
Creating the Products List Component
In the Pages folder, we are going to create two files. First, we’re going to create
Products.razor… which will be our template, and then we’ll create a partial class
in the Products.razor.cs file... Let’s paste in some HTML in the Products.razor file
first… There is nothing special about this HTML, it’s just a skeleton and some
placeholders. You can see that we’ve reserved places for searching and sorting,
create product link, products list, and pagination… In this video, we’re going to
focus on the products list component, and we’ll add other features later on in the
course. Now let’s add some logic to our Products class. Let’s create a property of
the type List<Product> and call it ProductList. We’re going to initialize it too…
Then, we’re going to inject the ProductHttpRepository we’ve implemented
earlier… Don’t forget to add the [Inject] Attribute… And then, we’re going to
override the OnInitializedAsync method in order to retrieve the products when
the component is initialized. To do that, we’ll populate the Product list by calling
the async ProductRepo.GetProducts() method. Once we get the result, we’re just
going to create a foreach loop… and list the products from the ProductList with
Console.Writeline... Now, let’s start both of our applications... and press F12,
navigate to the Products page, and inspect the logs... Excellent. Our data is here.
Now let’s create a proper component for our Data. Let’s create a new component
template ProductTable.razor in the Components folder... and the
ProductTable.razor.cs file too. Now let’s add a parameter of the List<Product>
type to the ProductTable class... and name it Products… This parameter will
accept the products from the parent component... All we have to do now is to
create a beautiful table that shows our products… First, let’s check if there are any
products on our list with @if(Products.Any())... If there is at least one product,
we’re going to show the table… in the header of that table we’re going to add…
an empty field that will contain the image… name field... supplier… price…
update… delete… And in the body of the table we’re going to loop through our
products… and create a new row for each entry in the Products list… First one for
the image… And then one for the name… And we can copy that one for the
supplier… and price… And then we’re going to add the update button… with the
class btn btn-info, and then the delete button… with the class btn btn-danger…
Now that’s all for the table body… and then in the case that no products were
loaded… we’re going to write “Loading Products…”. What we’re doing here is
conditional rendering. In case we got our data, we’re going to display it in the
table, and if we didn’t, we don’t need to render the entire table, but just the
message. Finally, to connect these components we need to add this component

to the Products component… we’re going to import it first at the top… and then
replace the placeholder with our ProductTable component… and add one
paramete Products… and Populate it with the ProductList... Great! Let’s see what
we’ve done so far! If we run the application and navigate to the Products… “we’ll
see Loading Products…” message briefly, and then our products will populate the
table… As you can see, we’ve retrieved all the products from our database, and
while that’s not a lot of products, you can imagine how this can turn ugly if there
were a few hundred, or a few thousand of them. Great, now this is starting to
look like a real application. But we’re far from over. Ideally, we want to have a
details page for each item in the list.

