
A(n)
(Re-)Introduction to Test-Driven

Development

We’re going to begin at the beginning. Some of you will have the
impulse to skip this document.

Please don’t.

Overview

I ask you to do the following:

1. Read this entire article. I’ve shortened it significantly since the
first time I wrote it.
2. Do the exercises.
3. Read some of the references.
4. Ask questions in the comment thread for this lesson.

Let’s Take It From the Top

In the beginning, we had this:

This was the first authoritative diagram of the emerging discipline
of test-driven development. Not much has changed
in the decades since
then, except that TDD has narrowed its focus to the programmer’s
experience of incrementally
delivering features while guiding
the design to evolve. This diagram describes what we now think
of as the heart of
Extreme
Programming.

You’ll notice something missing from this diagram: the word “design”.
We mostly assumed that design happened while
writing code. It happened
continuously. That’s the focus point of this course: TDD as a
way to do incremental,
iterative, evolutionary design. Not only
does the programmer design the system incrementally, but they gradually
become increasingly confident in deferring design decisions until they
absolutely have to be made. This makes the
experience of delivering
features significantly more pleasant for everyone.

So how does one do TDD?

The World’s Simplest
Instructions for TDD

I didn’t invent them. Ward Cunningham codified them in his wiki.

http://www.extremeprogramming.org/
https://wiki.c2.com/?TestDrivenDevelopment

g

Where you code, alternate these activities:
1. add a test, get it to fail, and write code to pass the test
2. remove duplication

At its core, this is enough. Everything else we discuss in this
course is a refinement of these two instructions. In fact, if
you follow
these two instructions diligently and pay attention to what happens to
you when you do, then you don’t
need this course.

Too late! You’re already here.

As it turns out, the truly interesting and valuable parts of
TDD lie in the various consequences of following these two
instructions. And those interesting and valuable parts are not entirely
obvious to everyone all the time. And it depends
how you practise.

Good news: in this course, you’ll see examples of how to practise,
what to practise, and what it will mean. If you need
more, join The jbrains Experience to
receive personal guidance on how to navigate the details hidden within
these two
instructions.

In particular, as you progress through this course, you might notice
some of the following:

Increased confidence that your code behaves the way you
intended.
Lower cost of failure due to taking smaller steps.
Changing your perspective from “I just need to fix a few bugs” to “I
just need to add one or two more working
paths”.
Writing less code while delivering more features.
Constantly cleaning up little messes, but rarely being distracted
with big messes.
Changing code confidently, gradually, and with less stress.
Changing code more aggressively.
Making steadier progress.

You won’t notice all these things right away, but with continued
practice, you’ll probably notice most of them
eventually. You might even
come to take some of them for granted!

Start!

Before you write your first failing test, you need some tools. Not
much, but some.

To start, you’ll need to be able to run one failing test. Next, if
you can rerun all the tests with a single command, that’s
better. It’s
even better if you can rerun all the tests every time you save a change
to your code.

You’ll also want to be able to commit your changes to version control
any time the tests all pass. As of 2021, most
people use
git, but any lightweight (fast!) version control system
would work very well: darcs, bzr,
hg, whatever
makes you happy.

Example Tools

When I work in Java, I tend to use these tools:

IntelliJ IDEA

JUnit
git + gitlab or github

https://wiki.c2.com/?TestDrivenDevelopment
https://experience.jbrains.ca/

a pen, a stack of index cards, and maybe a notebook

When I work in Purescript, I tend to use these tools:

kakoune
Purescript-spec
https://pursuit.purescript.org/ because I always need to look up
library functions
git + gitlab or github
a pen, a stack of index cards, and maybe a notebook

And recently, at least in late 2021, I have grown fond of Zora for
writing and running tests in (plain) Javascript. (Of
course, the tools
in Javascript change every 18 minutes, so this will be out of date by
the time you read it.) And I think
rspec remains the standard for
Ruby.

You have enough tools if you can create a new project, write a
failing test, then run it and watch it fail. Take a few
moments now and
set that up in your favorite programming environment.

Exercise: Add Fractions

As a warm up, trying adding some fractions. With this exercise,
you’ll start to establish the habit of writing the test
first. If you don’t know how to add fractions, then search the
web for an explanation. Wikpedia will probably give you
everything you
need. You’ll build a library function that adds fractions as exact
values—no converting to floating-point
numbers! For example: 1/8 + 3/8 =
1/2.

And that’s your first test!

A Little BDD: Talking in
Examples

When discussing a feature, product directors (also known as product
owners, although I don’t think they truly own the
product) and
programmers need to be able to clarify what they expect from the system.
I encourage them to talk in
examples. Examples clarify.
They are concrete. And they can become automated tests, if you want.

That’s why I started with an example: 1/8 + 3/8 = 1/2. This is a
complete example, because it describes inputs to an
action and the
expected result. You can turn this into an automated test in your
favorite programming language.

