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 Annuity Valuation with Dependent Mortality

 Edward W. Frees

 Jacques Carriere

 Emiliano Valdez

 ABSTRACT

 Annuities are contractual guarantees that promise to provide periodic

 income over the lifetime(s) of individuals. Standard insurance industry
 practice assumes independence of lives when valuing annuities where

 the promise is based on more than one life. This article investigates the

 use of dependent mortality models to value this type of annuity. We

 discuss a broad class of parametric models using a bivariate survi-
 vorship function called a copula. Using data from a large insurance

 company, we calculate maximum likelihood estimates to calibrate the

 model. The estimation results show strong positive dependence be-
 tween joint lives with real economic significance. Annuity values are
 reduced by approximately 5 percent when dependent mortality models

 are used compared to the standard models that assume independence.

 INTRODUCTION

 Financial service organizations offer contractual promises to provide periodic level

 incomes over the lifetime of individuals. These contracts, called annuities,

 typically provide a level monthly amount payable until the death of a named indi-

 vidual, called an annuitant. Annuity obligations are offered by insurance compa-

 nies, pension and other employee benefit funds, and state and federal retirement

 systems. To illustrate the importance of these obligations, U.S. insurance com-
 panies alone made $40.3 billion in annuity payments in 1993 (American Council
 of Life Insurance, 1994).

 An important variation of the standard life annuity is the joint and last-sur-
 vivor annuity. Under this contract, periodic level payments are made until the last
 of a group of individuals dies. To illustrate, a prime example of a group is a mar-

 ried couple, where the last-survivor annuity pays as long as either spouse survives.
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 Many variations are offered in the marketplace, including a joint and 50 percent
 annuity that pays a level amount while both annuitants survive with a 50 percent
 reduction of that amount upon the death of one annuitant.

 Valuation of life annuities depends upon the time value of money and the
 probability of the annuitants' survivorship. The time value of money is important

 because annuity payments are made in the future with respect to the valuation of

 the annuity obligation. However, conditional on survivorship of the annuitants,
 these payments can be valued using standard theory from financial economics,
 such as the term structure of interest rates. We do not pursue this aspect of annuity
 valuation here. Instead, we apply the traditional approach of assuming a constant
 discount rate.

 In this article, we focus on estimating the probability of joint survivorship of
 two annuitants. We focus on two annuitants because this type of contract is issued
 far more frequently and involves far larger amounts than contracts with more than

 two annuitants. Estimation of survival probabilities for more than two annuitants
 can be done by direct extensions of the methods of this article.

 Traditionally, estimation of joint survival probabilities of a pair has been

 done by assuming independence of lives. With this assumption, the probability of
 joint survival is the product of the probability of survival of each life. This as-
 sumption reduces the joint estimation to a single life estimation problem. Esti-
 mation of the probability of survivorship of a single annuitant is a well developed
 area (see, e.g., Elandt-Johnson and Johnson, 1980, or Cox and Oakes, 1990).

 However, several empirical studies of joint lives in noncommercial contexts
 have established that survival of pairs are not independent events. To illustrate,
 Hougaard, Harvald, and Holm (1992) analyze the joint survival of Danish twins
 born between 1881 and 1930. Another type of empirical study involves measuring
 the impact on mortality induced by the death of one's spouse. Parkes, Benjamin,
 and Fitzgerald (1969) and Ward (1976) provide early examples of this impact,
 often called the "broken heart" syndrome. A more recent study, with references to
 many other works, is by Jagger and Sutton (1991).

 There are several ways to model the impact of survivorship of one life upon
 another. For example, as in Jagger and Sutton (1991), the question of increased
 mortality after an event such as the death of a spouse is well-suited to a survival
 model called proportional hazards that allows for time-varying explanatory vari-
 ables. This type of model was also used by Hougaard, Harvald, and Holm (1992)
 to assess the generations effect by studying twins over a long period of time.

 Classical models of dependent lives are called "common shock" models (see,
 for example, Marshall and Olkin, 1967). These models assume that the depend-
 ence of lives arises from an exogenous event that is common to each life. For ex-
 ample, in lifetime analysis this shock may be an accident or the onslaught of a
 contagious disease. Although there are many other types of dependencies in hu-
 man lifetimes that are not captured by shock models, their particularly simple form
 turns out to be convenient for annuity valuation purposes. These models are
 discussed further below.

 Other parametric bivariate survival models include the "frailty" models de-
 scribed by Oakes (1989), the mixture models of Marshall and Olkin (1988) and the
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 "copula" models, as described in Genest and McKay (1986). Nonparametric
 estimation of bivariate survival estimation has been summarized by Pruitt (1993).
 Because of the several complications that appear in annuity data, we focus on the
 copula models. These models provide tractable parametric models of the bivariate
 distribution and are described in more detail below.

 To calibrate our models, we consider data from a large Canadian insurer. We

 study the mortality experience by observing approximately 15,000 policies over a
 five-year period, 1989 through 1993. The next section further describes the
 sources and characteristics of the data.

 Because of the nature of our data and our interest in annuity valuation, this

 article differs from other empirical studies of bivariate distributions in several as-
 pects. First, our data sampling period, five years, is much shorter than other life-
 time studies (for example, the Danish twins study used an observation period of
 110 years). Thus, we need not discuss cohort effects of mortality as in that study.
 However, because of the short time frame of our observation period, our data are
 (right) censored in that most policyholders survived through the end of the obser-
 vation period. Further, our data are (left) truncated in that policyholders who had
 died prior to the beginning of the study were not available for analysis. This
 complication is called "left-truncation with right-censoring" in survival analysis
 (see, for example, Cox and Oakes, 1990, p. 177).

 Second, in this article, the scientific interest is different. Works that study the
 "broken heart" syndrome often wish to establish predictive models, that is,
 identifying an event such as the death of a spouse to improve the predictions of the
 probability of death. Epidemiological studies often wish to isolate explanatory
 variables that induce the onslaught of a certain disease or infection. Our interest
 lies in the valuation of annuity contracts. As such, we are interested in assessing
 the strength of dependence and the effects of the dependence on contract values.
 In particular, the choice of the model of bivariate dependence is influenced by the
 desire for simplicity in our annuity valuation procedures.

 Third, reporting mechanisms for industry data tend to be different than for
 population data that might be gathered by the U.S. Census Bureau or data from a
 carefully designed clinical trial. For industry, two important issues are the mor-
 tality patterns within a contractual guarantee period and the reporting of the first
 death for some contracts. Some joint-life contracts offer a guarantee of annuity
 payments, typically over a period of five or ten years from contract initiation.
 Thus, there is no economic incentive for reporting a death within the guarantee
 period. Alternatively, those that elect the guarantee option may exhibit higher
 mortality than those who do not. Further, for joint and last-survivor policies,
 payments are made until the second, or last, of the pair dies. Thus, although
 policyholders should notify the insurance company of a change in the mortality
 status of annuitants, there is no economic purpose for reporting the death of the
 first annuitant. These two issues are addressed in greater detail below.

 The next two sections introduce the data and discuss models of dependence.
 Then, we summarize the effects of dependence on annuity values and address the
 problem of underreporting. Finally, we examine the robustness of choice of
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 parametric families by considering an alternative marginal distribution and an al-
 ternative bivariate distribution function, the common shock model.

 DATA CHARACTERISTICS

 This article analyzes mortality patterns based on information from 14,947 contracts
 in force with a large Canadian insurer over the period December 29, 1988, through

 December 31, 1993. These contracts are joint and last-survivor annuities that were
 in the payout status over the observation period.

 For each contract, we have the date of birth, date of death (if applicable), date
 of contract initiation, and sex of each annuitant. Table 1 presents the frequency
 distribution of annuitants by sex, entry age, and mortality status group. Entry age
 is defined to be the age at which the annuitant entered the study and was computed
 from the date of birth and contract initiation date. For mortality status, we classify

 annuitants according to whether they survived until the end of the observation

 period. In addition to the dates discussed above, we also have the date that the
 annuity guarantee expired (if applicable). This will be discussed further below.

 Table 1

 Number of Policies by Sex, Entry Age, and Mortality Status

 Mortality Status

 Entry Age Survive Death Total

 Males

 Less than 60 1,170 42 1,212

 60 - 70 7,620 534 8,154

 70 - 80 4,355 806 5,161
 Greater than 80 229 177 406
 Total 13,374 1,559 14,933

 Females

 Less than 60 2,962 30 2,992

 60 - 70 8,222 239 8,461

 70- 80 3,014 245 3,259
 Greater than 80 186 63 249
 Total 14,384 577 14,961

 There was roughly an equal number of males and females in our study,

 14,933 and 14,961, respectively. Roughly three times more males as females died
 during the study period, due in part to the higher average entry age for males (68)
 than for females (65). It also suggests higher mortality rates for males than for
 females.

