Q1.

x and y are acute angles.

 $\sin x = \frac{\sqrt{3}}{2} \qquad \tan y = 1$ w = 3x - 2y

Work out the value of $\cos w$ You **must** show your working.

Answer _____

(Total 3 marks)

Q2.

Work out the value of (cos 30° × sin 45° × tan 60°)²

Q3.

A solid hemisphere has radius *x*.

A solid cylinder has radius 3x and height x.

Surface area of a sphere = $4\pi r^2$

where r is the radius

Work out the ratio

total surface area of the hemisphere : total surface area of the cylinder Give your answer in its simplest form.

You **must** show your working.

(Total 3 marks)

Q4.

Shape A is a circle with radius $\frac{\sqrt{17}}{2}$ cm

Shape B is a sector of a circle with radius 5 cm

Which shape has the greater area, A or B? You **must** show your working.

Answer	
	(Total 5 marks)

Q5.

Here are two solid cubes, X and Y. The mass of X is 10.976 kg The area of **each face** of X is 784 cm²

(a) Zayan wants to know the density of Y.He assumes that Y is identical to X.

What density should he get for Y? Give your answer in **grams per cubic centimetre**.

Answer	g/ci	m³	
--------	------	----	--

(b) In fact,

the mass of Y is less than the mass of X

the area of each face of Y is greater than the area of each face of X.

What does this mean about the actual density of Y? Tick **one** box.

		н.
		н.
		н.
		н.
		н.
		н.

It is less than the answer to part (a)

It is equal to the answer to part (a)

It is greater than the answer to part (a)

It is not possible to tell

(4)

Q6.

Trapezium *DEFG* is formed by joining

triangle *DEH* to

rectangle EFGH.

ABC is similar to DEH.

Work out the area of DEFG.

Anouver	e ²
Answer	cm²
	(Total 5 marks)

Q7.

Two sides of a triangle are measured to 1 decimal place.

The angle between the sides is measured to the nearest degree.

Work out the upper bound for the area of the triangle.

You **must** show your working.

Answer_____

____ cm² (Total 4 marks)

Q8.

Part of a running track is the arc of a semicircle joined to a straight line.

The semicircle has diameter 45 metres.

The straight line has length 75 metres.

Abby runs once along this part of the track in 18 seconds.

Work out her average speed.

Give your answer to 2 significant figures.

Answer _____ m/s

(Total 4 marks)

Q9.

Square A is enlarged to square B.

Write down the scale factor of the enlargement as a fraction.

Answer £

(Total 4 marks)

Q11.

Here is a cube with edge length x cm

One diagonal is shown.

(a) Circle the length, in centimetres, of the diagonal.

(1)

(b) The total length, in centimetres, of the edges of the cube is a multiple of 18 Circle the correct statement.

x is a	x is not a	x might be a
whole number	whole number	whole number

Q12.

VABCD is a pyramid with a horizontal square base.

X is the centre of the base.

V is vertically above X.

BD = 18 cmAngle $VBX = 72^{\circ}$

Work out the length of VB.

Answer _____ cm

(Total 3 marks)

Q13.

Work out the area of triangle ABC.

Q14.

PQ is a diameter of a circle.

QR is a tangent to the circle.

Work out the **radius** of the circle. Give your answer as a decimal.

Answer _____ cm

(Total 3 marks)

Q15.

Work out the size of angle x.

A boat sails 35 km North from *A* to *B*. From *B* the boat sails to *C* and then back to *A*.

 Show that the distance the boat sails from C to A is 79 km to the nearest km You **must** show your working.

(b) Work out the bearing of *A* from *C*.

(2)

Q17.

A ship sails from P to Q and then from Q to R.

Q is 12 miles from P, on a bearing of 080°

R is 28 miles from Q, on a bearing of 155°

Not drawn accurately

Work out the direct distance from P to R.

