

GFBTF – GIT Rebasing Activity | Page 1 of 16 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Rebasing Activity:
Moving commits in history

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Rebasing Activity | Page 2 of 16 https://www.majorguidancesolutions.com

Introduction
Rebasing is one of the most interesting commands we can do when working with GIT. To rebase or not to rebase – that is the

question. Much like the ‘tabs vs. spaces’ or ‘coke vs. pepsi’ debates, there are strong camps on both sides of the pulling with

and pulling without rebase camps. Just do a quick google search and you’ll find many passionate pleas to ‘always rebase when

you pull’ or ‘never rebase your public branch.’

So what does a rebase really do, and why is it something we would want to use? To put it quite simply, rebasing is nothing

more than changing the parent commit of another commit. To actually describe it would sound something more like ‘moving

the base commit of a chain of commits so that it appears to have been created in a linear timeline from the most recent

commit on the public branch.

A quick look at a rebase shows one common rebasing scenario [from http://onlywei.github.io/explain-git-with-d3/#rebase]

Note that commit f5b32c8 currently has parent e137e9b. When we do a simple rebase, the parent changes to bb92e0e – but

we also get a new commit id [this is why rebasing is somewhat dangerous – but nothing to fear – more on that later].

[git rebase master]

http://onlywei.github.io/explain-git-with-d3/#rebase

GFBTF – GIT Rebasing Activity | Page 3 of 16 https://www.majorguidancesolutions.com

After rebasing, we have a linear commit chain, and it appears that commit 5efe33a started AFTER bb92e0e. In fact, the

commit started after e137e9b, but we’ve changed the history timeline.

We have to be careful -> If other developers are relying on our history to show the commit chain as it was, committing this

rebase to public would be a disaster.

Once we have the rebase done, however, we can commit the change into master as a regular merge

[git checkout master]

[git merge dev]

And now everyone can be happy with a history that is linear and public. In this activity, we’re going to take a deeper dive into

rebasing so we can master the idea of rebasing a commit or commit chain.

Let’s gets started!

GFBTF – GIT Rebasing Activity | Page 4 of 16 https://www.majorguidancesolutions.com

GFBTF: Git Rebasing with conflict resolution Activity

Step 1: Start with any public repository
a) Create a public branch, get it local, make a couple of changes

After creating the public branch, pull it to local, make a couple of changes, and
commit to LOCAL HEAD, but don’t push to REMOTE
[fork & clone a simple repo – or create your own with a simple text file]
[git clone <new_repo_url>]

[git fetch origin]
[git pull origin master] //always make sure to be up-to-date

[git checkout -b <branchname>]

…make some changes…
[code info.txt]

[git commit –am “changes on my local before rebase”]

Notes

GFBTF – GIT Rebasing Activity | Page 5 of 16 https://www.majorguidancesolutions.com

…make more changes…

[git commit –am “more changes on my local branch]

b) Simulate changes by another developer at the repo
Put in a couple of changes on a branch, the merge it into master
Create the branch

Modify the info.txt file [we are not avoiding conflict]

GFBTF – GIT Rebasing Activity | Page 6 of 16 https://www.majorguidancesolutions.com

Repeat to create a second commit, then create pull request with the two
commits:

GFBTF – GIT Rebasing Activity | Page 7 of 16 https://www.majorguidancesolutions.com

Merge.

Delete branch

c) Get the latest locally, then rebase locally. Solve the merge conflict on
rebase.
First, we need to switch back to master, fetch and pull:

Here we see that the origin master has moved ahead three commits – the two
for the ‘another developer branch’ and the one for the merge of the pull
request.

