

GFBTF – GIT Branching Activity | Page 1 of 9 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Branching Activity:
A Single developer branching exercise

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Branching Activity | Page 2 of 9 https://www.majorguidancesolutions.com

Introduction
Branches are one of the key functions of working with GIT. While a single developer could work on a repository without ever

branching, using branches is a critical way to make sure that it’s very easy to protect your work and have the flexibility to

make changes without worrying about messing up your repository.

In this activity, we’re going to learn about using branches. By creating and using a branch, we have the opportunity to start

working, save our changes with a commit, and easily switch back to the previous version if need be. Additionally, after we

have our changes completed, we can then merge our changes into our main master branch.

This activity will NOT complete the circuit with a merge (we’ll look at that in the next activity to finish this up). However, we’ll

take the time to learn about creating and working with branches, which will set us up for the next steps.

Let’s get started!

GFBTF – GIT Branching Activity | Page 3 of 9 https://www.majorguidancesolutions.com

Git Branching Activity

Step 1: Creating a new branch
a) Make sure you are in any repository, and that you are on master and

up-to-date. For this activity, we’ll be using our default web, but you
can use any repository.
Always remember to run the following commands from the master branch
before starting new work:

[git checkout master]
[git fetch origin]

[git pull origin master]

b) Create a new feature branch
You might think the command to create a new branch would include the word
“branch” in it, however, that would be incorrect. Instead, if we want to create a
new branch, we use the checkout command with a flag ‘-b’.

[git checkout -b My-Feature-Branch]

Note that not only did I create the new branch, but I also checked it out, and
‘switched’ to the new branch.

Step 2: Working on the branches
a) Work on your feature branch

Create some changes on your branch using VSCode or VIM in the details.html
file:
[code details.html]

Notes

GFBTF – GIT Branching Activity | Page 4 of 9 https://www.majorguidancesolutions.com

Here I’m simply adding an h2 to the page:

Save it and close your editor.
[git status -s]

So I have changes. I want to add them. Switching branches with changes will
keep the changes as we move to the new branch. This is important because if
you forgot to move off master, now is the time to do it. You would check out
the new branch and your changes would move with your checkout. Then
commit on the branch:
[git commit -am ‘changes to details’]

View our history:

[git log --oneline]

b) Switch branches
Next we’re going to switch back to the master branch. By doing this, we’ll see
our change go away, as well as our commit:
[git checkout master]

[git status -s]

[git log --oneline]

GFBTF – GIT Branching Activity | Page 5 of 9 https://www.majorguidancesolutions.com

NOTE: the commit 7b6a932 is GONE!
This is EXPECTED. Our branch is “1 commit ahead of master” and that commit
contains our change to details.

Open the file to see the change is missing:
[code details.html]

[don’t make any changes, and don’t close it. Or close it and then re-open after
switching branches].

We see that working on a branch allows us to keep our “master” branch
protected in case some of the changes we are making go horribly wrong!

c) Switch back to feature branch
[git checkout My-Feature-Branch]

IF you left code open, look at it now!
If you didn’t leave it open, type [code details.html]

Our changes are back!

Also, check the log:

Our commit is back, just like we expected.

GFBTF – GIT Branching Activity | Page 6 of 9 https://www.majorguidancesolutions.com

 Show the changes [note, you’ll need to replace the commit id to what you see in
 your log report]:

[git show <some-commit-id>]

Leave this branch intact. We’re going to use this in the next activity (merging).

Step 3: Other [git branch] commands of note
a) Create a branch locally to delete later.

Switch to master – this hurts nothing, no fear here:
[git checkout master]

Make sure you left the other branch alone. Switch to a new branch
[git checkout -b <some-branch-name-here>]

As an FYI – if you forget the –b, you’ll get a ‘pathspec’ error:
[git checkout no-such-branch]

b) Listing branches
Now switch back to master
[git checkout master]

GFBTF – GIT Branching Activity | Page 7 of 9 https://www.majorguidancesolutions.com

List your branches
[git branch]

 List all the branches. Use the -a flag to list all branches, including branches at
 remote that we know about.
 [git branch -a]

c) Delete the local branch
NOTE: you should NOT be on the branch you want to delete, and the branch to
delete needs to not have committed changes at this point. Note: DO NOT
DELETE the branch: My-Feature-Branch

[git branch -d another-branch]

[git branch]

d) Force delete a local branch
Switch back to your feature branch that is one commit ahead of master
[git checkout My-Feature-Branch]

Now create a new branch from here [it will be like My-Feature-Branch, with a
commit and changes – so anytime you need to experiment from any branch, you
can always just branch off of the branch!]
[git checkout -b my-feature-branch-experiment]

GFBTF – GIT Branching Activity | Page 8 of 9 https://www.majorguidancesolutions.com

[git status]

[git log --oneline]

Note: the branch is on the same commit as the parent it was created from. If
you wanted, you could do another commit and log to see the current feature
branch move ahead another commit.

Switch back to master:
[git checkout master]

And delete the experiment branch:
[git branch -d my-feature-branch-experiment]

What? Why did that happen?
Because the commit history shows that this branch is one ahead of master, just
like the other branch would be, and GIT gives you a protective layer – an “are
you sure you want to do this” type-of warning!

Now, we know we do want to do this, so we’ll force the issue by changing the -d
to -D. Yes, seriously, all it takes to force the issue is making a small d into a
capital D.
[git branch –D my-feature-branch-experiment]

[git branch -a]

 This concludes our GIT: Branching activity

GFBTF – GIT Branching Activity | Page 9 of 9 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity, we have briefly seen how to work with branches. We noticed
that branches are lightweight and easy to checkout, and our changes definitely
live within the branches we commit to.

We got to see what it takes to create local branches, change some things, make
a commit, and then switch branches to see the commit go away, followed by
switching back to see it come back.

We also learned about deleting branches with no changes, and then we
finished up by seeing how to delete a branch that had unmerged changes.
During that last part, we also saw how the location branch we are in when
creating a branch is critical. For this reason, most of the time you’ll want to
create branches from master. However, if you want to experiment, you can
always create a branch from any location, and nest them infinitely, if you so
desire.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