Mark schemes

Q1.	
(x =) 60 or (3x =) 180	
or	
(<i>y</i> =) 45 or (2 <i>y</i> =) 90 implied by sin 60 or tan 45 must be selected and not just in a table	М1
3 × 60 – 2 × 45	
or 180 – 90	
or (<i>w</i> =) 90 or cos 90	M1dep
0 with M2 awarded	A1
Additional Guidance	
0 with no working	M0M0A0
Condone degrees sign on answer with correct working	M1M1A1

[3]

M1

Q2.

$$(\cos 30 =) \frac{\sqrt{3}}{2}$$

or (sin 45 =)
$$\frac{\sqrt{2}}{2}$$
 or $\frac{1}{\sqrt{2}}$

or (tan 60 =) $\sqrt{3}$

oe correct trig function may be implied by position in multiplication string may be seen in a table

$$\left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \times \sqrt{3}\right)^2$$

or

$$\left(\frac{\sqrt{3}}{2}\right)^2 \times \left(\frac{\sqrt{2}}{2}\right)^2 \times \left(\sqrt{3}\right)^2$$

M1dep

[4]

or

$$\frac{3\sqrt{2}}{4} \text{ or } \frac{3}{2\sqrt{2}} \text{ or } \frac{\sqrt{18}}{4}$$

$$ce single term squared$$

$$\left(\frac{3\sqrt{2}}{4}\right)^2 \text{ or } \left(\frac{3}{2\sqrt{2}}\right)^2 \text{ or } \left(\frac{\sqrt{18}}{4}\right)^2$$

$$ce with all values correct$$

$$ce single term squared$$
or

$$\frac{3}{4} \times \frac{1}{2} \times 3$$

$$ce multiplication string without surds$$
or

$$\frac{\sqrt{324}}{16}$$

$$ce single fraction with one surd$$
Midep

$$\frac{9}{8} \text{ or } 1\frac{1}{8}$$

$$r 1.125$$

$$ce fraction, mixed number or decimal$$
Additional Guidance
Ignore an incorrect attempt to simplify or convert a correct answer

$$eg \frac{9}{8} = 1.8$$
MIMIMIA
G3.
Alternative method 1 - expressions in x

$$4\pi x^2 + 2 \text{ or } 2\pi x^2$$

$$r \pi x^2$$

or $\pi(3x)^2$ or $9\pi x^2$

or 2 × $\pi(3x)^2$ or $18\pi x^2$

or $2\pi x(3x)$ or $6\pi x$	χ^2	
	oe area of curved face of hemisphere	
	oe area of flat face of hemisphere	
	oe area of one flat face of cylinder	
	oe area of both flat faces of cylinder	
		M1
$4\pi x^2 \div 2 + \pi x^2$ or	$3\pi x^2$	
or		
$\pi(3x)^2 + \pi(3x)^2 +$	$2\pi x(3x)$	
or $9\pi x^2 + 9\pi x^2 +$	$6\pi x^2$	
or $24\pi x^2$		
	oe total surface area of the hemisphere	
	oe total surface area of the cylinder M1	dep
$3\pi x^2$ and $24\pi x^2$ a	and 1 : 8	
	either order	
		A1
Alternative met	hod 2 – substituting a value for <i>x</i>	
Substitutes a val	ue for x and works out the area of at least one of	
area of curved fa	ice of hemisphere	
area of flat face of	of hemisphere	
area of one flat fa	ace of cylinder	
area of both flat f	faces of cylinder	
area of curved fa	ice of cylinder	
	eg using $x = 5$, at least one of	
	50π	
	25π	
	225π	
	450π	
	150π	M1
Substitutes a val hemisphere or th	ue for x and works out an expression for the total surface area of the le cylinder	

