

GFBTF – GIT Tagging Activity | Page 1 of 13 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Tagging Activity:
Using tags to mark releases and specific commits

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Tagging Activity | Page 2 of 13 https://www.majorguidancesolutions.com

Introduction
Tags are a great way to place an important milestone on a specific commit in a repository. Often, a release is marked with a

tag. Additionally, tags might denote a specific feature implementation or even something like a bug fix.

There are two types of tags: Lightweight and Annotated. The major difference is in how they are stored behind the scenes

and what can be displayed from the tag details. Both types are bookmarks to a specific commit, but the annotated tag lists

information about the commit and committer, while the lightweight tag is more of just a pointer to a specific comit.

In this activity, we’ll take a look at working with tags in our repositories.

Let’s gets started!

GFBTF – GIT Tagging Activity | Page 3 of 13 https://www.majorguidancesolutions.com

GFBTF: Git Tagging Activity

Step 1: Make sure you have a working repository.
a) Either clone a repo or get the latest on master for a repo. Ideally, the

repo would have a few commits in it at least, as well as no tags.
[git clone

https://github.com/majorguidancesolutions/SimpleActivityRepo

TaggingDemo]

[cd TaggingDemo]

[git checkout master]

[git fetch origin]

[git pull origin master]

[git checkout –b TaggingDemo]

Notes

https://github.com/majorguidancesolutions/SimpleActivityRepo

GFBTF – GIT Tagging Activity | Page 4 of 13 https://www.majorguidancesolutions.com

Step 2: Commit and tag a few times, list tags
a) Commit and create a lightweight tag, then list the tags on the repo

 [code info.txt]

 //make a change
 [git commit -am “tagging demo commit 1”]

 First we’ll add a lightweight tag:
 [git tag beginning-tag-demo] //creates a lightweight tag
 [git tag] //lists tags

 [git tag -l] //lists tags

 [git tag --list] //lists tags

b) Commit and create an annotated tag, then list the tags on the repo
[code info.txt]
//make a change
[git commit –am “tagging demo commit 2”]

[git tag v1.0.0.1]

[code info.txt]
//make another change
[git commit –am “tagging demo commit 3”]

[git tag -a -m “version 1.0.0.2 released 2017.09.26

02:05:00.000” v1.0.0.2]

GFBTF – GIT Tagging Activity | Page 5 of 13 https://www.majorguidancesolutions.com

[git tag]

[git log --oneline]

Step 3: Show tag info
 Once we have commits tagged, we can actually use the tag just the same as we
 would use a commit id. This means we can check them out, show them, diff
 them, etc.

a) Show tag info, see the difference between lightweight and annotated
tags:
[git show v1.0.0.2] //annotated

[git show beginning-tag-demo] //lightweight

GFBTF – GIT Tagging Activity | Page 6 of 13 https://www.majorguidancesolutions.com

b) Checkout a tag
[git checkout v1.0.0.1]

The checkout happens in a detached head state. When that happens, we can
look around and do stuff, but if we want to use it for a commit we need to then
checkout a branch and commit on that branch.

Notice the head is pointing to e161f83, where tag for v1.0.0.1 is also pointing.

[git checkout TaggingDemo]

Step 4: Use expressions/wildcards to list specific tags
a) Get all the tags with v1 in the tag

[git tag –l “v1.*”]

GFBTF – GIT Tagging Activity | Page 7 of 13 https://www.majorguidancesolutions.com

Step 5: Create tags on previous commits
Need to have some commits in the history. If not enough, create two or three
commits so that a couple of them don’t have tags. Find a commit without a tag
on it

a) Create a lightweight tag on a previous commit
[git log --oneline]

 Here there are plenty of candidates. I’m going to put a lightweight tag on
 728f97e for squash and merge completed

 [git tag squash-and-merge-completed 728f97e]

 [git tag]

 [git log --oneline]

 [git show squash-and-merge-completed]

GFBTF – GIT Tagging Activity | Page 8 of 13 https://www.majorguidancesolutions.com

 [git difftool squash-and-merge-completed 3741e4f]

b) Create an annotated tag on a previous commit
[git log --oneline]

How about fa75127 this time.
[git tag -a -m “Code Review Completed” code-review-

completed fa75127]

[git tag]

GFBTF – GIT Tagging Activity | Page 9 of 13 https://www.majorguidancesolutions.com

[git show code-review-completed]

Step 6: Delete a tag locally
a) Create a simple tag then delete it

[git tag a-simple-tag]

[git tag]

GFBTF – GIT Tagging Activity | Page 10 of 13 https://www.majorguidancesolutions.com

[git log --oneline]

Looks like we have two tags on commit 90a9cab now…

[git tag –d a-simple-tag]

Step 7: Working with Tags at GitHub
 We need to be able to push our tags, as well as delete tags that are pushed.

a) Push all tags to GitHub

 Right now, there are 0 releases at GitHub, and 0 tags. Note that we can create a
 tag right at GitHub with the button above, “Create a new release” If we did this,
 we could then get our local repository up to date with tags from REMOTE with

 [git fetch --tags]

 However, we aren’t going to worry about that. Instead, let’s push our tags

 [git push --tags]

GFBTF – GIT Tagging Activity | Page 11 of 13 https://www.majorguidancesolutions.com

 And looking at GitHub:

 The cool thing to note is that you can get a download of the repo at any of the
 release points.

b) Set config to always push tags [Optional]

c) Delete a tag from remote
[git tag -a -m “This Tag is going to go away” wont-

be-around-long]

[git push --tags]

[git push origin :wont-be-around-long]

GFBTF – GIT Tagging Activity | Page 12 of 13 https://www.majorguidancesolutions.com

Even though we removed from origin, we still need to delete locally

[git tag]
[git tag –d wont-be-around-long]

This concludes our tagging activity.

GFBTF – GIT Tagging Activity | Page 13 of 13 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity, we took a look at creating tags on our repository. There are two
different types of tags, annotated and lightweight. Both can be useful, but if
we want to tag a major release for public knowledge we should use the more
verbose annotated tag. The lightweight tag is great for private use or simple
pointers to commits along the way.

Just like a commit id in GIT, a tag can be interacted with to get information
about the commit, differences between commits, and even checked out to a
branch for further development.

Adding and getting tags from the public repo requires using push and pull with
the --tags flag. Deleting from a public repository is much like deleting a branch
from a public repository, by pushing with a : (colon) in front of the tag name.

The really cool thing at GitHub is that tags allow us to be download the repo as
it was at the state of that tag directly for release/deploy.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