 Figure 1 displays a graphical summary of the distribution of lifetimes for the
 14,933 male annuitants. Because our data primarily concern policyholders who
 are at least middle-aged, we graph distribution functions that are conditional on
 survival to age 40. The jagged line in Figure 1 is the Kaplan-Meier product limit
 estimator of the distribution function. We use this as our baseline estimator of the
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 Annuity Valuation with Dependent Mortality 233

 distribution function because it is the nonparametric maximum likelihood estima-

 tor. See, for example, Elandt-Johnson and Johnson (1980) or Cox and Oakes
 (1990) for an introduction and further discussion of the properties of this estimator.

 From the Kaplan-Meier estimates, the median age at death is approximately 82

 years. Further, the 25th and 75th percentiles are approximately 68 and 90 years,
 respectively.

 Figure 1

 Gompertz and Kaplan-Meier Fitted Male Distribution Functions

 Distribution

 Function

 1.0

 0.8

 0.7

 0.5-

 0.47

 0.3

 0. 2

 0.1

 0. 0

 40 50 60 70 80 90 100 110

 Male Age

 Note: The Gompertz curve is smooth, the Kaplan-Meier is jagged. The distribution is
 conditional on survival to age 40.

 Superimposed in Figure 1 is a smooth curve that was fit using the Gompertz
 distribution. The Gompertz distribution function can be expressed as:

 F(x) = I - exp(e mn/'(1 - eYla )), (1)
 where the mode, m, and the scale measure, a, are parameters of the distribution.
 To actuaries, the familiar Gompertz force of mortality, or hazard rate, is x =
 F'(x)/(1-F(x)) = Bcx, that yields

 F(x) = 1 - exp((B/ln c) (1 - cx)).

 However, with the transformations B/ln c = e-m/ and c = el' , we see that equation
 (1) is simply a reparameterized version of the usual expression for the Gompertz
 distribution. As pointed out by Carriere (1994), equation (1) is convenient for es-
 timation purposes.

 As shown in Figure 1, the Gompertz fit closely replicates the nonparametric
 Kaplan-Meier fit. The main advantage of the Gompertz fit is that only two pa-
 rameter estimates are necessary to reproduce this curve. For male annuitants, the

 estimates turn out to be mi- 86.4 and c& ; 9.8 years. With these estimates and
 equation (1), the 25th, 50th, and 75th percentiles turn out to be 74.2, 82.8, and
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 234 The Journal of Risk and Insurance

 89.6, respectively. However, to reproduce the Kaplan-Meier estimate, all 14,933
 male lifetimes would be needed because of the continuous nature of our data. The
 parsimonious representation provided by the Gompertz curve is particularly im-
 portant for the annuity calculations below.

 Of course, to achieve a parsimonious representation of a lifetime distribution,
 many other families of distribution functions could be used. To illustrate, Figure 2
 shows a fitted Weibull distribution function for the male annuitants with the
 Kaplan-Meier curve superimposed for reference.

 Figure 2

 Weibull and Kaplan-Meier Fitted Male Distribution Functions

 Distribution
 Function
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 Note: The Weibull curve is smooth, the Kaplan-Meier is jagged. The distribution is condi-

 tional on survival to age 40.

 The fit is close, although the Gompertz distribution may be a better ap-
 proximation of the Kaplan-Meier estimator. For purposes of annuity valuation, it
 turns out that any parametric representation of the lifetime distribution suffices.
 For our data set of older policyholders, the Gompertz distribution seems to provide
 an adequate fit. There is certainly a long history of fitting Gompertz distributions
 to the mortality of human populations, as described by Carriere (1994).

 To provide background on the estimation procedures on which Figures 1 and
 2 are based, we now give details on the limitations of our data, including truncation
 and censoring. Consider the bivariate ages-at-death random vector (X, Y), where
 X and Y represent the ages at death of the primary and secondary annuitant,
 respectively. In joint annuity contracts, one annuitant is usually designated as
 "primary" and the other "secondary" because some contracts provide for a reduced
 payout upon the death of the primary annuitant. An example of this is an annuity
 provided by a firm to an employee. This distinction turns out to be unimportant in
 our analysis of the data.
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 Industry data are truncated in the sense that data are observed only after a
 contract has been entered into by policyholders. Thus, we use standard notation
 and let x and y be the contract initiation ages of the primary and secondary annui-
 tants, respectively. Further, for our data set, we observe the joint annuity contract
 if both annuitants are alive at the beginning of the observation period or if the an-
 nuitants enter the study during the observation period. With to as the time of
 contract initiation, we define

 a = max (12/29/88 - to, 0)

 to be the time from contract initiation to the beginning of the observation period.
 Thus, x + a and y + a are the entry ages of the primary and secondary annuitants,
 respectively. Under our left-truncation, we observe the contract only if X > x + a
 and Y > y + a.

 Our data are also censored from the right. Let b = 1/1/94 - max (12/29/88, to)
 denote the length of time that the policy was under observation. Denote T1 = X - x
 - a and T2 = Y - y - a to be the future annuitant lifetimes. Then, for j = 1, 2, we

 observe T;= min(Tj, b), the censored future lifetime, and 6i, a variable to indicate
 whether censoring has occurred. That is, 6j is defined to be one if Tj > b and zero
 otherwise.

 Using this notation, our full data set consists of {T* j, N1} j = 1, 2, and i =
 1,..., 14,947. That is, there are a total of 29,894 (2 x 14,947) univariate
 observations. Univariate distributions were fit for each sex using maximum
 likelihood techniques to produce the fitted parametric curves. We do not present
 the details here because the more complex bivariate situation is discussed in the
 next section. As mentioned above, the nonparametric curves were fit using the
 standard Kaplan-Meier product limit estimator.

 Beginning in the next section, we focus our estimation procedures on
 bivariate observations, that is, observations of the joint mortality of both annui-
 tants. For our data, we have 22 contracts where both annuitants are male, 36
 contracts where both annuitants are female, and 14,889 contracts where one an-
 nuitant is male and the other female. Because of the preponderance of data in the
 third category, we focus our attention on male-female joint annuity mortality.
 Henceforth, we refer to x as the male life and y as the female life. Of course, the
 estimation techniques that we introduce also could be applied to the other two
 categories.

 A classical nonparametric measure of dependence is Spearman's rank corre-
 lation. Appendix E shows how we can use this measure when the data are left-
 truncated, right-censored, and not identically distributed. The test of independence
 that we present assumes that the law of mortality is known for individual lives.
 Obviously, our knowledge of this law for annuity products is substantial but not
 perfect and so this method must be used with caution. Using this technique, we
 find that the correlation would be 0.41 and that a 95 percent confidence interval is
 (0.28, 0.55). If the lives were independent, then the correlation would be zero.
 Therefore, this crude preliminary analysis suggests that the lifetimes are
 dependent. In subsequent sections, we corroborate this analysis using maximum
 likelihood techniques.
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 MODELS OF DEPENDENCE

 Bivariate Distributions

 In this article, we express bivariate distributions using a function called a copula.

 Consider a bivariate age-at-death random vector (X, Y) with distribution function

 H, that is, H(x, y) = Prob(X < x, Y < y). Let F1 and F2 denote the respective mar-

 ginal distribution functions so that FI(x) = H(x, c) and F2(y) = H(oo, y). We con-
 sider bivariate distribution functions of the form

 H(x, y) = C(FI(x), F2(Y)). (2)

 Here, C is a real-valued function called a copula. Copulas are bivariate distribu-
 tions with uniform marginal distributions.

 Copulas are useful because they provide a link between the marginal distri-

 butions and the bivariate distribution. From equation (2), it is clear that, if Fl, F2,
 and C are known, then H can be determined. Sklar (1959) proved a converse: if H

 is known and if F1 and F2 are known and continuous, then C is uniquely deter-

 mined. In this sense, C "couples" the marginal distributions to the bivariate dis-
 tribution.

 There are many possible choices of the copula function. This article focuses

 on a one-parameter family due to Frank (1979) that can be expressed as

 C(u,v) = ln(I + (au-l)(evl)) / (3)
 ea-

 Advantages of this family have been presented by Nelsen (1986) and Genest
 (1987). The Frank, Genest, and Nelsen articles present the copula in terms of the

 parameter y = ea. Similar to the case of the univariate Gompertz distribution, we
 work with the reparameterized version in equation (3). This transformation turns
 out to be more convenient for estimation purposes.