eg using x = 5total surface area of hemisphere = $25\pi + 50\pi$ or 75π

		or total surface area of cylinder =	
		$225\pi + 225\pi + 150\pi$ or 600π	
			M1dep
	Both correct tota	Il surface areas for their value of x and 1 : 8	
		either order	A1
	Additional Guid	lance	
	1 : 8 or 8 : 1 with	nout correct working or values	NAONAO A O
	Condone π miss	ing consistently for all marks	MUMUAU
	Allow 'correct' ar	nd consistent values of π throughout (eg 3, 3.14, $\frac{22}{7}$)	
	Condone use of	<i>r</i> for <i>x</i> throughout	
	Do not allow $3\pi x$	x^2 from $3x \times \pi \times x$ oe	
Q4	$(\pi \times) \left(\frac{\sqrt{17}}{2}\right)^2$		
		condone missing brackets	M1
	$\frac{17}{1}(\pi)$ or $4\frac{1}{1}(\pi)$	τ)	
	4 4	or 4.25(π) or 4.condition mixed number or decimal	
			A1
	$(\pi \times)$ 5 ² or $(\pi \times)$ 2	25	
	or		
	60 360 used		
		oe	M1
	$\frac{25}{6}(\pi)$ or $4\frac{1}{6}(\pi)$	π)	
	or 4.1(6) <i>(π)</i> or	$-4.17(\pi)$	

[3]

A1

A with values in comparable form

oe fraction, mixed number or decimal

A by
$$\frac{1}{12}(\pi)$$
 or A by 0.08(3...)(π)
eg values
 $\frac{51}{12}(\pi)$ and $\frac{50}{12}(\pi)$
 $4\frac{1}{4}(\pi)$ and $4\frac{1}{6}(\pi)$
 $4.2(5)(\pi)$ and $4.1(6...)(\pi)$
 $4.2(5)(\pi)$ and $4.17(\pi)$
accept 'circle' for A
allow comparison of fraction or decimal parts only if integer
parts shown as equal

Additional Guidance

√784 or 28

For the final mark, presence or absence of π must be the same for both values

[5]

[5]

Accept consistent use of a numerical value of π throughout.

The value can be 3 or 3.1 or 3.14 or 3.142 or better

Q5.

(a)

or

M1 (their 28)³ or 21 952 21 952 implies M1M1 M1dep 10.976 ÷ their 21 952 or 0.000 5 or digits 10 976 ÷ their 21 952 oe eg 5 × 10-4 eg 1097.6 ÷ their 21 952 M1dep 0.5 oe A1 **Additional Guidance** 784 × 6 or 784 ÷ 6 or 784 ÷ 2 M0M0M0A0 (b) It is less than the answer to part (a) **B1**

Q6.

Alternative method 1 Works out BC using Pythagoras then works out EH

7² or 49		
and		
4.2 ² or 17.64		
	oe	M1
$\sqrt{7^2 - 4.2^2}$ or $\sqrt{10^2 - 4.2^2}$	49-17.64	
or $\sqrt{31.36}$ or 5.6	3	
	oe	
	implied by 11.76 as the area of the smaller triangle	
	may be on diagram	M1dep
6 ÷ 4.2 × their 5.6	6 or 8	
	oe	
	full method to work out EH	
	may be on diagram as EH or FG	
	implied by 24 as the area of the larger triangle or 60 as the area of the rectangle	
		M1dep
0.5 × their 8 × 6 o	or 24	
and		
their 8×7.5 or 60	0	
	oe eg 0.5 × their 5.6 × 4.2 × (6 ÷ 4.2)²	
	and their 8 x 7 5	
	or	
	0.5 × their 8 × (7.5 + 13.5)	
		M1dep
84		A1
Alternative met	hod 2 Works out ED using similar triangles then works out EH	
6 ÷ 4.2 × 7 or 10		
	oe	
	may be on diagram	М1
(4) - (- 40)0 - 400		NI I
$(\text{tneir } 10)^2 \text{ or } 100$		
and		
6 ² or 36		

