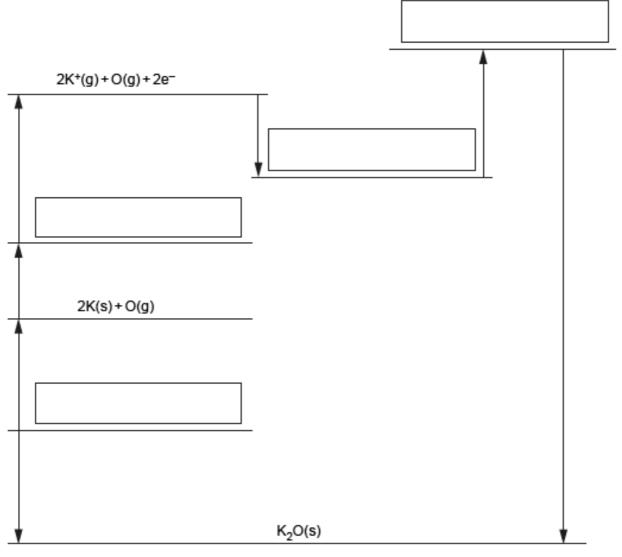


Born-Haber cycle

e.g. for sodium chloride:

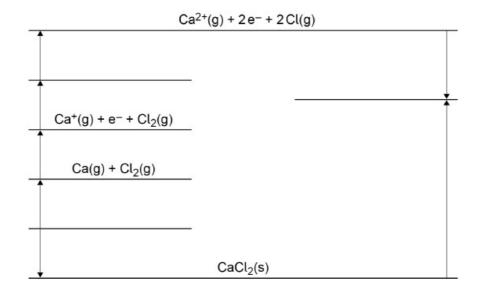


(d) The table below shows enthalpy changes involving potassium, oxygen and potassium oxide, K₂O.

	Enthalpy change /kJ mol ⁻¹
formation of potassium oxide	-363
1st electron affinity of oxygen	-141
2nd electron affinity of oxygen	+790
1st ionisation energy of potassium	+419
atomisation of oxygen	+249
atomisation of potassium	+89

 The incomplete Born–Haber cycle below can be used to determine the lattice enthalpy of potassium oxide.

In the boxes, complete the species present in the cycle. Include state symbols for the species.


0 1.1

State the meaning of the term enthalpy change.

[1 mark]

Figure 1 shows an incomplete Born-Haber cycle for the formation of calcium chloride.

Figure 1

01.2

Complete **Figure 1** by writing the formulas, including state symbols, of the appropriate species on each of the three blank lines.

[3 marks]

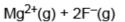
0 1 . 3 Table 1 shows some enthalpy data.

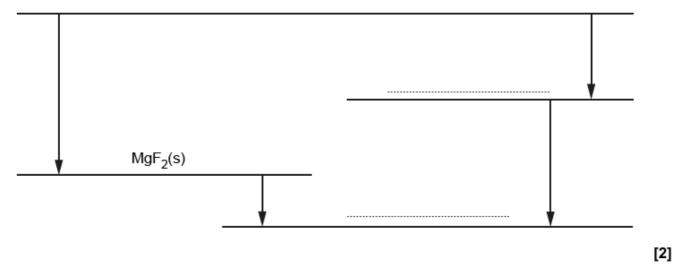
Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation of calcium chloride	-795
Enthalpy of atomisation of calcium	+193
First ionisation energy of calcium	+590
Second ionisation energy of calcium	+1150
Enthalpy of atomisation of chlorine	+121
Electron affinity of chlorine	-364

Use Figure 1 and the data in Table 1 to calculate a value for the enthalpy of lattice dissociation of calcium chloride.

[2 marks]


(c) The enthalpy change of solution for magnesium fluoride, MgF₂, can be determined indirectly using an energy cycle based on the enthalpy changes below.


Enthalpy change	Energy/kJmol ⁻¹
Lattice enthalpy of magnesium fluoride	-2926
Hydration of magnesium ions	-1920
Hydration of fluoride ions	-506

(i) Explain what is meant by enthalpy change of solution.

......[1]

(ii) On the dotted lines, add the species present, including state symbols.

(iii) Calculate the enthalpy change of solution of MgF₂.

(iv) The enthalpy changes of solution of the magnesium halides show a trend from MgF_2 to MgI_2 .

Explain why it is difficult to predict whether the enthalpy change of solution becomes more exothermic or less exothermic down the group from MgF_2 to MgI_2 .