 The parameter a captures the dependence between X and Y. The case of in-
 dependence corresponds to a = 0. This is because it can easily be shown, from

 equation (3), that lima,o C(u, v) = uv. Thus, the bivariate distribution function is
 the product of marginal uniform distributions. In addition to the dependence pa-
 rameter a, we also present Spearman's correlation coefficient p(a). Spearman's
 correlation coefficient is a nonparametric measure, defined to be the ordinary
 Pearson correlation coefficient after taking a (marginal) uniform transformation of

 each random variable. Here, p(a) is a straightforward function of a that Nelsen
 (1986) showed to be

 p(a) = 1 - 12 (D2(-a) - D1(-a))/a, (4)

 x

 where Dk(X) = kX-k J tk(et - l)-'dt, k = 1, 2 is called the Debye function.
 0

 To complete our specification of the bivariate distribution, we assume that
 each marginal distribution is Gompertz. Thus, using equation (1), we assume that

 Fj(x) = 1 - exp(exp(-mj/cj)(1 - exp(x/aj))), j = 1, 2. (5)
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 Annuity Valuation with Dependent Mortality 237

 Our model is then specified by equations (2), (3), and (5). This model has five pa-

 rameters which can be represented by the vector

 0 =(ml, c1, M2, C22, C)Y- (6)

 Estimation Results

 Using the left-truncated, right-censored data summarized in Table 1, we estimate

 the model described above. The method of estimation is maximum likelihood; the

 details are presented below. The results of the estimation are summarized in Table
 2.

 Table 2

 Bivariate Data Parameter Estimates

 Bivariate Distribution Univariate Distribution

 Parameter Estimate Standard Error Estimate Standard Error

 ml 85.82 0.26 86.38 0.26
 CT 1 9.98 0.40 9.83 0.37
 M2 89.40 0.48 92.17 0.59
 C72 8.12 0.34 8.11 0.38

 a -3.367 0.346 Not Applicable Not Applicable

 Table 2 shows that the "average," or modal, age at death is approximately

 fours years later for females than males. The estimates of variability are roughly
 the same. Using equation (4), the estimate of the dependence parameter can be

 converted to a correlation estimate. This turns out to be p( 6 ) = p(-3.367) = 0.49.
 Recall that Spearman's correlation, like Pearson's correlation, is bounded by -1

 and 1 with a correlation of zero implying no relationship. A value of p( a ) = 0.49
 indicates a strong statistical dependence. This is because a rough 95 percent con-

 fidence interval for cc is a ? 1.96 se(a) = -3.367 ? 1.96 (0.346) = (-4.045, -

 2.689). Translated into the correlation scale, a 95 percent confidence interval of

 Spearman's correlation is (0.41, 0.56). The parameter estimates presented in Table
 2 can be directly used to value annuities.

 Maximum Likelihood Estimation

 We now develop the likelihood function to be maximized. Having developed the
 likelihood function, standard function maximization routines will yield the maxi-
 mum likelihood estimates. Because our sampling satisfies standard regularity

 conditions (see, for example, Serfling, 1980), we can easily obtain asymptotic
 normality and subsequent standard errors for the estimates.

 In our development, we need the following partial derivatives: H,(x, y) =

 aH(x, y)/Ox, H2(x, y) = aH(x, y)/&y, and h(x, y) = &-H(x, y)/Ox&y. Our assumption
 of Gompertz marginals and Frank's copula assures that these derivatives exist.
 Their explicit representation in terms of the vector of parameters is given in Ap-

 pendix A.
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 To develop the likelihood function, we first consider truncated observations.

 Recall that the future lifetime random variables T, = X - x - a and T2 = Y - y - a
 are observed only if T1 > 0 and T2 > 0. Therefore, define the conditional
 distribution function of T1 and T2 as

 HT(t1, t2) = Prob (T, ?t1,T2<t21T1,T2 are observed) = Prob(O<T tt, <T2o t2)
 Prob(T1 >O, T2 >0)

 H(x+a+t,y+a+t2)-H(x+a,y+a+t2)-H(x+a+tl,y+a)+H(x+a,y+a)
 = . ~~~~~~~~~~~~~~~~~~~~~(7)
 1-H(x+a,ao)-H(oo,y+a)+ H(x+a,y+a)

 Turning now to the case of right-censoring, recall that TJ = min(Tj, b). Four
 types of censoring may occur. The lifetimes may be both uncensored, the first un-
 censored and the second censored, the first censored and the second uncensored,
 and both censored. We handle each type in turn.

 If both lifetimes are uncensored, then we may assume t1 < b and t2< b. In

 this case, we have 61 = O and62= O and

 Prob(T* <t1, T; l t2 I , T T2 are observed)
 = Prob(min(TI, b) < tl, min(T2, b) < t2ITj > 0, T2> 0) = HT(tl, t2).

 Thus, using equation (7), the contribution to the likelihood function is

 a2HT(tl,t2) h(x+ a+ tl,y+ a+t2) 8
 at] at2 1-H(x+a,oo)-H(oo,y+a)+H(x+a,y+a)

 If the first lifetime is uncensored and the second is censored, then we may

 assume t1 < b and t2 ? b. In this case, we have 61 = 0 and 62 = 1 and

 Prob(T* < tl, T* = b I T*, T; are observed)
 = Prob( T1 < tl, T2 ? b I T1 > 0, T2> 0) = HT(tl, oo) - HT(tl, b).

 Thus, the contribution to the likelihood function is

 a(HT(t1,o0)-HT(tl,b)) - H1(x+a+tl,m) - Hl(x+a+tl,y+a+b)

 at, 1-H(x+a,oo)-H(oo,y+a)+H(x+a,y+a)

 If the first lifetime is censored and the second is uncensored, then we may

 assume t, ? b and t2 < b. This case is similar to the previous case; thus, 51 = 1 and
 82 = 0 and the contribution to the likelihood function is

 H2(oo,y+a+t) - H2(x+a+b,y+a+t2) (10)
 1- H(x+ a, o)- H(co,y+ a)+ H(x+ a,y+ a)

 If both lifetimes are censored, then we may assume t1 ? b and t2 ? b. In this
 case, we have 61 = 1, 52 = 1 and contribution to the likelihood function is

 Prob(T* =b, T; = b I T1, T2 are observed)

 I- H(x+a+b, m)-H(oo,y+a+b)+H(x+a+b,y+a+b)

 1-H(x+ a,oo)- H(oo, y+ a)+ H(x+ a, y+a)
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 Annuity Valuation with Dependent Mortality 239

 Combining equations (8) through (11), we can express the logarithm of the likeli-

 hood function for a single observation as

 In L(x,yt1,t2,61,62,a,b) = (1-81)(1-62) In h(x+a+tl,y+a+t2)

 + (1-61)62 ln(HI(x+a+tl,oo)-HI(x+a+tl,y+a+b))

 +61(1-62) ln(H2(o?,y+a+t2)-H2(x+a+b,y+a+t2)) (12)

 + 6162 ln(1-H(x+a+b,oo)-H(oo,y+a+b)+H(x+a+b,y+a+b))

 - ln(1-H(x+a,oo)-H(oo,y+a)+H(x+a,y+a)).

 Using equation (12), the log-likelihood for the data set can be calculated as

 n

 lnIJ= ln L(xi, yi, tli, t2i, 81i, 62i, ai, bi) (13)
 i=l

 The maximum likelihood estimator of 0 is the value 0 that maximizes In ?.

 Standard maximum likelihood estimation theory provides that n /2(0 - 0) is
 asymptotically normally distributed with mean zero and variance-covariance V.(0) =

 n-lc(n in ?)/(8080'))'. The variance-covariance matrix VJ(0) can be consistently

 estimated using V1(O ), which is an output from standard function maximization

 routines. The standard error of each parameter estimate in 0 may be determined

 by the square root of the corresponding diagonal element of Vn( 0)/n.

 EFFECTS OF DEPENDENCE ON ANNUITY VALUES

 As described in Section 1, the main purpose of this article is to assess the effects of
 our models of dependent mortality on annuity values. We use the basic model of
 annuity valuation described in Chapter 8 of Bowers et al. (1986). To this end, the
 illustrations below assume a constant effective interest rate i with associated
 discount rate v = 1/(1 + i). The net single premium for a joint and last-survivor
 annuity issued to lives aged x and y is

 coX

 a V k YP3 (14)

 where k Px = 1 - HT(k, k) is the conditional probability that at least one life sur-

 vives an additional k years. Here, the conditional distribution HT is as defined in

 equation (7) with a = 0. Because HT is a function of the vector of parameters 0, so

 are k p- and d-. We occasionally use the notation a- (0) to emphasize this
 xy xy xy

 dependence.
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 Effects of Age and Interest

 We identify contract initiation ages x and y and interest environment i where
 models of dependent mortality really matter. The approach is straightforward: we

 estimate the annuity value a- in equation (14) with and without assuming inde-
 xy

 pendence. The parameter estimates with and without independence are discussed
 above, with Table 2. We compare the annuity values by calculating the ratio of
 annuity values estimated without an independence assumption to those estimated
 with the independence assumption.