GFBTF – GIT Rebasing Activity | Page 8 of 16 https://www.majorguidancesolutions.com

d) Rebase the changes from our branch onto the master
Switch back to our target branch, and rebase master. We’ll need to resolve the
conflicts with our merge tool as well:

First, make note of our local commit IDs [ee9bc74 and 2259304]

[git checkout rebasing-demo-1]

[git rebase master]

GFBTF – GIT Rebasing Activity | Page 9 of 16 https://www.majorguidancesolutions.com

[git mergetool]

Accept both changes…

Note in the command line we have to rebase and resolve both commits. So this
means we’ll see the resolution one more time. [you can see REBASE 1/2 in the
command text:

[git rebase --continue]

GFBTF – GIT Rebasing Activity | Page 10 of 16 https://www.majorguidancesolutions.com

Make a note. We now have a new commit id that is the commit which resolved
that first conflict (1 of 2) in the rebase activity. This is going to be our “new”
history. This is why it is so critical to not rebase on a public branch. So far no
one is dependent on our two commits [ee9… and 22593…] What do you think
will happen on the next rebase merge resolution?

[git mergetool] //for our second commit.

 Compare changes:

GFBTF – GIT Rebasing Activity | Page 11 of 16 https://www.majorguidancesolutions.com

 We need to keep the two lines that are getting removed and we’d be ok, so
 Accept both changes, and delete the duplicated Change #1 line:

 Note the commit id’s have changed! Now that we’ve resolved both, we have
 two new commits. What happened to ee9bc74 and 2259304? They are kind of
 grayed out – because they are now in an ‘unreachable’ state. And that’s ok.

 Our current changes are in two new commits [22e2dd3 and a876a65]. So now
 we just need to clean up the repository and push to master.

e) Clean up the unreachable commits
To clean up the commits we just need to make sure we have the reflog set to
expire our commits and then run the garbage collector. I have these commands
aliased, but in case you don’t and you want to run these [or want the commands
for later reference], here they are:
[git reflog expire –expire-unreachable=now –all]
And
[git gc –prune=now]

GFBTF – GIT Rebasing Activity | Page 12 of 16 https://www.majorguidancesolutions.com

And here are my aliases in my global config [check out the aliasing activity for
more info about aliasing]:

f) Push our changes, pull request, and merge to master
[git push –u origin rebasing-demo-1]

 Create a pull request and merge our changes at GitHub

GFBTF – GIT Rebasing Activity | Page 13 of 16 https://www.majorguidancesolutions.com

Now our master has everything and our feature branch is deleted so we need to
git local up-to-date and cleaned up

GFBTF – GIT Rebasing Activity | Page 14 of 16 https://www.majorguidancesolutions.com

g) Get up to date on local master branch and delete our feature branch
[git checkout master]
[git fetch origin]
[git pull origin master]

 [note: I have my local set to prune on every fetch, so my local has pruned
 origin/rebasing-demo-1. If you are doing this and see that branch, run [git fetch
 origin –prune] and it should go away if you have deleted the branch at REMOTE]

 Now that master is up to date, the last thing I need to do is get rid of my feature
 branch.
 [git branch –d rebasing-demo-1]

GFBTF – GIT Rebasing Activity | Page 15 of 16 https://www.majorguidancesolutions.com

 And that is how we do a rebasing operation with conflict resolutions to move
 our feature branch commits to have a new parent from an updated history after
 other developers have made changes.

GFBTF – GIT Rebasing Activity | Page 16 of 16 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity we worked through a common rebasing scenario, where another
developer had made changes on the repository while we were “in progress.”
The ability to easily rebase makes GIT fairly flexible as to how you want to
create merge resolutions. Unlike the traditional route, using the rebase allows
us to “change” the order of commits in history. So what had started out as
being a couple of commits behind the actual history appears to happen directly
after the commits.

In the end, you may never actually need to rebase your work, depending on
whether or not you care if your work appears as a straight line with no
branching or if you don’t mind a few branches with reconnects.

Other scenarios for rebasing do exist. For example, I once had to port a Visual
Studio Team System history into GitHub. If I didn’t want to keep history, it
wouldn’t have mattered, of course. However, in order to preserve history, I
actually was able to create the repo and then rebase master on top of the
original history (I know, I said never to rebase master…to somewhat quote a
line from one of my favorite movies “this is where you find out how often
[Gorman] does things he says not to do”).

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

