

GFBTF – GIT Ignore Activity | Page 1 of 16 http://www.majorguidancesolutions.com

GIT: From Beginner to
Fearless

 GIT Ignore Activity:
Excluding files from our repository

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Ignore Activity | Page 2 of 16 http://www.majorguidancesolutions.com

Introduction
In almost every repository, there will be many files we are wanting to track changes on. Additionally, there will be a few files

that we never want to track for various reasons. Perhaps the files are auto-generated by a build process. Perhaps the files are

unique to a user. Perhaps the files contain sensitive information. In any event, we are able to exclude files from our

repository very quickly and easily using a .gitIgnore file.

In this activity, we are going to take a look at how we can add a .gitIgnore file, and then we’ll look into how we can modify that

file to make sure that specific files and folders are eliminated from tracking.

Let’s gets started!

GFBTF – GIT Ignore Activity | Page 3 of 16 http://www.majorguidancesolutions.com

GFBTF: Git Ignore Activity: Excluding files and folders

Step 1: Creating a global .gitIgnore file
a) Check to see if there is an excludes file directive in your global config.

First we need to tell our system where to find our global gitIgnore [excludes] file
if one doesn’t already exist.
[git config --global core.excludesfile]

If nothing is set – nothing is shown. If you see a file listed, then you already
have a global core excludes file, and you should be able to edit that file.
Here, I have a file set already:

If no file is present, create it:

[git config --global core.excludesfile ~/.gitIgnore]

b) Open the .gitIgnore File and add exclusions
Make sure you have the path to your gitIgnore file handy [as created or listed in
a above]
[vim <path-to-your-global-ignore>]
[i]
[*.dll]

[*.class]
[*.jar]

[{esc}]
[:wq]

Notes

GFBTF – GIT Ignore Activity | Page 4 of 16 http://www.majorguidancesolutions.com

Step 2: Check that the .gitIgnore file is working:
a) Get the resources; extract them; copy them; or just create new ones

Under the root of the project, create a new ‘bin’ folder
[mkdir bin]
[ls -al]

Place the two files for exclusion into the bin folder. Note that you will need
to move the files from the location they are in to the location we created.
You don’t have to do this via BASH if you don’t want to.

Make sure the repo does not recognize that anything has changed
[git status]

Note that even though we’ve added files, they are excluded by the .gitIgnore

b) Prove the folder is monitored
To prove the folder is being monitored, let’s add something that would be
found:
[If necessary, cd to the directory with the excluded files]
[touch info.txt]

[vim info.txt]
[i]

[Working with .gitIgnore, this file should be included]
[{esc}]

[:wq]
[git status -s]

GFBTF – GIT Ignore Activity | Page 5 of 16 http://www.majorguidancesolutions.com

c) Add and commit the info.txt file – further proving the others are
ignored.
[git add .]

[git status -s]
[git commit –am “Added info.txt during gitIgnore Activity”]

Step 3: Create a local .gitIgnore just for this repo:
a) Navigate to the root directory of your repo (the folder that has the .git

folder in it).
[touch .gitIgnore]

[vim .gitIgnore]
[i]

[bin/]
[{esc}]

[:wq]

Note that files we are already tracking (info.txt) will still be tracked.
However, new files created in bin/ will be ignored.

GFBTF – GIT Ignore Activity | Page 6 of 16 http://www.majorguidancesolutions.com

b) Add another file to prove local .gitIgnore is working
Note that this points out the fact that our global .gitIgnore is NOT being
tracked…
[navigate back to the bin folder or use full paths]
[touch anotherFile.txt]

[vim anotherFile.txt]
[i]

[this is another file and it should be ignored]
[{esc}:wq]

[git status -s]

[we’re able to add the new .gitIgnore but no sign of anotherFile.txt]

Add and commit the gitIgnore file [must be at the correct level or reference
the path]
[git add ../.gitIgnore]

[git commit –m “added the local gitIgnoreFile”]

Step 4: More changes to show tracked/untracked
behaviors

a) Make changes to the info.txt file to prove it is still tracked even though
it is in a folder that is ignored:
[vim info.txt]

[i]
[Still being tracked…]

[{esc}:wq]

[git status]

GFBTF – GIT Ignore Activity | Page 7 of 16 http://www.majorguidancesolutions.com

So now we know the file is modified and tracked even though the folder is
excluded.

b) Create another file in the subfolder of bin/excludes to prove the ignore
is recursive for any subfolder under root of bin/:
[navigate to …/bin/excludes]
[touch yetAnotherFile.txt]

[vim yetAnotherFile.txt]

[i]
[This is yet another file that will now be ignored]
[{esc}:wq]

[git status]

So this proves the folder and subfolders are ignored now, but previously
tracked files are still tracked.

Add and commit the changes
[git commit -am “changes to tracked file in ignored folder are
still tracked”]

[git status]

Step 5: Adding Local resources that would ordinarily
be ignored:

a) Sometimes we have files that we need to keep in the repo that would
ordinarily be excluded

 In practical situations, sometimes we need to keep a valuable resource
 around in order to have a valid version of it, or a reference to it in our
 project. Here we are going to simulate this practical situation
 [navigate back to root]
 [mkdir Resources]
 [copy the resource files into that folder]

GFBTF – GIT Ignore Activity | Page 8 of 16 http://www.majorguidancesolutions.com

 [navigate to the includes folder]
 [git status]

 Note that the files are initially ignored, as expected for these types of files.

b) Include the resources
Next we need to re-include the files that are globally ignored. This will prove
that our local .gitIgnore is able to supercede the global .gitIgnore
[navigate back to the root where the local .gitIgnore file is]
[vim .gitIgnore]

 [i]
 [!resources/includes/*.dll]

 [{esc}:wq]

We are now including the includes folder dll [we could have included files
directly by name, too, but this gets ALL dlls in the includes folder]

 [git add .] //add the included dlls
 [git status]

c) Include the whole folder, rather than just one file type
[vim .gitIgnore]

 [i]
 [!resources/includes/*]

 [{esc}:wq]

GFBTF – GIT Ignore Activity | Page 9 of 16 http://www.majorguidancesolutions.com

 [git status]

Now all the files are found, we need to add and commit to track and keep
them.