 To assess the effects of contract initiation ages, Figure 3 presents a three-di-
 mensional plot of the ratio of annuity values, by male (x) and female (y) ages. The

 curve is roughly symmetric in x and y, indicating that, although the two marginal
 distributions are different, they have approximately the same effect on the ratio.

 Further, there appears to be an interaction effect of x and y on the ratios. That is,
 the ratio is much smaller for large values of both x and y when compared to large

 values for either x or for y.

 Figure 3

 Three-Dimensional Plot of the Ratio of Dependent to Independent

 Annuity Values for Males and Females Aged 50 to 80
 (Five Percent Interest Is Assumed)

 1.03

 1 1

 Annuity
 Ratio

 o Male

 Age

 To gain further understanding of this interaction effect, Figure 4 presents a
 multiple scatter plot of the ratio versus male ages, over several female ages. Here,
 for young female ages, we see that the ratio increases as male age increases. How-
 ever, for older female ages, the ratio decreases as male age increases.

This content downloaded from 161.200.69.48 on Mon, 13 Nov 2017 06:04:34 UTC
All use subject to http://about.jstor.org/terms



 Annuity Valuation with Dependent Mortality 241

 Figure 4

 Multiple Scatter Plot of the Ratio of Dependent to Independent

 Annuity Values to Male Age, Over Several Female Ages

 (Five Percent Interest Is Assumed)

 Female
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 Male Age

 Ratios of less than one indicate that annuity values calculated assuming iii-

 dependence of lives are larger than those calculated without assuming independ-
 ence. For this data set, it turns out that the average contract initiation age is ap-
 proximately 65 for males and 63 for females. The average age at December 31,

 1993, is 72.5 for male lives and 69.6 for female lives. We interpret the higher

 ratios for younger ages to mean that the effect of assuming independence is smaller

 for premium determination compared to annuity reserve setting. This suggests that
 reserves for annuities already paid-up are larger than necessary.

 Our data set displays a strong relationship between x and y. An examination
 of the data shows that the median age difference is 2.4 years, the middle 50 percent
 of the data is between 0.1 and 5.2 years, and the middle 90 percent is between -3.7
 and 11.0 years. Because of this concentration, for brevity in the subsequent

 analyses, we present only the special case of x = y.
 To assess the effects of interest, Figure 5 presents a three-dimensional plot of

 the ratio of annuity values, over several interest rates and ages. Here, the male age

 is assumed equal to the female age. This figure shows a quadratic effect of joint

 age that can also be observed in Figure 3. The effects of the interest rate i seem to
 be linear.

 To investigate these effects further, Figure 6 presents a multiple scatter plot

 of the ratio of annuity values to age, over several interest rates. This plot also

 demonstrates the quadratic effect of joint age and the linear effect of interest rates.
 From this plot, we see that the assumption of independence will matter more in
 times of low interest rates than in times of high interest rates.

This content downloaded from 161.200.69.48 on Mon, 13 Nov 2017 06:04:34 UTC
All use subject to http://about.jstor.org/terms



 242 The Journal of Risk and Insurance

 Figure 5

 Three-Dimensional Plot of the Ratio of Dependent to Independent

 Annuity Values, Over Several Interest Rates and Ages

 (Equal Annuitant Ages Are Assumed)

 of0'

 0L96

 0.92

 Effects of Dependence on Other Annuities

 The joint and last survivor annuity is a special case of a broad class of joint-life
 annuities. In this subsection, we consider joint and r annuities, where typically r is
 two-thirds or one-half. For example, the joint and two-thirds annuities pay $1
 while both annuitants are alive and $2/3 while one annuitant is alive. In the United
 States, there may be a larger market for these annuities than the joint and last-
 survivor annuities that corresponds to r = 1 because the Employee Retirement
 Income Security Act (ERISA) mandates that all qualified pension plans offer to
 qualified beneficiaries a joint and survivor annuity with r at least 50 percent. For
 this purpose, in addition to the usual requirements, beneficiaries must be married to
 their current spouse for at least one year. Joint-life annuities, corresponding to r =
 0, are not widely marketed.
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 Figure 6

 Multiple Scatter Plot of the Ratio of Dependent to Independent

 Annuity Values to Age, Over Several Interest Rates

 (Equal Annuitant Ages Are Assumed)
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 Similar to equation (14), the net single premium for a joint and r annuity can
 be expressed as

 00

 axy(r) = v vk(r kPx + r kPy - (2r-1) kPxy), (15)
 k=O

 where kPx = 1 - HT(k, OO) is the conditional probability that a life age x survives an

 additional k years, kPy = 1 - HT(cn, k) is the conditional probability that a life age y

 survives an additional k years, and kPxy = kPx + kPy - k Pxy = 1 - HT(k, o) - HT(?O,

 k) + HT(k, k) is the conditional probability that both lives ages x and y survive an
 additional k years.

 Table 3 summarizes the effects of dependence on the reduced annuities. The
 reduction factor r has little effect on the annuity ratios. As discussed above, we are
 concemed primarily with reduction factors r = 1/2, 2/3, and 1 because these are the
 most widely marketed types of annuities.

 Annuity Standard Errors

 The annuity values calculated above are based on the point estimate 0 and thus

 depend on the sample. To measure the reliability of 0, in the maximum likelihood
 estimation section above, we discussed how the estimated variance-covariance

 matrix Vn(0 ) could be used to derive parameter estimate standard errors. This

 subsection develops standard errors for ,y- (0) . These standard errors, together with

 the asymptotic normality, allow us to provide confidence intervals for our joint and
 last-survivor annuity values.
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 Table 3

 Ratios of Dependent to Independent Joint and r Annuity Values

 (Five Percent Interest and Equal Annuitant Ages Are Assumed)

 r

 Age 0 1/4 1/3 1/2 2/3 1.0

 50 1.00 0.99 0.99 0.98 0.98 0.97

 55 1.00 0.98 0.98 0.98 0.97 0.96
 60 0.99 0.98 0.98 0.97 0.96 0.95
 65 0.98 0.97 0.97 0.96 0.96 0.95
 70 0.97 0.96 0.96 0.95 0.95 0.94
 75 0.94 0.94 0.94 0.94 0.94 0.94
 80 0.89 0.91 0.92 0.93 0.94 0.95

 The asymptotic normality of a (0) is based on the asymptotic normality of

 0 and the so-called "delta-method" (see, for example, Serfling, 1980). Recall
 from the discussion of maximum likelihood estimation that

 1/2
 n ( 0 - 0) is AN(0, VJ(0)),

 where AN(0, A) means asymptotically normal with mean vector 0 and variance-

 covariance matrix A. Define the gradient vector G(0) = aY (0)/ ao. (See
 Appendix C for details of the calculation of G(0).) From the delta method, we
 have

 1/2

 n ( ai(0) - ady (0)) is AN(0, G(0)' VJ(0) G(0)). (16)

 Thus, we may define the standard error of ,Y- (0) as

 se( axy (0) ) = (G( 0 )'Vn( 0 )G( 0 )/n)lZ2. (17)

 From equation (16), we have that -Y(0) ? 1.96 se( a Y(0)) provides an

 approximate 95 percent confidence interval for our annuity value d,- (0) .

 When computing the standard error, the most difficult component is the

 gradient vector. This is because, as noted above, the matrix Vn( 0) is an automatic
 output from standard function maximization routines. To compute the gradient
 vector, from equation (14), we have

 a -(0 k, ak,
 G(_) = - wy (0) = E v k kP(y) =E v HT(k, k) .

 ao k=O o-ok=O ao

 From equation (17) and the chain rule, we have

 - v HT(k, k) = (1 - H(x,oo) - H(o,y) + H(x,y)) 2
 a-o
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 [(H(x+k,y+k) - H(x,y+k) - H(x+k,y) + H(x,y)) (I - H(x,oo) - H(oo,y) + H(x,y)) (18)
 ao

 - (1 - H(x,oo) - H(oo,y) + H(x,y)) C9 (H(x+k,y+k) - H(x,y+k) - H(x+k,y) + H(x,y))].
 ao

 Using equation (18), joint and last-survivor annuity standard errors are com-

 puted over several ages and interest rates. Table 4 presents the results for a five

 percent interest rate. The most important aspect of Table 4 is the magnitude of

 se( d,(0)). To illustrate, consider our largest and smallest estimated annuity

 values, which are _5050(0) = 17.45 and ado80(O) =9.65. For the largest annuity

 values, the standard error represents a typical error that is 0.002/17.45 = 0.011

 percent of the annuity. For the smallest annuity value, the standard error
 represents a typical error that is 0.025/9.65 = 0.26 percent. Thus, the standard
 errors indicate that the estimated annuity values are very accurate, assuming that
 the model is correct.

