GIT: From Beginner To
Fearless

GIT Reset and Clean Activity:
Reset changes and clean up your repo/working
directory

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF — GIT Reset and Clean Activity | Page 1 of 13 https://www.majorguidancesolutions.com
&
/k_)/

'AJOR QMDHHBB

Introduction

The command [git reset] is a command that can be used to reset your current repository to the state it was in at any particular
commit. The commit you may be targeting is the last commit [throwing away your current changes, for example]. The
commit you may be targeting could also be a few commits down the chain in history. Going back in history can be somewhat
dangerous however, so it is critical to use caution when resetting back to a previous commit that is deep in history.
Additionally, if the commit chain is public, and other developers rely on this commit history, then you should probably try to
find another way to “reset” your code, unless it is simply unavoidable.

In this activity, we’re going to look at different types of resets and some scenarios where we would want to use a soft reset
[fairly harmless] to a hard reset [red flag: can be very dangerous]. Reset is one of the few commands that gives us the ability
to really wreck our repository, but it should still not induce panic and fear. Always remember, if you are scared to do
something, you can fork a repo and try it there, with no risk of your changes causing the main repo to become corrupt.

The [git clean] command gives us a lot of power, and can be used to recursively wipe out files and folders. For that reason you
may want to do a dry run or practice your command on a secondary copy of the repository in order to avoid problems. The
clean command gives a lot of options, so doing research and running dry runs before performing the actual clean may be your
best friends when it comes time to do some cleanup.

Let’s gets started!

GFBTF — GIT Reset and Clean Activity | Page 2 of 13 https://www.majorguidancesolutions.com
L
/kj/

'AJOR QWDHHBE

GFBTF: Git Reset and Clean Activity

Notes
a) Start with any repo, make sure you have the latest in master, and create
a feature branch.
First clone the repo if it doesn’t exist:
[git clone <link> <folder>]
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (master)
$ git clone https://www.github.com/majorguidancesolutions/SimpleActivityRepo.git
ResetAndCleanActivity
If you didn’t clone, make sure master is up to date
[git checkout master]
[git fetch origin]
[git pull origin master]
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (master)
$ git checkout master
Already on "master’
Your branch is up-to-date with ‘origin/master’.
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (master)
$ git fetch origin
warning: redirecting to https://github.com/majorguidancesolutions/simpleActivity
Repo.git/
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (master)
$ git pull origin master
warning:/redirecting to https://github.com/majorguidancesolutions/SimpleActivity
Repo.git
From ttﬁs://www.github.com/majorguidanceso1utions/simp]eActivityRepo
* branc master -> FETCH_HEAD
Already up-to-date.
[git checkout —b reset-and-clean]
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (master)
$ git checkout -b reset-and-clean
switched to a new branch 'reset-and-clean’
b) Make some changes and then perform a soft reset
[code info.txt]
[git status]
/g/Data/GFBTF/DemoFolder/ResetAndcleanActivity (reset
$ git status
on branch reset-and-clean
hanges not staged for commit:
(use "git add <file>..." to update what will be committed))
(use "git checkout -- <file>..." to discard changes in working directory)
no changes added to commit (use "git add" and/or "git commit -a")
GFBTF — GIT Reset and Clean Activity | Page 3 of 13 https://www.majorguidancesolutions.com

&

"IAJOR GLHDANCE

Now reset the state of the repo:
[git reset]

/g/Data/GFBTF/DemoFolder/ResetAandcleanActivity (

-clean)

$ git reset

Unstaged changes after reset:
M info.txt

/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity (

[-clean)
$

Nothing happens. So [reset] didn’t actually remove the changes. That is good to
know. So what does reset do in this case? Nothing. If the changes are staged
for commit, then something would have happened.

c) Stage a change, make another change, perform a soft reset.
[git add info.txt]

[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleans
-clean)
$ git add info.txt

/g/Data/GFBTF/DemoFolder/ResetAndCleans
-clean)
$ git status
on branch reset-and-clean
Changes to be committed:
(use "git reset HEAD <file>...

n

to unstage)

[code info.txt]

[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActi
-clean)
§ code info.txt

/g/Data/GFBTF/DemoFolder/ResetAndCleanActi
-clean)
§ git status
Oon branch reset-and-clean
hanges to be committed:
(use "git reset HEAD <file>...

