AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you’re ready to move onto past papers for this topic.

APPRENTICE

Find \(\int \left(2x^5 - \frac{1}{4x^3} - 5 \right) \, dx \) giving each term in its simplest form.

EXPERT

a. Find \(\int \left(\frac{36}{x^2} + ax \right) \, dx \), where \(a \) is a constant.

b. Hence, given that \(\int_1^3 \left(\frac{36}{x^2} + ax \right) \, dx = 16 \), find the value of the constant \(a \).

MASTER

A curve with equation \(y = f(x) \) passes through the point \((4,9)\).

Given that \(f'(x) = \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2, x > 0 \)

a. find \(f(x) \), giving each term in its simplest form.

Point \(P \) lies on the curve.
The normal to the curve at \(P \) is parallel to the line \(2y + x = 0 \)

b. Find the \(x \) coordinate of \(P \).
AS#39 AREAS UNDER CURVES

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you’re ready to move onto past papers for this topic.

APPRENTICE

The region bounded by the curve \(y = 7x + 6 - \frac{1}{x^2} \), the x-axis and the lines \(x = 1 \) and \(x = 2 \) lies above the x-axis. Show that the area of the region is 16.

EXPERT

The cubic polynomial \(f(x) \) is defined by \(f(x) = x^3 - 19x + 30 \).

a. Given that \(x = 2 \) is a root of the equation \(f(x) = 0 \), express \(f(x) \) as a product of 3 linear factors.

b. Use integration to find the exact value of \(\int_{-5}^{3} f(x) \, dx \).

c. Explain with the aid of a sketch why the answer in part (b) does not give the area enclosed by the curve \(y = f(x) \) and the x-axis for \(-5 \leq x \leq 3\).

MASTER

The Figure shows a sketch of part of the curve with equation

\[y = 4x^3 + 9x^2 - 30x - 8, \quad -0.5 \leq x \leq 2.2 \]

The curve has a turning point at the point \(A \).

a. Using calculus, show that the x coordinate of \(A \) is 1

The curve crosses the x-axis at the points \(B (2,0) \) and \(C \left(-\frac{1}{4}, 0 \right) \).

The finite region \(R \), shown shaded in Figure 1, is bounded by the curve, the line \(AB \), and the x-axis.

b. Use integration to find the area of the finite region \(R \), giving your answer to 2 decimal places.

© Tailored Tutors 2020