 Table 4

 Annuity Standard Errors by Male and Female Age

 (Five Percent Interest Is Assumed)

 Female Age

 Male Age 50 55 60 65 70 76 80

 50 0.002 0.002 0.002 0.002 0.002 0.003 0.005

 55 0.002 0.002 0.003 0.002 0.002 0.003 0.004
 60 0.002 0.002 0.003 0.005 0.004 0.004 0.004
 65 0.002 0.002 0.003 0.006 0.008 0.008 0.006
 70 0.002 0.003 0.003 0.006 0.010 0.014 0.013
 75 0.002 0.003 0.004 0.006 0.009 0.016 0.023
 80 0.003 0.004 0.007 0.009 0.011 0.015 0.025

 THE PROBLEM OF UNDERREPORTING

 As noted above, the data analyzed in this article come from internal records of a

 large insurance company. Thus, in most cases, the accuracy of the observed life-
 times depends on the reporting behavior of policyholders. This section investi-
 gates two instances where substantial measurement errors may exist. The first
 instance involves underreporting of deaths within the guarantee period and the
 second involves underreporting of the first death. In each case, the approach is to
 reformulate the likelihood equation so that we are essentially re-estimating the
 models of dependence using only subsets of our data. The subsets are chosen to
 circumvent the potential bias due to underreporting. Unfortunately, by using only
 subsets of the data, we are unable to estimate the parameter values accurately when
 assessing potential underreporting of the first death. However, we do present the
 theoretical development of the likelihood equation to handle this type of
 underreporting.
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 Underreporting Within the Guarantee Period

 Many policyholders elect a standard option that guarantees annuity payments will

 be made within a contractually specified period regardless of the mortality status of

 the annuitants. Because of the lack of financial incentives, there is concern that

 policyholders may not accurately report deaths that occur during the guarantee

 period. Further, it may be that mortality patterns for those electing a guarantee

 option may differ from those who do not. Of the 14,889 joint life contracts that we

 used for estimation, 10,01 1 contracts were at least partially guaranteed during the

 observation period.

 To handle this potential bias, we re-estimate the model disregarding mortality

 events within the guarantee period by censoring our lifetime data from the left at

 the expiration of the guarantee period. A consequence of this left censoring is that,

 for policies whose contract guarantee exceeded the observation period, there is no

 variability in the observed lifetimes and hence these policies were completely

 excluded from the likelihood calculations. Of the 14,889 contracts, 9,172 had

 guarantees that exceed the observation period.

 To define the variables needed for the new likelihood function, let c be the

 time since contract initiation of the guarantee period. Define g = c - a to be the

 time from the beginning of the observation period to the end of the guarantee

 period (which may be negative). For contracts without a guarantee, we define g = 0.
 Our new likelihood is based on the right- and left-censored times at death

 Tj = min(max(Tj, g), b)

 and indicators of the type of censoring

 ,jg{1 if Tj =g (left-censored)
 Jg 00 otherwise

 .b = (l if T; =b (right-censored)
 O otherwise

 for j = 1, 2. Because contracts with guaranteed period exceeding the observation
 period are excluded from the likelihood function, we may assume g < b without
 loss of generality.

 The development of the guarantee period likelihood function is similar to that

 described in the maximum likelihood estimation section above. Because it is more

 complex, the details are included in Appendix B. The guarantee likelihood is
 analogous to the classic "select-and-ultimate" tables in life analysis, where the
 experience of policyholders during the select period is not used for calculating ul-
 timate mortality rates. However, our analysis assumes that there is one mortality
 law. We use the information in the guarantee period in a specific way to reduce

 the potential bias of the parameter estimates.
 Table 5 presents the estimation results for the new likelihood that accounts

 for the presence of the guarantee period. The parameter estimates from the guar-

 antee period likelihood do not differ significantly from those of the full likelihood.
 As anticipated, the standard errors are larger for the guarantee period than for those
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 of the full likelihood, due to the fact that we are using less information under the
 guarantee period censoring.

 The data presented in Table 5 do not suggest the presence of adverse selec-
 tion by policyholders who elect the guarantee option. On one hand, if there was an
 underreporting of deaths within the guarantee period, then we would expect the
 modal ages to decrease. On the other hand, if policyholders with poorer health
 elect guarantee options, then we would expect the modal ages to increase. Our
 guarantee likelihood estimates do not significantly differ from the full likelihood
 estimates, thus providing no conclusive evidence of the presence of adverse
 selection.

 Table 5

 Guarantee Period Parameter Estimates

 Full Likelihood Guarantee Period Likelihood

 Parameter Estimate Standard Error Estimate Standard Error

 ml 85.82 0.26 84.78 0.40
 a, 9.98 0.40 9.58 0.49
 M2 89.40 0.48 89.53 0.78
 CT2 8.12 0.34 7.82 0.40
 a -3.367 0.346 -2.92 0.623

 The data presented in Table 5 also show that our estimate of dependence has

 decreased to p( & ) = p(-2.92) = 0.44. Although not statistically different from the
 full likelihood estimates, there may be some economic significance. The data pre-
 sented in Table 6 show that this is not the case. The ratios in Table 6 are ap-
 proximately equal to the ratios presented in Table 3. This again illustrates the
 highly nonlinear nature of the dependence parameter; large changes in cc are
 needed to induce even small changes in the ratios of annuity values.

 Table 6

 Ratios of Dependent to Independent Joint and Last Annuity Values
 Based on Guarantee Likelihood Estimates

 (Five Percent Interest Is Assumed)

 Female Age

 Male Age 50 55 60 65 70 75 80

 50 0.97 0.96 0.96 0.96 0.97 0.99 1.01
 55 0.97 0.96 0.95 0.95 0.96 0.97 1.00
 60 0.97 0.96 0.95 0.94 0.94 0.96 0.99
 65 0.98 0.97 0.96 0.94 0.93 0.94 0.97
 70 0.99 0.98 0.97 0.95 0.94 0.93 0.94
 75 1.01 1.00 0.99 0.98 0.96 0.93 0.92
 80 1.01 1.01 1.01 1.01 0.99 0.96 0.93
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 Underreporting of First Death

 For joint and last-survivor annuity policies, payments are made until the second, or
 last, annuitant dies. There is concern that policyholders might not report the death

 of only one annuitant, especially if there is no effect on the level of payment. For

 our data, of the 2,126 deaths (1,554 males + 572 females), 1,668 deaths left the
 other annuitant surviving. The other 458 deaths resulted in the cessation of

 payments on 229 contracts by the end of the observation period.
 To handle this potential bias, we re-estimated the model by redefining

 "failure" to be the time of second death, that is, cessation of the policy. This ap-

 proach treats the 1,668 single deaths as policies that "survive" the observation
 period.

 Our new likelihood is based on the time of second death

 T = max(T*, T) = max(min(TI, b), min(T2, b)) = min(max(T1, T2), b))

 and the indicator of censoring, 6, which is one if T* = b and zero otherwise. The
 likelihood function is based on two cases.

 If the second death is uncensored, then we may assume t < b. In this case, we
 have 6* = 0 and

 Prob(T* < t1T1>0,T2 > 0) = Prob(TI < t, T2 < tjT, > 0,T2 > 0) = HT(t, t).

 Using the chain rule, we have OH(t, t)/ot = H1(t, t) + H2(t, t). Thus, the con-
 tribution to the likelihood function is

 OHT (t,t)

 at

 H1(x+a+t,y+a+t)+H2(x+a+t,y+a+t)-H2(x+a,y+a+t)-HI(x+a+t,y+a) (19)

 1- H(x+a,oo)-H(oo, y+a)+ H(x+a, y+a)

 If the second death is censored, then we may assume t ? b. In this case, we
 have 6*=1 and

 Prob(T = bIT, > 0,T2 > 0) = 1 - HT(b, b) . (20)

 Combining equations (19) and (20), we can express the logarithm of the likelihood
 function for a single observation as

 ln L(x,y,t,6*,a,b)

 = (1-6*) In (HI(x+a+t,y+a+t) + H2(x+a+t,y+a+t) - H2(x+a,y+a+t) - HI(x+a+t,y+a))
 +6* ln(I-H(x+a,o) - H(oo,y+a) + H(x+a,y+a+b)

 + H(x+a+b,y+a) - H(x+a+b,y+a+b))

 - ln(1-H(x+a,oo) - H(ao,y+a) + H(x+a,y+a)). (21)

 The log-likelihood for the data can be calculated using the equation (21) expres-
 sion in equation (13). Maximizing this log-likelihood function yields parameter
 estimates and standard errors.