M1dep

M1dep

oe

$$\sqrt{(\text{their 10})^2 - 6^2}$$
 or $\sqrt{100 - 36}$

or $\sqrt{64}$ or 8

oe full method to work out EH may be on diagram as EH or FG implied by 24 as the area of the larger triangle or 60 as the area of the rectangle

0.5 × their 8 × 6 or 24

and

their 8 × 7.5 or 60 oe eg 0.5 × their 5.6 × 4.2 × $(6 \div 4.2)^2$ and their 8 × 7.5 or 0.5 × their 8 × (7.5 + 13.5)

84

A1

M1dep

Alternative method 3 Uses trigonometry to work out *BC* then works out *EH* or uses trigonometry to work out *EH*

(angle *ABC* =)
$$\sin^{-1} \left(\frac{4.2}{7}\right)$$

or (angle *ABC* =) [36.8, 36.9]
or
(angle *BAC* =) $\cos^{-1} \left(\frac{4.2}{7}\right)$

or (angle BAC =) [53.1, 53.2]

oe

full method to work out ABC or BAC

M1

7 × cos (their [36.8, 36.9])

or 7 × sin (their [53.1, 53.2])

or 5.6

or

		6	
ta	an (their [36.8, 3	6.9]) = EH	
		EH	
0	or tan (their [53.1	, 53.2]) = 6	
		oe full method to work out BC	
		or	
		partial method to work out EH	M11.
_			Mildep
6	$3 \div 4.2 \times \text{their } 5.6$	3 or 8	
О	or		
6	6 ÷ tan (their [36.	8, 36.9])	
0	r		
0			
6	$5 \times \tan ($ their [53.	1, 53.2]) ce	
		full method to work out EH	
		may be on diagram as EH or FG	
		implied by 24 as the area of the larger triangle or 60 as the	
		area of the rectangle	M1dep
0) 5 x their 8 x 6 c	or 24	-
0			
а	Ind		
tł	heir 8 × 7.5 or 60)	
		oe eg 0.5 × their 5.6 × 4.2 × (6 ÷ 4.2) ²	
		and their 8 x 7 5	
		or	
		0.5 × their 8 × (7.5 + 13.5)	
			M1dep
8	34		A1
•	dditional Quid		
Д	Additional Guida	ance	
L	Jp to M3 may be	awarded for correct work with no answer, or incorrect	
a	แางพะเ, ะงะเา แ แ	is is seen amongst multiple attempts	
Q7.			

7.15 or 7.25

or

13.55 or 13.65

[5]

	or	
	109.5 or 110.5	B1
	7.25 and 13.65 and 109.5 chosen	B1
	0.5 × their 7.25 × their 13.65 × sin their 109.5 <i>their 7.25 must be</i> [7.2, 7.25] <i>their 13.65 must be</i> [13.6, 13.65] <i>their 109.5 must be</i> [109.5, 110] or 110.5 46.6(4) with correct bounds seen <i>condone 47 with B1B1 scored</i> <i>ft their three bounds within M1 ranges which are not 7.2 or</i>	M1
	13.6 or 110	A1ft
	Additional Guidance	
	Accept 7.249 for 7.25 or 13.649 for 13.65 or 110.49 for 110.5	
	7.25 and 13.65 and 110.5 used and answer 46.3	B1B0M1A1ft
	7.25 and 13.65 and 110 used and answer 46.497 or 46.5	B1B0M1A0ft
	7.2 and 13.6 and 110 used, with or without answer 46(.0)	B0B0M1A0ft
	46.6(4) or 47 with no working	B0B0M0A0
Q	Β.	
	$0.5 \times \pi \times 45$	
	or 0.5 × [141, 141.4]	
	or [70.5, 70.7]	
	or $0.5 \times \pi \times 45 + 75$	

oe eg 22.5 π M1 (0.5 × π × 45 + 75) ÷ 18 or

their [145.5, 145.7] ÷ 18 oe

or [145.5, 145.7]

