

GFBTF – GIT Difftool Activity | Page 1 of 7 https://www.majorguidancesolutions.com

GIT: From Beginner to
Fearless

 GIT Default Difftool Activity:
Setting our difftool to VSCode

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Difftool Activity | Page 2 of 7 https://www.majorguidancesolutions.com

Introduction
Although BASH allows us to see differences in the terminal, working in the command line can be a bit tedious. This is

especially true when trying to discern the differences in files across commits in the command line. To make viewing

differences more attractive, a very nice option is to use Visual Studio Code as the difftool.

Once VSCode is installed and set as the difftool, we’ll be able to easily compare the differences between a couple of commits,

or the difference between a commit and our working branch.

This activity assumes you have previously completed the activity “Setting VSCode as our default editor” If you have not done

that activity, you should complete it before starting this activity.

Let’s gets started!

GFBTF – GIT Difftool Activity | Page 3 of 7 https://www.majorguidancesolutions.com

GFBTF: Git Difftool Activity

Step 1: Go to any repository
a) Make sure you are on any working repository. It doesn’t even have to

be up to date. We are not going to be affecting anything.
Our goal is to get our global config to have three entries for difftool:

 Additionally, after completion of this activity, if we were to look at our file with
 our editor, we will see entries like this:

 On the working repository
 [git config --global --list]
 //I’ve removed it for now to do this activity:

b) Set and verify the difftool variable in our global config
[git config --global diff.tool code]

[git config --global --get diff.tool]

Notes

GFBTF – GIT Difftool Activity | Page 4 of 7 https://www.majorguidancesolutions.com

c) Set the actual execution command for code as the difftool, and verify:
[git config --global difftool.code.cmd ‘code --wait --diff
$LOCAL $REMOTE’]

[git config --global --get difftool.code.cmd]

d) Optional, turn off the annoying prompt for every diff to open:
[git config –global difftool.prompt false]

Step 3: Review the actual file entries
a) Open the file and find the entries

[git config --global –e]

b) Optional – Move the entries in the file.
I don’t want these on the bottom. I’m going to move them to be between
credential manager and merge tool {don’t worry if you don’t have a mergetool
set yet…that’s another activity…}

GFBTF – GIT Difftool Activity | Page 5 of 7 https://www.majorguidancesolutions.com

The order makes absolutely no difference, it is up to you what you want it to be.
Just remember that this order determines what you see on --list from global
config.

[git config --global --list]

Step 4: Make sure the difftool works!
a) Need to be on a repository, change any file

Just open any tracked file and make changes:
[git status]

 [git difftool head]

It’s working!

b) Show modified and staged changes in difftool
[git add .]

[code info.txt] or [vim info.txt]
[git status]

GFBTF – GIT Difftool Activity | Page 6 of 7 https://www.majorguidancesolutions.com

 [git difftool HEAD]

 [git difftool --cached]

c) Here we can either just commit the changes or reset back to where we
were.
If you are on an important repo that you have current changes you want, don’t
run this command, instead, just check in your changes or undo the unwanted
changes manually. If you are in a playground, then run the following
[git reset --hard head]

[we’ll cover resetting later in the course, but this just reverted the repository to
the state which it was in at the last commit]

This concludes our GIT difftool Activity.

GFBTF – GIT Difftool Activity | Page 7 of 7 https://www.majorguidancesolutions.com

Closing Thoughts
Setting VSCode [or another tool] to use for the difftool is very powerful and
effective. If you don’t mind seeing the changes in the console, you don’t need
to do this. Also note even with the difftool you can still use the console by just
using the default ‘diff’ command rather than the difftool command we setup in
this activity.

Also, as an FYI, once you have this setup, it will override default settings for
your machine’s difftool. If you are using Visual Studio and want to continue to
use that tool for your difftool, then you will just want to unset these global
variables to revert back to Visual Studio’s default diff tool.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