Question	Answer	Marks	AO element	Guidance
16 (d) (i)	$2K^*(g) + O^{2^-}(g) \checkmark$ $2K^*(g) + O(g) \checkmark$ $2K^*(g) + O^-(g) + e^- \checkmark$ $2K(g) + \frac{1}{2}O_2(g) \checkmark$	4	1.2 ×4	Mark each marking point independently Correct species AND state symbols required for each mark For e-, ALLOW e For e- only, IGNORE any state symbols added
16 (ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -2277 (kJ mol ⁻¹) award 2 marks	2	2.2 ×2	IF there is an alternative answer, check to see if there is any ECF credit possible using

Question	Answer	Marks	AO element	Guidance
	-363 - (2 × +89 +249 + 2 × 419 - 141 + 790) √ -363 - 1914 = -2277 √ (kJ mol ⁻¹)			working below See list below for marking of answers from common errors ALLOW for 1 mark ONE mistake with sign OR use of 2 ×: +2277 (wrong sign) -601 (2 × -419 instead of 2 × +419) -697 (-790 instead of +790) -1551 (+363 instead of -363) -1858 (2 × +419 not used for K) -1921 (2 × -89 instead of 2 × +89) -2152.5 or -2153 (+249 ÷ 2) -2188 (2 × +89 not used for K) -2280 (rounded to 3SF) -2559 (+141 instead of -141) For other answers, check for a single transcription error or calculator error which could merit 1 mark

Question	Answers	Additional comments/Guidelines	Mark
01.1	Heat (energy) change at constant pressure	Ignore conditions even if wrong Ignore energy change	1
Question	Answers	Additional comments/Guidelines	Mark
		$A_{1}^{\mu} = - \frac{1}{2} \left[- \frac{1}{2} A_{1}^{\mu} - \frac{1}{2} A_{2}^{\mu} - \frac{1}{2} A_{2}^{\mu}$	4

	M2 $Ca^{2+}(g) + 2e^{-} + Cl_2(g)$	Alternative M2 Ca ⁺ (g) + e ⁻ + 2 Cl(g)	1
01.2	M3 Ca ²⁺ (g) + 2 Cl -(g)		1
	M1 Ca(s) + $Cl_2(g)$		1
	•	· · · · · · · · · · · · · · · · · · ·	

Question		Answers	Additional comments/Guidelines	Mark
	M1 -	–795 + LE = 193 + 590 +1150 + (2 × 121) + (2 × –364)	Numbers and factors used correctly from cycle	1
01.3	M2	LE = (+) 2242 (kJ mol ⁻¹)	Rearrangement to calculate LE If one or both factors of 2 missing award 1 mark for (+) 2485, (+)2121 or (+)2606 (kJ mol ⁻¹) Allow 1 mark for – 2242 (kJ mol ⁻¹)	1

Questio	n Answers	Additional comments/Guidelines	Mark
01.4	$MgCl_2(s) \rightarrow Mg^{2+}(aq) + 2 Cl^{-}(aq)$	Allow MgCl ₂ (s) \Rightarrow Mg ²⁺ (aq) + 2 Cl ⁻ (aq) Allow MgCl ₂ (s) + aq \Rightarrow Mg ²⁺ (aq) + 2 Cl ⁻ (aq)	1

Question	Answer Ma	Marks	AO element	Guidance	
(c) (i)	(enthalpy change for) 1 mole of a compound/substance/solid/solute dissolving √	1	AO1.1	IGNORE 'energy released' OR 'energy required' For dissolving, ALLOW forms	
				aqueous/hydrated ions IGNORE ionic OR covalent DO NOT ALLOW dissolving elements DO NOT ALLOW response that implies formation of 1 mole of aqueous ions	
(c) (ii)	<u>Mg²⁺(aq) + 2F=(g)</u> ✓ Mg ²⁺ (aq) + 2F=(aq)✓	2	AO2.2 ×2	ALLOW Mg ²⁺ (g) + 2F ⁻ (aq) ALLOW MgF ₂ (aq)	
(c) (iii)	-6 (kJ mol ⁻¹) ✓ Δ _{sol} H (MgF ₂) = − (−2926) + (2 × −506) + (−1920)	1	AO2.2	1 mark ONLY	
(c) (iv)	Ionic radius Halide ion gets larger down the group ✓	4	AO1.2 ×3	ALLOW ORA throughout ALLOW ions closer together in MgF ₂ OR further apart in MgI ₂ DO NOT ALLOW atomic radius	
	Lattice enthalpy Lattice enthalpy is less exothermic down group OR halide ion has less attraction for Mg ²⁺ ✓			ALLOW Mgl ₂ is less exothermic than MgF ₂ for LE and hydration enthalpy -as trend 'down the group'.	
	Hydration enthalpy Hydration enthalpy is less exothermic down group OR halide ion has less attraction for H ₂ O ✓			ALLOW less negative/more positive BUT IGNORE is smaller/less	
	Enthalpy of solution Difficult to predict whether lattice enthalpy or hydration enthalpy has bigger effect ✓		AO3.2		
	Total	14			