// In Javascript, using Zora

const fraction = (numerator, denominator) => ...;

test("a simple example", (t) =>

 t.eq(fraction(1, 8).plus(fraction(3, 8)), fraction(1, 2));

);

Automating the test is by far the least important part of this work.
What matters is articulating the example so that
everyone agrees
on what we want the system to do.

Let me jump to the end. Here are some constraints and hints for
adding fractions:

Exact values only; no converting to floating-point numbers. 1/4, not
0.25.
Make sure that equal values are equal: 1/2 = 4/8 = 89/178 =
-56/-112. (And don’t forget hashCode()!)

Express fractions as improper and not mixed. That
means 7/2 and not “3 and 1/2”.

That’s it. It’s certainly enough to get started.

Do This Now!

Ship a module that adds fractions exactly. If you want to go further
than that, do the other three basic arithmetic
operations: subtract,
multiply, divide. Or write a parser for a calculator so that the string
"1/4 + 1/2" returns the
value 3/4.

“Ship”?

Yes. Ship a module that I could download and use in my application.
Do whatever the means for your programming
environment: package a JAR
file, build an assembly, publish a gem, register an npm package…
whatever it takes. I
should be able to include, import, or require your
library and use it to add fractions.

In fact, maybe even start by shipping an empty
package/library/whatever, then teach it to add fractions.

Once you can ship and empty package, make a test list.

Test List

Your mind is probably racing with ideas of tests
that you will need to write. Good! Write them down. I tend to write
them
down quickly onto an index card. It’s enough to write just enough words
or numbers or symbols to remind you of
the test you need to write.
Sometimes you’ll write the exact test (“1/2 + 1/2 = 1”) and sometimes
you’ll write a few
words (“reject 0 denominator”). Whatever is rushing
to your head, write it down.

Your goal, when writing a test list, is to get ideas out of
your head quickly, so that afterwards you can decide where to
start, then write a failing test. That’s it.

You’re not building a perfect plan. You’re not deciding in advance
all the tests you’ll need. You’re getting ideas out of
your head so that
you can focus on one test at a time. That’s it.

Some Hints

I tend to work in stages when I write my test list:

1. Get ideas out of my head.
2. Work towards the simplest test possible.
3. Add examples of what can go wrong.

Try it!

For example, I thought of 1/8 + 3/8 = 1/2, but then simpler than that
would be 1/5 + 2/5 = 3/5, because the
denominators are the same, but the
most natural way to compute the answer already produces 3/5 without
worrying
about the fact that 1/2 = 4/8. It’s a simpler test, because it
requires less work to make it pass. I can simply compute 1 +
2 = 3, copy
the 5, and get 3/5.

After I get ideas out of my head, I look for simpler tests
until I find the simplest possible test. And usually, I start
writing code with the simplest possible test. (What’s the simplest
possible test for adding fractions?!)

Version Control

When you write code, do this:

1. Write a test, run it, and watch it fail.
2. Make the test pass and keep the previous tests
passing.
3 C it h t i t l

3. Commit your changes to version control.
4. Repeat until there are no more failing tests to think about.

By committing your changes to version control, you have the
world’s best undo button. If you make a mistake, you can
easily
roll back to the last time everything worked. You are always free to
commit changes when all the tests pass. I
recommend against
committing code when the tests fail. I would like to have the confidence
that I can check out any
version of the code base and it will
work. It might not do everything the customer asked for (yet),
but it will work.

You don’t have to do this, but it helps.

Quick Summary

1. Follow the steps of TDD strictly and diligently. Go slowly. Pay
attention to what’s happening. Pay attention to
how you feel
about what’s happening. When you feel something strange, ask
for help. (This is where the The
jbrains Experience is especially valuable.)

2. Start with a Test List, then pick one failing test and start
following the steps. Get your ideas out of your head
first.
Don’t weigh yourself down with distracting thoughts
about what you might need to do next. Write it
down, get it out of your
head, and focus on one thing.

3. When you can’t think of any more failing tests, you’re done.
Stop. There is nothing more to do, at least for
now.

One More Thing

Some programmers have trouble managing their time. If this is you,
then consider working in short episodes of 25-40
minutes each. Set a
timer, start working, let yourself focus, and then when the timer
sounds, stop. Write down
whatever is in your head, including which test
is the next one to make pass, then walk away from the
keyboard. Pour
some coffee or tea or whatever will make you
feel better. Come back and continue when you’re ready. After practising
this for several months, I noticed that I could “get into the flow” much
more quickly than I used to be able to do. Maybe
you’ll experience the
same.

Go!

Add some fractions! Enjoy! If you’re also in the The jbrains Experience, then
share your experiences and impressions in
Chat and in the Forum whenever
you like. Good luck and have fun.

https://experience.jbrains.ca/
https://experience.jbrains.ca/