 Although this approach is technically sound, the maximum likelihood method
 yields unreliable parameter estimates using our data. Despite having nearly 15,000
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 contracts (and almost 30,000 lives) available for estimation, with this reduced data
 set we had only 229 deaths. Intuitively, most of the parameter information comes
 from the deaths, and we are attempting to estimate five parameters (in addition to
 the variance-covariance matrix). Thus, larger data sets, or longer observation

 periods, may be required to implement this method. This is interesting because
 data analysts generally do not consider 15,000 observations in a data set to be too

 small to employ likelihood methods.

 ALTERNATIVE MODELS OF DEPENDENCE

 This section investigates the robustness of the choice of Gompertz marginals and

 Frank's family of copulas by presenting some alternative choices.

 Weibull Marginal Distribution

 The Weibull distribution function can be expressed as

 F(x) = 1 - exp({x/m)yrn), (22)

 where m and 6 are location and scale parameters. The mode of this distribution is

 m(1 - G/m)a/m which is approximately 0.98m for m = 80 and 6 = 10. Thus, be-
 cause our estimated values of m and a turn out to be close to 80 and 10, respec-

 tively, we may interpret m to be an approximate mode for this distribution, similar
 to the Gompertz. A more traditional expression for the Weibull is

 F(x) = 1 - exp(-BxC),

 which is equivalent with the transformations B = m-nIa and c = m/6. Similar to the
 case of the Gompertz distribution, we find the parameterization in equation (22) to
 be more convenient for computational purposes.

 Appendix D presents the Weibull parameter estimates and annuity ratios. We
 use maximum likelihood to estimate the parameter values. The annuity ratios are

 computed following the same format used above.
 As suggested by Figures 1 and 2, the annuity ratios from the Weibull and

 Gompertz marginals are very similar. In most cases, the ratios differ by 0.01 or
 less, suggesting that our ratio values are not sensitive to the choice of marginal
 distributions. It is an interesting area of future research to measure the extent of
 the dependence of the ratios on the underlying marginal distributions.

 Shock Models of Dependence

 This section investigates the effects of the choice of the copula by considering an
 alternative family, the "common shock" models. As pointed out by Panjer (1994),
 the primary advantages of the common shock models are that they are easy to in-
 terpret and are computationally convenient.

 To define this bivariate distribution, we begin with independent age-at-death
 random variables X and Y. We denote their marginal distribution functions by Fj
 so that F1(x) = Prob(X < x) and F2(y) = Prob(Y < y). We assume there exists an
 independent exponential random variable Z with parameter X, that is, Prob(Z < t) =
 1 - e-t. The bivariate time-until-death random vector is (T(x), T(y)), where T(x) =
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 min(X - x - a, Z) and T(y) = min(Y - y - a, Z). With this, we interpret Z to be a

 "shock" that is common to both lives. Our new underlying lifetime random vari-

 ables are Xc =T(x) + x + a = min(X, Z + x + a) and Yc = T(y) + y + a = min(Y, Z +
 y+a).

 Under these assumptions, it is straightforward to compute the bivariate dis-

 tribution. The survival distribution can be expressed as, for tl, t2 ? 0,

 Prob(Xc > x + a + tl, Yc > y + a + t2)

 =Prob(min(X, Z + x + a) > x + a + tl, min(Y, Z + y + a)> y + a+ t2)

 = Prob(Z > max(t , t2) ) Prob(X > x + a + t,) Prob(Y > y + a + t2)

 = exp(-k max(t1, t2)) (1 - F1(x + a + t1)) (I - F2(y + a + t2)). (23)

 Thus, the bivariate distribution function, for t1, t2 > 0, is

 H(x + a + tl, y + a+ t2)= Prob(Xc < x + a + tl, Yc < y + a +t2)

 = 1 - exp(-Xt1)(l - F1(x + a + t1))

 - exp(-Xt2)( 1 - F(y + a + t2))

 + exp(-X max(tl, t2))(1 - F1(x + a + t1))(1 - F2(y + a + t2)). (24)

 From equation (24), note that H(x + a + t, ax) = 1 - e Xt (1 - FI(x + a + t)) k FI(x +
 a + t). Thus, unlike the case of the copula bivariate function, the marginal
 common shock distributions are a function of the dependence parameter X.

 Parameters are estimated using the bivariate distribution function in equation
 (24) and the method of maximum likelihood. The only difference between the
 analysis conducted here and that based on Frank's copula is the likelihood of a
 common shock, which is given by the instantaneous probability

 -Prob (T(x) = T(y) < t )=Xe (1 - FI(x + a + t))(l - F2(y + a + t)).

 Table 7 presents the parameter estimates with the associated standard errors.
 The common shock location and scale parameters are close to the corresponding

 univariate estimates. All are within one standard error except ml, which is only 1.3

 ((86.66 - 86.38)/0.27) standard errors away. The measure of dependence, X, is
 more than five standard errors from zero, indicating strong statistical dependence.
 Although not significant, the location estimates are higher under the bivariate
 distribution than the univariate. Recall from Table 2 that the location estimates
 were significantly lower under the Gompertz/Frank model than under the
 univariate models.

 The common shock model is intuitively appealing because bivariate condi-
 tional probabilities can be related easily to the marginals. To illustrate, recall from

 the section on effects of dependence on annuity values that k p- = 1 - HT(k, k) is

 the conditional probability that at least one life survives an additional k years.
 Using equations (23) and (24), straightforward calculations show that

 k Pxy kPx +kpy-e kPxkPyx (25)
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 Here, kPx = (1 - H(x + k, oo))/(1 - H(x, oo)) = e xk(l - FI(x + k))/(1 - FI(x)) is the
 conditional probability that a life aged x survives an additional k years and

 similarly for kPy Thus, for example, we may express our joint and last-survivor
 annuity as

 00

 a_ =Ev (kpx+kpy-ek kPx kP) (26)
 k=O

 Table 7

 Common Shock Parameter Estimates

 Bivariate Distribution Univariate Distribution

 Parameter Estimate Standard Error Estimate Standard Error

 ml 86.66 0.27 86.38 0.26
 a,l 9.89 0.37 9.83 0.37
 M2 92.69 0.64 92.17 0.59
 a2 8.09 0.40 8.11 0.38
 k 0.00054 0.00010 Not Applicable Not Applicable

 An intuitively appealing feature of the common shock model is that the de-

 pendence parameter, X, can be absorbed into the interest parameter, as follows.

 Define the pseudo conditional probabilities kPx = (1-FI(x + k))/(1 - FI(x)) = e kPx
 and similarly for kPy Using equations (25) and (26), we have

 = E e- ) (kPXp + kP; - kPx k = P _ @ (6+X). (27) xy y y ~~~~~~~~~~~~~~xy
 k=O

 Here, 6 = ln(l+i) is the so-called "force of interest," the symbol *a- means
 xy

 calculate the annuity assuming independence using kPX and kP; and the notation @
 (6 + X) means at force of interest 6 + R. Because kPx and kPy do not depend on X,
 equation (27) shows that the joint and last-survivor annuity is a decreasing function
 of R. In other words, the greater is the dependency, the smaller is the joint and
 last-survivor annuity.

 To assess the real impact of dependency, Table 8 compares annuity values
 calculated under the common shock model to those calculated under independence.
 Unlike our copula models, annuity values are higher under the common shock

 model for most age combinations. This is interesting because, from equations (26)
 and (27), we expect annuity ratios less than one. On one hand, the increase in X
 (from 0 to 0.00054) produces only a small decrease in annuity values. On the
 other hand, the larger location parameters mean that the individual forces of
 mortality are lower under the case of dependence. Lower forces of mortality result
 in larger annuity values.

 Thus, despite the computational simplicity, the common shock model does
 not seem to provide the same pleasing intuitive results as the copula model. Fur-
 ther, the common shock model does not seem to fit the data as well as the
 Gompertz/Frank model. When estimating the models, the log-likelihood
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 associated with the Gompertz/Frank model, -9,977, was larger than the log-
 likelihood associated with the common shock model, -10,078. The two models

 are not hierarchical and thus traditional likelihood ratio tests are not applicable.

 However, this does provide additional evidence that the Frank/Gompertz model
 provides a better fit to the data.

