frac{|V_s||V_r|}{X_L} \sin \delta$
- Receiving-End Power $P_{3\phi,r} = -3 \frac{|V_S||V_r|}{X_L} \sin \delta$

Reactive Power Flow in a Transmission Line

• Sending-End Reactive Power
$$Q_s = \frac{V_s^2 - |V_s||V_r|}{X_L} \cos \delta$$

• Receiving-End Reactive Power
$$Q_r = \frac{V_r^2 - |V_s||V_r|}{X_r} \cos \delta$$

Where:

- \circ $|V_s|$: Magnitude of sending-end voltage.
- \circ $|V_r|$: Magnitude of receiving-end voltage.
- \circ X_L : Line inductive reactance.
- $\circ \delta$: Angle between sending and receiving bus voltages.
- \circ θ : Power factor angle (angle between receiving bus voltage and current).
- Increasing Real Power Flow:
- Decrease Impedance/Inductive Reactance X_L
- Increase Phase Angle Difference δ
- Increase Voltage Magnitudes $|V_s|$ and $|V_r|$

Copyrighted Material © www.studyforfe.com