 [git add .]

 [git commit -m “added the important resource files”]
 [git status]

d) Exclude a file after including the whole folder
[vim .gitIgnore]

 [i]
 [!resources/includes/*]

 [{esc}:wq]

GFBTF – GIT Ignore Activity | Page 10 of 16 http://www.majorguidancesolutions.com

 [navigate to the includes directory]
 [vim notes.txt]

 [i]

 [these are important notes for myself that we are not tracking]
 [{esc}:wq]

 [git add .]

 [git status]

e) Make sure can add another text file that would be tracked
 [vim developer_notes.txt]

 [i]

 [these are important developer notes that everyone needs]
 [{esc}:wq]
 [git status]

 [git add .]
 [git status]

 Need to add the .gitIgnore as well:
 [git add ../../.gitIgnore]
 [git status]

 [git commit -m “Continuing with the .gitIgnore Activity…”]

GFBTF – GIT Ignore Activity | Page 11 of 16 http://www.majorguidancesolutions.com

 So now we have seen that we can include entire folders, exclude entire
 folders, include specific files within excluded folders and exclude specific
 files using different statements in the .gitIgnore.

 Also, due to the fact that the local .gitIgnore .dll works when named, we can
 see the hierarchy – that a local .gitIgnore can override a global gitIgnore.

Step 6: Using patterns in the .gitIgnore file:
a) Make some changes

[navigate to the root folder]
 [vim .gitIgnore]

 [i]

 [change bin/ to [Bb]in]

 [{esc}:wq]

 [git status]

 [Rename the bin folder to Bin]

 [mv bin Bin]
 [ls]

b) Commit the changes
[git status]

[git add .]

[git commit -m “added pattern for gitIgnore on [Bb]in/**]

GFBTF – GIT Ignore Activity | Page 12 of 16 http://www.majorguidancesolutions.com

Note that even though we changed the directory from bin/ to [Bb]in/,
excluded files are still excluded as would be expected.

c) Make sure subfolders are ignored as expected
Make directories ‘debug’, ‘release’, and ‘program’ under ‘bin’
Add a simple text file to each.
Validate the files are ignored due to our new settings:
[navigate to Bin]
[mkdir debug]
[mkdir release]

[mkdir program]
[touch debug/info.txt]

[touch release/info.txt]
[touch program/info.txt]
[git status]

Notice that none of the files in the subfolders are showing up as untracked,
they are simply ignored.

d) Track all files in a subfolder of an excluded folder (tricky)
[navigate to the root folder]

GFBTF – GIT Ignore Activity | Page 13 of 16 http://www.majorguidancesolutions.com

 [vim .gitIngore]
 [i]

 [change the file to look like this:]

 [{esc}:wq]

The first line says ‘don’t exclude the bin folder at the top level – if it’s
excluded, no subfolders can show

The second line hides everything in the bin folder by default

The third line unhides the release folder
The fourth line unhides all the files in release folder.

e) Commit and review the log
[git add .]

[git status]

[git commit -m ‘Added the files from the release folder’]

GFBTF – GIT Ignore Activity | Page 14 of 16 http://www.majorguidancesolutions.com

[git log –oneline]

Should look something like this after working through both the status and
the .gitIgnore activities.

Step 7: Remove a tracked but now ignored file:
a) Bin/info.txt needs to be untracked

We no longer want to track this file but it was tracked before we ignored it.
First, we need to remove it from the repository. Navigate to the root folder,
then run the command:
[git rm --cached bin/info.txt]

[git status]

GFBTF – GIT Ignore Activity | Page 15 of 16 http://www.majorguidancesolutions.com

b) Add and commit to make the changes final
Add and commit to make the deletion final
[git add .]
[git commit -m “no longer tracking info.txt”]

c) Validate changes no longer tracked
Make another change to the info.txt file to validate it is no longer tracked
[vim bin/info.txt]

[i]
[enter a line: “No longer tracked”]
{esc}:wq]
[git status]

The file is no longer tracked.

This concludes the GIT Ignore Activity

GFBTF – GIT Ignore Activity | Page 16 of 16 http://www.majorguidancesolutions.com

Closing Thoughts
In this activity, we looked at creating both a global and a local .gitIgnore file.
We were able to prove that the local .gitIgnore file supersedes the global
.gitIgnore file when we were able to keep .dll files that would have otherwise
been excluded.

In our examination, we saw that it is very easy to exclude a folder and its
subfolders, as well as include/exclude files by name. We also saw that it is
possible to set patterns in the .gitIgnore file that allow for pattern matching to
apply the rules that are appropriate for the repo or user.

We also learned how we can keep tracking a file that would otherwise be
ignored, as well as how to remove files that are tracked prior to having been
added to the .gitIgnore file for exclusion.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