 Table 8

 Ratios of Dependent to Independent Joint and Last Annuity Values
 Based on the Common Shock Model

 (Five Percent Interest Is Assumed)

 Female Age

 Male Age 50 55 60 65 70 75 80

 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 55 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 65 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 70 1.00 1.00 1.00 1.00 1.01 1.01 1.01
 75 1.00 1.00 1.00 1.00 1.01 1.01 1.01
 80 1.00 1.00 1.00 1.01 1.01 1.01 1.01

 Finally, we note that the common shock does not seem to take into account
 all the dependencies that we observe in the data. Of the 229 pairs of deaths within
 our observation period, 29 occurred with one day and hence were "simultaneous."
 The data also revealed proximity of other deaths:

 Number of Pairs of Deaths Within:
 I Day = 29

 5 Days = 63

 10 Days = 70

 20 Days = 85

 30 Days = 86.

 Thus, there appears to be some dependency of lives that the common shock model
 does not detect. Of course, one can always alter the definition of the time scale to
 redefine what "simultaneous" means. An advantage of the copula models is that
 this is not necessary because the dependency is assessed in a smooth fashion.

 CONCLUSION

 This article discusses methods for estimating the probability of joint survival using
 insurance data. Although our focus is on annuity valuation, our methods can be
 applied easily to other types of insurance products. For example, Bragg (1994)
 discusses the growing importance of last-survivor, or "second-to-die," life
 insurance.

 Throughout the article, our illustrations focus on valuing level annuities using
 fixed interest rates. However, with additional complexity, the methods also can be
 applied to variable products and can be used for valuing level annuities using a
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 model from financial economics. This is because economic models assume that

 probabilities are exogenous inputs into an economic system. Thus, our dependent

 mortality models could be used to determine probabilities that are inputs to an

 economic model.

 Because of the heavy truncation and censoring of our data, our models of the

 bivariate distribution are completely parametric. Maguluri (1993) provides some

 theoretical results on the efficiency of using a parametric family for the copula,

 such as Frank's family, with nonparametric distributions for the marginals, such as

 Kaplan-Meier. It would be interesting to fit data using a parametric copula and

 standard insurance industry tables, such as the 1983 Individual Annuity Table. We
 leave this for future research.

 APPENDIX A

 DERIVATION OF RESULTS NEEDED TO EVALUATE THE LIKELIHOOD

 USING FRANK'S COPULA AND GOMPERTZ MARGINALS

 This appendix derives the results needed to evaluate the log-likelihood in equation
 (13) or, in particular, equation (12), in the case where we assume the Frank's

 copula function as given in equation (3) and Gompertz marginals as given in
 equation (5).

 Consider the bivariate age-at-death random vector (X,Y) whose distribution

 function is given in equation (2) and where the copula is given in equation (3).
 Deriving the first partial derivatives of C, we have

 a eau' (eatv 1) (l
 C1(u,v)=-C(u,v) = (A1 au e( ' 1+(eau -1)(eav -1)

 and

 a ~~~~ecv (eatu 1)
 C2(u,v)=,) C(u,v) (A2)

 av eat 1+(eau -1)(eav -1) (2

 The second partial derivative of C is given as

 a 2 cC(e" -I)ea(U+v)

 C12(U,v= C(U,V)=-(3

 We denote the density functions of X and Y as fi and f2, respectively. In other
 words, we have

 fi (x)=-F (x) and f2 (y)=-F2 (Y)
 ax ay

 Using the chain rule of differentiation, we then have the first and second
 partial derivatives of the distribution function H(x,y):
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 H1(x,y)= - H(x,y)= f, (x)C1 (F, (x),F2 (y)) (A4)
 ax

 and

 H2 (x,yy)=-H(x,y)=f2 (y)C2(F, (x),F2 (y)) (A5)
 ay

 and

 a2
 h(x,y)= H(x,y)= f(x)f2 (y)C12 (Fl (x),F2(y)) (A6)

 axay

 If we suppose that the marginals follow a Gompertz distribution as in equation (1),
 then we have the following density functions:

 fj X) I (X-j )Cjexp[e-mj /cri(I-ex/j)], j=1,2. (A7)
 CTSj

 Equations (Al) to (A3) and (A7) are then used to evaluate equations (A4) to (A6).
 Equations (A4), (A5), and (A6) are used in maximizing the log-likelihood as ex-
 pressed in equation (12).

 Note that the parameter cc is not necessarily a standard measure of associa-
 tion. However, we can express the more familiar Spearman's correlation coeffi-
 cient as a function of cc as follows:

 1 1

 p(ca)=12J fC(u,v)dudv-3.
 0 0

 If C is the Frank's copula, then we have p(ca) as expressed in equation (4).

 APPENDIX B

 DEVELOPMENT OF THE LIKELIHOOD EQUATION FOR
 UNDERREPORTING OF DEATH WITHIN THE GUARANTEE PERIOD

 To determine the conditional distribution of (T1 ,T2 ), we consider nine cases of
 (tl, t2). The general expression for the conditional distribution function for the
 guaranteed case is

 Hg(tl,t2) = Prob (TI < tl, T2 ? t2IT1 > 0, T2> 0)

 = Prob (min(max(TI,g),b) < tl, min(max(T2,g),b) < t2jTj > 0, T2 > 0). (B1)
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 Case I

 If both lifetimes are right-censored, then we have t1 ? b, t2 ? b. Hence, we have 81g

 62g ?, 1b = 62b = land

 Hg(tl,t2) = Prob (T1 = b,T2 = bIT1 > 0, T2 > 0)

 =Prob(TI ?b,T2?bIT> 0,T2>0) (B2)
 = 1 - HT (oo,b) - HT(b,oo) + HT(b,b).

 Case 2

 If the first lifetime is uncensored and the second lifetime is right-censored, then we

 have g < t, < b, t2? b. Hence, we have8lg = 62g = 81b = O, 62b = l and

 Hg(tl,t2) = Prob (T1 < tl, T2 ? bIT1 > 0, T2> 0) = HT(tl,oo) - HT(tl,b). (B3)

 Case 3

 If the first lifetime is left-censored and the second lifetime is right-censored, then

 we have t? < g, t2? b. Hence, we have8lg = 62b = 1b = 62g = Oand

 Hg(tl,t2) = HT(g,oo) - HT(g,b). (B4)

 Case 4

 If the first lifetime is right-censored and the second lifetime is uncensored, then we

 have t, 2 b, g < t2< b. Hence, we have8lb = l, 1g = 62g = 62b = Oand

 Hg(tl,t2) = HT(oo,t2) - HT(b,t2). (B5)

 Case 5

 If both lifetimes are uncensored, then we have g < t, < b, g < t2 < b. Hence, we
 have 8lg = 81b = 0, 62g = 62b =0 and

 Hg(tl,t2) = HT(tl,t2)- (B6)

 Case 6

 If the first lifetime is left-censored and the second lifetime is uncensored, then we

 have t < 9g, g < t2< b. Hence, we have 8ig = 1 62g = 81b = 62b = Oand

 Hg(tl,t2) = Prob(TI < g, T2 < t2) = HT(g,t2). (B7)

 Case 7

 If the first lifetime is right-censored and the second lifetime is left-censored, then

 we have t, > b, t2< g. Hence, we have8lb = 62g = 1, bg = 62b = Oand

 Hg(tl,t2) = Prob(TI ? b, T2 < g) = HT(oo,g) - HT(b,g). (B8)
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 Case 8

 If the first lifetime is uncensored and the second lifetime is left-censored, then we

 have g < t1 < b, t2 < g. Hence, we have 6lg = 6lb = 62b = 0, 62g = 1 and

 Hg(ti,t2) = HT(t1,g). (B9)

 Case 9

 Finally, if both lifetimes are left-censored, we have t1 < g and t2 < g. Hence, we

 have 61g = 62g = 1, 61b = 62b = 0 and

 Hg(tl,t2) = HT(g,g). (B 10)

 Recall from equations (8), (9), and (10) that

 aHT(tl,t2)- HI(x+a+tl,y+a+t2)-H1(x+a+tl,y+a)
 Atl 1-H(x+a,oo)-H(oo,y+a)+H(x+a,y+a)

 aHT(tI,t2) H2(x+a+tl,y+a+t2)-H2(x+a,y+a+t2)
 0-t 2 1-H(x+a,oo)-H(oo,y+a)+H(x+a,y+a)

 and

 a2HT(tl,t2) h(x+a+tl,y+a+t2)

 -t At2 1-H(x+a, o)-H(oo,y+a)+H(x+a,y+a)

