

Complex Numbers – three different forms

Notes: In IB mathematics a complex number z can be written in three different forms.

$$z = a + ib$$

Cartesian form

 $z = r(\cos\theta + i\sin\theta) = r\operatorname{cis}\theta$

modulus-argument form* (also known as polar form, or trigonometric form)

$$z = re^{i\theta}$$

Euler's form* (also known as exponential form)

* the argument θ can have multiple values, but best to give the principle value such that $-\pi < \theta \le \pi$

♦ do **not** use a calculator ♦

-5 -5 - Re

Exercises

- 1. For each complex number represented by the letters A, B & C plotted in the complex plane, write it in each of the three forms: Cartesian form, modulus-argument form and Euler's form.
- 2. Write each of the following complex numbers in modulus-argument form.

(a)
$$w = -\sqrt{3} + i$$

(b)
$$w = 2 + 2i\sqrt{3}$$

(c)
$$w = -\frac{1}{2} - \frac{i}{2}$$

3. Write each of the following complex numbers in Cartesian form.

(a)
$$z = 5e^{\frac{\pi}{2}i}$$

(b)
$$z = 8e^{-\frac{5\pi}{6}i}$$

(c)
$$z = 2e^{\frac{2\pi}{3}i}$$

4. For each of the two expressions below, first write it as a complex number in the form a+ib and then write it in the form $r \operatorname{cis} \theta$.

(a)
$$\frac{4}{1+i}$$

(b)
$$\frac{2i}{1-i}$$

- 5. Consider the complex numbers $z_1 = 1 + i$ and $z_2 = \frac{\sqrt{6}}{2} i \frac{\sqrt{2}}{2}$.
 - (a) Show that, in Cartesian form, $z_2 = \sqrt{2} \operatorname{cis} \left(-\frac{\pi}{6} \right)$.
 - (b) For two complex numbers in modulus-argument form, $w_1 = r_1 \operatorname{cis} \theta_1$ and $w_2 = r_2 \operatorname{cis} \theta_2$, it can be shown that $\frac{w_1}{w_2} = \frac{r_1}{r_2} \operatorname{cis} \left(\theta_1 \theta_2\right)$. Use this to express $\frac{z_1}{z_2}$ in modulus-argument form.
 - (c) Express $\frac{z_1}{z_2}$ in Cartesian form.
 - (d) Use the results from (b) and (c) to write down the exact values of $\sin \frac{5\pi}{12}$ and $\cos \frac{5\pi}{12}$.

2

Complex Numbers – three different forms

Answers

1. A: 3i;
$$3 \text{cis} \frac{\pi}{2}$$
; $3 e^{\frac{\pi}{2}}$

B:
$$3-3i$$
; $3\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$; $3e^{-\frac{\pi}{4}i}$

1. A: 3i;
$$3\operatorname{cis}\frac{\pi}{2}$$
; $3e^{\frac{\pi}{2}i}$ **B**: $3-3i$; $3\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)$; $3e^{-\frac{\pi}{4}i}$ **C**: $-4+4i$; $4\sqrt{2}\operatorname{cis}\left(\frac{3\pi}{4}\right)$; $4e^{\frac{3\pi}{4}i}$

2. (a)
$$w = 2 \operatorname{cis} \frac{5\pi}{6}$$

(b)
$$w = 2\sqrt{2} \operatorname{cis} \frac{\pi}{3}$$

2. (a)
$$w = 2 \operatorname{cis} \frac{5\pi}{6}$$
 (b) $w = 2\sqrt{2} \operatorname{cis} \frac{\pi}{3}$ (c) $w = \frac{3\sqrt{2}}{2} \operatorname{cis} \left(-\frac{\pi}{4}\right)$

3. (a)
$$z = 5i$$

3. (a)
$$z = 5i$$
 (b) $z = -4\sqrt{3} - 4i$ (c) $z = -1 + i\sqrt{3}$

(c)
$$z = -1 + i\sqrt{3}$$

4. (a)
$$2-2i$$
; $2\operatorname{cis}\left(-\frac{\pi}{4}\right)$ (b) $-1+i$; $\sqrt{2}\operatorname{cis}\left(\frac{3\pi}{4}\right)$

(b)
$$-1+i$$
; $\sqrt{2}cis\left(\frac{3\pi}{4}\right)$

5. (b)
$$cis \frac{5\pi}{12}$$

(c)
$$\frac{z_1}{z_2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} + i \left(\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \right)$$

5. (b)
$$cis \frac{5\pi}{12}$$
 (c) $\frac{z_1}{z_2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} + i\left(\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}\right)$ (d) $sin \frac{5\pi}{12} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$, $cos \frac{5\pi}{12} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$