			M1
	8.08() or 8.09() may be implied by 8.1	41
	8.1	the number of the sector then 2 of	AI
		SC2 3.9	B1ft
	Additional Guid	ance	
	Up to M2 may be if this is seen am	e awarded for correct work, with no or incorrect answer, even ongst multiple attempts, B1ft may also be awarded	
	$\frac{120}{18} = 6.67$ answ	ver 6.7	MOM1A0R1#
	120		MUMINUDIR
	18 = 6.7		M0M1A0B0ft
	$0.5 imes \pi imes 45$ and	70.7 ÷ 18 = 3.93 answer 3.9	M1M1A0B1ft
	SC2 for an answ	er of 3.9 without working is when 75 is not used	
Q9			
	$\frac{2}{2}$		
	3	oe fraction	B1
	Additional Guid	ance	
	$\frac{2}{3} = 0.66$		
	u = 0.00		В0
01	0		
G I	$\frac{25}{20}$ or $\frac{5}{4}$ or 1.2	5	
	or		
	$\frac{20}{25}$ or $\frac{4}{5}$ or 0.8		

[1]

or

	(ratio of lengths is) 20 : 25		
		oe	М1
	$\left(\frac{25}{20}\right)^3$ or $\left(\frac{5}{4}\right)^3$	or 1.25 ³	IVII
	or		
	$\left(\frac{20}{25}\right)^3$ or $\left(\frac{4}{5}\right)^3$	or 0.8 ³	
	(ratio of volume	s is) 20 ³ : 25 ³	
		$\frac{125}{64}$ or 1 953125	
		or	
		64 125 or 0 512	
		125 of 0.512 oe eq $4^3 : 5^3$	
			M1dep
	17.5(0) ÷ 1.25 ³		
	or		
	17.5(0) × 0.8 ³		
		oe	Midan
	0.00		Wildep
	8.96	SC2 34 18	
			A1
	Additional Gui		
	Up to M2 may b answer, even if		
	17.5(0) × 1.25 ³ (or 17.5(0) ÷ 0.8 ³	
			MIMIMUAU
	1.25 ² or 0.8 ²		M1M0M0A0
04	4		
QI	(a) $\sqrt{3}$ r		
	(~)		B1
	(b) x might be	e a whole number	
			B1

[2]

Q1	2.		
	9		
	$\cos 72 = x$	10	
		$\frac{x}{\sin 20} = \frac{18}{\sin 20}$	
		$e eg \sin r/2 \sin 36$	
		x can be any letter or VB or VA or VC or VD	M1
	9		
	<u>5</u> <u>cos72</u>		
	00372	18×sin72	
		oe eg sin 36	
			M1dep
	29.1(2)		
		accept 29 with M1 scored	
			Al
	Additional Guid	lance	
	Up to M2 may b even if this is se	e awarded for correct work with no answer or incorrect answer, en amongst multiple attempts	
01	3		
Q I	Δ Iternative met	hod 1 – finding length AC	
	$\frac{b}{\sin EC} = \frac{24}{\sin 72}$		
	SIN 56 SIN 73	0e	
		any letter	
			M1
	24		
	$\frac{1}{100}$ × sin 56 or [20.8, 20.81]		
		oe	
			M1dep
	0.5 × 24 × their	[20.8, 20.81]	
	x cin 51		
	^ 311 01	oe den on M2	
		51 must come from 180 – 56 – 73	
			M1dep
	[193 9 194 1]		
			A1
	Alternative method 2 – finding length BC		
	$\frac{a}{a = \frac{24}{z = 70}}$	-	
	sin 51 Sin 73	0e	
		anv letter	

[3]

M1

[4]