"

to unstage)

hanges not staged for commit:) .
" to update what will be committed)

(use "git add <file>..." : i .
(use "git checkout -- <file>..." to discard changes in working

Now perform the reset
[git reset]
/g/Data/GFBTF/DemoH
-clean)
$ git reset

Unstaged changes after reset:
M info.txt

GFBTF — GIT Reset and Clean Activity | Page 4 of 13 https://www.majorguidancesolutions.com
&
'/<Q::z¢&

"IAJOR GLHDANCE

[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActivit
-clean)
$ git status
on branch reset-and-clean
Changes not staged for commit:
" to update what will be committed)

(use "git add <file>..."
(use "git checkout -- <file>..." to discard changes in working direg

no changes added to commit (use "git add"” and/or "git commit -a")

Check the file. Changes are still there, but now there is nothing that is staged for
commit.
[git difftool]

= C\Users\Brian\AppData\Local\Temp\80UWub_info.txt — G:\Data\GFBTF\DemoFolder\ResetAndCleanActivity\info.txt % Toe > -

This is the first commit in the new Simple This is the first commit in the new SimpleActivityRep

Developer 2 making critical changes Developer 2 making critical changes

Developer 2 making more critical changes Developer 2 making more critical changes

Change #1 Change #1

Change #2 Change #2 =

+This is a change that I'm working on.
+This is another change that I'm working on.

Sometimes we commit our changes and then decide we don’t want the commit
anymore. Let’s take a look at how we might be able to do that:

a) Commit the previous changes

HEAD
reset-and-clean origin/master origin/HEAD master
5c¢552cf
S——

[git commit -am “I think | want to commit these changes”]
/g/Data/GFBTF/DemoFolder/ResetAndCleanActi

-clean)
$ git commit_-am "I think I want to commit these changes"

[reset-and-clean 3bf0a28] I think I want to commit these changes
1 file changed, 3 insertions(+)

GFBTF — GIT Reset and Clean Activity | Page 5 of 13 https://www.majorguidancesolutions.com
L
/tj

"IAJOR GLHDANCE

HEAD

reset-and-clean

[3bf0328] origin/master origin/HEAD master

5¢552ct

o

b) Reset back to the previous commit
Now we decide that we don’t want to have that commit after all. What do we
do?
We can reset back to the previous commit [5¢552cf in this case]

Using git log we can see the commit history as well [if not using GitVis]

[git log --oneline]

/g/Data/GFBTF/DemoFolder/ResetA
-clean)
$ %it Tog --oneline
3bf0a28 (HEAD -> reset-and-clean) I think I want to cd

@i (or er, , master) Merge pu
ancesolutions/rebasing-demo-1

a876a65 more changes on my local branch

22e2dd3 changes on my Tocal before rebase

342e3be Merge pull request #1 from majorguidancesolut
6391b90 Update info.txt

b8a8570 Update info.txt

82b3d34 Create info.txt

7413714 Initial commit

[git reset 5¢552cf]

/g/Data/GFBT
clean)
git reset 5c¢552cf

nhstaged changes after reset:
info.txt

[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActi
-clean)
$ git status
on branch reset-and-clean
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working d

no changes added to commit (use "git add" and/or "git commit -a")

GFBTF — GIT Reset and Clean Activity | Page 6 of 13 https://www.majorguidancesolutions.com
&
'/<Q::z¢&

"IAJOR GLHDANCE

reset-and-clean origin/master origin/HEAD master

5c552cf

c) Cleanup the unreachable commit
To clean up the commits we just need to make sure we have the reflog set to
expire our commits and then run the garbage collector. | have these commands
aliased, but in case you don’t and you want to run these [or want the commands
for later reference], here they are:
[git reflog expire —expire-unreachable=now —all]
And
[git gc —prune=now]

And here are my aliases in my global config [check out the aliasing activity for

more info about aliasing]:

1as.expireunreacha og expire --expire-unreachable=now --a
alias.gcunreachablenow=gc --prune=now

[=

/g/Data/GFBTF/DemoFolder/ResetAndCleanAd
-clean)
$ git expireunreachablenow

/g/Data/GFBTF/DemoFolder/ResetAndCleanAd

-clean)
$ git gcunreachablenow

Counting objects: 22, done.