 Combining equations (B2) to (B 10), we then have the contribution of a single ob-
 servation to the log-likelihood as follows:

 log Lg(x,y,a,b,tl,t2,81g,62g,8lb,62b,g)

 = 81b82blog1-H(oo,y+a+b) - H(x+a+b,oo) + H(x+a+b,y+a+b)]

 + (l1g-61b)62blog[Hj(x+a+ t1,oo) - HI(x+a+tl,y+a+b)]
 + 68lg2blog[H(x+a+g, co) - H(x+a, co) - H(x+a+g,y+a+b) + H(x+a,y+a+b)]

 + 81b( l62g862b)log[H2(C,y+a+t2) - H2(x+a+b,y+a+t2)]

 + (1llb-81g)( 142g42b)log[h(x+a+tl,y+a+t2)]
 + 81g(1-62g42b)10g[H2(x+a+g,y+a+t2) - H2(x+a,y+a+t2)]

 + 61b62g log[H(oo,y+a+g) - H(oo,y+a) - H(x+a+b,y+a+g) + H(x+a+b,y+a)]

 + (0 1b61g) 62g log[H1(x+a+tl,y+a+g) - H1(x+a+tl,y+a)]

 + 6lg62g log[H(x+a+g,y+a+g) - H(x+a+g,y+a) - H(x+a,y+a+g) + H(x+a,y+a)]
 -log[ 1-H(x+a,oo) - H(oo,y+a) + H(x+a,y+a)].
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 APPENDIX C

 CALCULATION OF THE GRADIENT OF aXY (0)

 Let 0 = (MI, M2, csl, cS2 c)' = (01, 02, 03, 04, 05)'. Thus, from equation (18) for i=
 1,2,... 5, we have

 a 00
 ad--yZVka OR-

 I k=O

 (H(x + k,y + k) - H(x + k,y) - H(x,y + k) + H(x,y)) x

 -k - F1(x)a (H(xy) -F,(x) - - Cl

 k=O [1- H(x,) - H(c3,y) + H(x,y)1| (1- H(x,oo)- H(oo,y) +H(x,y)) x (
 a (H(x + k,y+ k) - H(x,y+ k) - H(x + k,y) + H(x,y)))

 Using equations (1) and (A7), for i = 1, 2, we have

 a (x) - a rn/a cr
 -Fi( = - exp[e-mili (1 eX/oi )] (e i i (1 - ex

 Anj~~~~~~~~~a DMi/r

 =-(1-Fj(x))(1-e X/ci) a e-
 ami

 --(1- Fi(x))( - ex/j )e mici

 = f1(O) - fi(x) (C2)

 and

 aF (x)a-(I-Fi(x)) a (e-Mi/i -e(x-mj)/

 = -(1-F(x))(mje-mi/'ai + (x-mi)e(x-mi)/i)/cyi

 -1
 = (mifi (0)+(x-mi )fi (x))
 ai

 - ((mi -x)fi (x)-mif; (O)). (C3)
 ai

 Equations (A4), (A5), (C2), and (C3) and the chain rule yield

 a a4~y) a
 H(x, y)a= C(F(x),F2 (y)) = C1 (F, (x), F2 (Y)) F1 (x)

 = H1(x,y)(f1(O) - f1(x))/f](x) (C4)

 a H(x,y) =H2 (X,Y)(f2 (O)- f2 (Y))/ f2 (y) (C5)
 am2

 and
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 a H(xy)=C,(F,(x),F2(y)) a F(x)

 = H1(x,y)((ml-x)fl(x)-m1f1(O))/(cs1f1(x)) (C6)

 H(x,y)= H2(x,y)((m2 -y)f2(y)-m2f2(0))/(CT2f2(y)). (C7)
 aC2

 To calculate (a/acc)H(x,y), we use equation (3) and let K(ca) = K = exp (cC(u,v)) =

 (e_ -1)(e'v -1)
 1 + .Thus,

 (el -1)

 a )= (ea -l)[ueau (eQv -1)+veav (eQu -1)]-(eau -1)(eav -I)ea
 acK() (ec-l)2

 Making the substitutions

 eu(ev-1l) = Cl(u,v)(ea-1)K

 and

 eav(eau 1) = C2(u,v)(ea'- )K,

 a ~~~~~~~~~ea
 we have a K(c) = uKC,(u,v) + vKC2(u,v) - ( (K-1).

 Define Ca(u,v) = C(u,v). Thus, we have
 ac

 IlaK
 cx.---log(K)

 C (u v)= a (log(K)j K ac

 = kILuKC1(u,v)+vKC2(U,v)+ (e (I-K))-2 aCC(u,v).

 Rearranging terms, we then have

 IF e` (e`(u'v) -1) C
 Ca(u,v)= cc (e" -1) +(uCI(u,v)+vC2(u,v)-C(u,v))

 Thus,

 a H(x,y)= aC(U,V)| u=F1(x),v=F2(y) =C CQ(F1 (x),F2 (y)) (C8)

 To get the gradient of a- (0), plug equations (C4) through (C8) into equation

 (C 1).
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 APPENDIX D

 WEIBULL ESTIMATION RESULTS

 Table Dl

 Weibull Parameter Estimates

 Bivariate Distribution Univariate Distribution

 Parameter Estimate Standard Error Estimate Standard Error

 ml 86.22 0.27 86.73 0.28
 cs, 10.16 0.39 10.12 0.37

 M2 89.91 0.55 93.00 0.69
 G2 8.75 0.40 9.26 0.47

 cc -3.354 0.338 Not Applicable Not Applicable

 Table D2

 Ratios of Dependent to Independent Joint and Last Annuity Values

 Based on Weibull Marginal Distributions

 (Five Percent Interest Is Assumed)

 Female Age

 Male Age 50 55 60 65 70 75 80

 50 0.97 0.96 0.96 0.97 0.98 1.00 1.02

 55 0.97 0.96 0.95 0.95 0.97 0.99 1.02
 60 0.97 0.96 0.95 0.94 0.95 0.97 1.01
 65 0.98 0.97 0.95 0.94 0.94 0.95 0.99

 70 0.99 0.98 0.96 0.95 0.93 0.93 0.96
 75 1.00 0.99 0.99 0.97 0.95 0.94 0.94
 80 1.01 1.01 1.01 1.00 0.99 0.96 0.94
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 APPENDIX E

 SPEARMAN'S TEST OF INDEPENDENCE

 This appendix shows how to apply Spearman's test of independence on our data,
 assuming that the marginal distributions are known. This last assumption is rea-
 sonable because extensive information is available on the law of mortality for in-
 dividual lives. The following technique is a quick nonparametric way of identify-
 ing and measuring the dependence. The results from this method must be used
 with caution because we are assuming that the marginals are known.

 Suppose we observe the time of deaths (Tlk, T2k) for k = 1, 2,... , n, where

 Tik has a known continuous distribution function Gi,k(t), t > 0, i = 1, 2. In our case,
 these distributions will not be identical. Consider the uniform random variables

 Ui,k - Gi,k(Ti,k). Assume that the pairs (Ul,k, U2,k) for k = 1, 2,... , n are independent
 and identically distributed with a common copula C(u,v). The assumption of a
 common copula allows us to calculate Spearman's sample correlation coefficient
 and use it to test independence, that is, C(u,v) = uv. Let Rik denote the rank of
 Uik; then Spearman's correlation is

 n

 E [Rl,k -(n + 1) / 2][R2k k-(n + 1) / 2]
 k=1

 n(n2 -1) / 12

 An estimate of the asymptotic variance of this statistic is (n-1)l. So we reject the

 null hypothesis of independence at a 5 percent level if I p I > 1.96 (n-i) 1/2.

 Let's apply this technique to our data where n = 229 policies had both annui-
 tants die during the observation period. Let Fi(x) denote a Gompertz distribution
 as defined in equation (1) with parameters mi, oi. If i = 1, then these parameters
 refer to a male life, and, if i = 2, then they refer to a female life. Consulting Table

 2, we let ml = 86.38, a, = 9.83 and m2 = 92.17, 92 = 8.11. We find that the esti-
 mate of Spearman's correlation coefficient does not change very much when other
 reasonable parameter values are used. In our case, Gi,k is the distribution of the
 time of death, given that the death occurs during the observation period. Let xi,k +

 ak denote the age at the start of the observation period, and let xi,k + ak + bk denote
 the age at the end of the observation period; then

 Fi (Xi,k + t)-Fi (Xi,k + ak)

 Fi(xi,k + ak + bk)-(Fi(Xi,k + ak)

 The sample correlation is jp = 0.414 and a 95 percent confidence interval is
 (0.282, 0.547). Our estimate of p, given in the section on estimation results, is
 equal to 0.49, which lies within this confidence interval.
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