$\frac{24}{\sin 73} \times \sin 51$		
or [19.5, 19.504]		
	oe	M1dep
0.5 × 24 × their	[19.5, 19.504]	·
× sin 56		
	oe dep on M2	M1dep
[193.9, 194.1]		A1
Alternative met	hod 3 – finding lengths AC and BC	
$\frac{b}{\sin 56} = \frac{24}{\sin 73}$		
or		
$\frac{a}{\sin 51} = \frac{24}{\sin 73}$		
	oe	
	any letter 51 must come from 180 – 56 – 73	M1
24		MII
sin 73 × sin 56	or [20.8, 20.81]	
or		
24		
sin 73 × sin 51	or [19.5, 19.504]	
	0e	M1dep
0.5 × their [20.8,	20.81]	
× their [19.5, 19.	504] × sin 73	
	oe dep on M2 must have correct method for both AC and BC	
	must have confect method for both AC and BC	M1dep
[193.9, 194.1]		Δ 1
		А
14.		

Page 30 of 35

 $d^{2} + d^{2} = 10^{2} \text{ or } 2d^{2} = 100$ oe eg (d =) $\sqrt{50}$

or

$$(2r)^2 + (2r)^2 = 10^2$$
 or $8r^2 = 100$
oe must use same letter for PQ and QR

$$(d =) \sqrt{\frac{100}{2}}$$
 or $(d =) 5\sqrt{2}$
or $(d =) 7.07(1...)$ or $(d =) 7.1$

or

$$(r^2 =) \frac{100}{8}$$
 or $(r =) \frac{5}{2}\sqrt{2}$

Alternative method 2

$$\sin 45 = \frac{d}{10}$$
 or $\cos 45 = \frac{d}{10}$
oe eg sin 45 = $\frac{2r}{10}$ or sin 45 = $\frac{r}{5}$

or (*d* =) 10 × cos 45 or (*d* =)
$$5\sqrt{2}$$

or
$$(d =) 7.07(1...)$$
 or $(d =) 7.1$
oe eg $(2r =) 10 \times \sin 45$
or $(r =) 5 \times \sin 45$ or $(r =) \frac{5\sqrt{2}}{2}$

3.5(3...) or 3.54 or 3.55

Additional Guidance

Alt method 1

If working with diameter, square root is required for 2nd M1 If working with radius, square root is not required for 2nd M1

Alt method 1 $2r^2$ + $2r^2$ = 10² is M0M0A0 unless recovered

Use of sine rule follows Alt method 2

A1

M1dep

A1

M1

M1

Q15.

Alternative method 1 Works out AC and uses it in triangle ABC

 $\cos 37 = \frac{AC}{4}$ $oe \ eg \ sin \ 53 = \frac{AC}{4}$ $allow \ [0.798, \ 0.8] \ for \ cos \ 37 \ or \ sin \ 53$ $(AC =) \ 4 \times \cos 37$

or (AC =) [3.19, 3.2] oe eg (AC =) 4 × sin 53 allow [0.798, 0.8] for cos 37 or sin 53 may be seen on diagram

Midep

$$\sin x = \frac{\text{their [3.19, 3.2]}}{9.3}$$
or (x =) sin⁻¹ [0.34, 0.3441]

$$oe \ eg \ cos \ x = \frac{\sqrt{9.3^2 - \text{their [3.19, 3.2]}^2}}{9.3}$$
or (x =) 90 - cos⁻¹ [0.34, 0.3441]
Midep

[19.87, 20.13]

Alternative method 2 Works out angle ADC and uses it in triangle ABD

(angle
$$ADC = 90 - 37$$

or (angle $ADC = 53$
 $oe eg (angle ADC = 180 - 90 - 37)$
may be seen on diagram
MI
 $\frac{\sin x}{4} = \frac{\sin (90 - 37)}{9.3}$
 $oe eg \frac{4}{\sin x} = \frac{9.3}{\sin 53}$
MIdep
(sin $x = \frac{\sin (90 - 37)}{9.3} \times 4$
or ($x = 1 \sin^{-1} [0.34, 0.3441]$
 oe
MIdep

[19.87, 20.13]

M1

A1

A1

Additional Guidance

Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts

Allow any unambiguous notation for angles eg allow *B* for *x*

Alt 1 Allow any unambiguous notation for AC eg y

(condone *x* if clearly referring to *AC*)

Alt 1 1st M1 must be an equation where AC is the only variable

 $eg AC^2 + (4 \sin 37)^2 = 4^2$

Alt 1 A calculation that leads to AC scores M1M1

eg
$$\sqrt{4^2 - (4\sin 37)^2}$$
 MIMI

Alt 1 3rd M1 must have sin x (or $\cos x$) as the subject or be a calculation that leads to x

M0

M1

[4]

Q16.

