Circuit RLC forcé

1. Valeurs maximales et valeurs efficaces

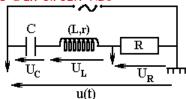
$$U_{eff} = \frac{U_{max}}{\sqrt{2}} \qquad I_{eff} = \frac{I_{max}}{\sqrt{2}}$$

Les valeurs maximales I_m et U_m se déduisent des courbes (...A/div ou ...V/div)

Les valeurs efficaces I_{eff} et U_{eff} se déduisent des appareils de mesures (Ampère mètre et Voltmètre)

2. Impédance Z U=Z.I

La résistance électrique d'un **CONDUCTEUR** ohmique est la propriété de ce conducteur à s'opposer à la circulation du courant électrique.


L'impédance électrique d'un **CIRCUIT** est la propriété de ce circuit à s'opposer à la circulation du courant électrique **ALTERNATIF**.

3. Loi d'OHM:

La tension aux bornes d'une composante électronique et l'intensité de courant qui la traverse sont proportionnelle

$$Z = \frac{U}{I} = \frac{U_{eff}}{I_{eff}} = \frac{U_{max}}{I_{max}}$$

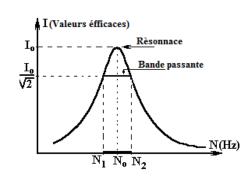
4. Oscillations électriques forcées d'un circuit RLC :

- Au moyen d'un oscilloscope on peut visualiser $U_R(t)$ et u(t)
- La tension $U_R(t)$ et l'intensité i(t) sont proportionnelle $U_R(t)=R.i(t)$

$$\begin{aligned} i(t) &= I_m.cos(\omega.t) \\ u(t) &= U_m.cos(\omega.t+\phi) \end{aligned}$$

<u>NB:</u>

- En changeant l'emplacement de la terre on change ainsi la tension observée sur l'oscilloscope
- Toutes les tensions observées sont représentées par des flèches dont l'origine coïncide avec la masse


5. La bande passante :

La bande passante [N₁, N₂] est le domaine (ou l'intervalle) des fréquences ou la réponse du circuit est satisfaisante et $I \geq \frac{I_0}{2}$

$$\Delta N = \frac{\Delta \omega}{2\pi} = \frac{1}{2\pi} \frac{R}{L}$$

R est la résistance équivalente

Aux bornes de la bande passante $I=\frac{I_0}{\sqrt{2}}$, $N=N_1$ et $N=N_2$ N_1 et N_2 les fréquences aux bornes de la bande passante

Conclusion:

On a U = ZI, $U = RI_0$ et aux extrémités de la bande passante on a : $I = \frac{I_0}{\sqrt{2}}$ et $\frac{U}{Z} = \frac{U}{R\sqrt{2}}$ donc $Z = R.\sqrt{2}$

6. Facteur de qualité Q (coefficient de surtension) :

$$Q = \frac{N_0}{\Delta N} = \frac{\omega_0}{\Delta \omega} = \frac{L \cdot \omega_0}{R} = \frac{1}{R \cdot C \cdot \omega_0} = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

7. Puissance instantanée :

$$P_i = u(t).i(t) = U.I.[\cos(\varphi) + \cos(2.\omega.t + \varphi)]$$

U et I respectivement la tension et l'intensité efficace

Puissance moyenne reçue pendant une période T P Puissance apparente $P = U.I.cos(\phi)$ Puissance apparente S = U.I Coefficient de frottement $tan(\phi)$