(a)	$35^2 + 65^2 - 2 \times 35 \times 65 \times \cos 100$
	oe valid trigonometric method used
	must be correct

$$\sqrt{35^2 + 65^2 - 2 \times 35 \times 65 \times \cos 100}$$

= 78.9(...)

or

$$\sqrt{6240.(0992...)} = 78.9(...)$$

CA = 78.99429858

A1

M0A0

M1

Additional Guidance

Using sine rule with CA = 79 to obtain AB or BC	
---	--

(b) Alternative method 1 – sine rule to find ACB

$$\frac{\sin ACB}{35} = \frac{\sin 100}{79}$$
oe
79 may be 78.9(...)

M1

$\sin ACB = 35 \times \frac{\sin 100}{79}$	
or sin <i>ACB</i> = 35 × 0.0124	
or sin <i>ACB</i> = 0.436 oe	Miden
<i>ACB</i> = [25.8, 26]	A1
234.() ft 360 – 100 – their ACB with M2 scored	Alft
Alternative method 2 – cosine rule to find ACB	
35 ² = 79 ² + 65 ² – 2 × 79 × 65 × cos ACB oe 79 may be 78.9()	M1
$\cos ACB = \frac{79^2 + 65^2 - 35^2}{2 \times 79 \times 65}$ 9241	
or $\cos ACB = 10270$	
or cos <i>ACB</i> = 0.899	M1den
<i>ACB</i> = [25.8, 26]	A1
234.() ft 360 – 100 – their ACB with M2 scored	Alft
Alternative method 3 – sine rule to find BAC	
$\frac{\sin ACB}{35} = \frac{\sin 100}{79}$ oe 79 may be 78.9()	M1
$\sin BAC = 65 \times \frac{\sin 100}{79}$	
or sin <i>BAC</i> = 65 × 0.0124	
or sin <i>BAC</i> = 0.81(0) oe	M1dep

	234.()		
		ft their BAC + 180 with M2 scored	A1ft
	Alternative	e method 4 – cosine rule to find BAC	
	$65^2 = 79^2 +$	$-35^2 - 2 \times 79 \times 35 \times \cos BAC$	
		oe 79 may be 78.9()	
			M1
	cos BAC =	$\frac{79^2 + 65^2 - 35^2}{2 \times 79 \times 65}$	
	or oop BAC	9241	
	OF COS BAC		
	or cos BAC	C = 0.586 M1	ldep
	<i>BAC</i> = [54.	1, 54.3]	A1
	234.()		
		ft their BAC + 180 with M2 scored	A1ft
	Additional	l Guidance	
	<i>CA</i> = 79 is part (a).	given in part (a) or $78.9()$ can be used. There is no follow through from the second sec	om
	Accept any	notation for the angle eg sin <i>x</i> or sin <i>C</i> for angle <i>ACB</i>	
	Correct wo	ork for part (b) seen in part (a) may be awarded method marks in part (b))
7			
105			
		may be seen on the diagram	B1
12 ² +	28 ² – 2 × 1	2 × 28 × cos their 105	
or			
[1101	l, 1102]		
		oe eg 144 + 784 – 672 cos their 105	
		or $928 - 6/2 \cos their 105$ their 105 cannot be 0 or 90	
		their 105 must be < 180	
			M1

A1

[6]

Q17.

Additional Guidance

Follow through answers must be rounded to 2 sf or better