Delta compression using up to 8 threads.
Ccompressing objects: 100% (21/21), done.
writing objects: 100% (22/22), done.
Total 22 (delta 11), reused 0 (delta 0)

reset-and-clean origin/master origin/HEAD master

5c552cf
ag876abb

GFBTF — GIT Reset and Clean Activity | Page 7 of 13 https://www.majorguidancesolutions.com
L
f/<t::24&

"IAJOR GLHDANCE

Even though we moved back to a previous commit, we didn’t lose the changes
that were in the commit that we were on
[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActivi

$ git status

pon branch reset-and-clean

hanges not staged for commit:
(use "git add <file>...

to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working di

o changes added to commit (use "git add"” and/or "git commit -a™)

a) Reset back to HEAD with a hard reset. This will remove any changes, so
we only want to do this when we are sure that we don’t mind losing

changes.

[git reset --hard]

/g/Data/GFBTF/DemoFolder/ResetA
-clean)
$ git reset --hard
HEAD is now at 5c552cf Merge pull request #2 from majg
g-demo-1

[git status]

/g/Data/GFBTF/De
-clean)

$ git status
on branch reset-and-clean
nothing to commit, working tree clean

When all of the files are tracked, performing a hard reset will not remove the
untracked files. Sometimes we want that to happen as well.

a) Make some changes to info.txt
***Before you begin, if you are on a repo that has any important files, you might
want to do a quick backup. Our clean operation we are about to run is going to
wipe the slate for untracked files***

GFBTF — GIT Reset and Clean Activity | Page 8 of 13 https://www.majorguidancesolutions.com
&
/tj

"IAJOR GLHDANCE

[code info.txt]
[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActiv
-clean)
$ code info.txt

/g/Data/GFBTF/DemoFolder/ResetAndCleanActiv

$ git status

on branch reset-and-clean

Changes not staged for commit:
(use ' g1t add <file>..." to update what will be committed)
(use "git checkout -- ‘<file>..." to discard changes 1in working d

no changes added to commit (use "git add" and/or "git commit -a")

a) Add a second text file that is going to remain untracked
[touch readme.txt]
[git status]

/g/Data/GFBTF/DemoFolder/ResetAndCleanActi
-clean)
$ touch readme.txt

/g/Data/GFBTF/DemoFoTlder/ResetAndCleanActi
-clean)
$ git status
on branch reset-and-clean
Changes not staged for commit:
(use ' g1t add <file>..." to update what will be committed)
(use "git checkout -- "<file>..." to discard changes in working d
I

untracked files:
(use "git add <file>...

"

to include in what will be committed)

no changes added to commit (use "git add" and/or "git commit -a")

b) Perform a hard reset back to HEAD
[git reset —hard]

[git status]

: 5 /g/Data/GFBTF/DemoFolder/ResetAndCleanActivity
-clean

$ git reset --hard]]]
HEQD is now at 5c¢552ct Merge pull request #2 from majorguidancesolutio
g-demo-1

/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity
-clean)
$ git status
on branch reset-and-clean
Untracked files:
(use "git add <file>...

n

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to

The readme.txt file is still there. We need to run a clean to get r|d of it.

GFBTF — GIT Reset and Clean Activity | Page 9 of 13 https://www.majorguidancesolutions.com
'/<Q::z¢&

"IAJOR GLHDANCE

Sometimes there are files that end up in our repo that we don’t want anymore.
Other times we create a file and don’t want it anymore. In either case, we need an easy
way to clean up our directory to get our working directory to line up with what the repo
says it should have at the latest commit.

a) Perform a full clean
***one last warning. Issuing this command will wipe out all files that aren’t in
the repo from this folder and in it’s subfolders.***
Since the clean command is destructive, let’s do a dry-run to make sure it won’t
hurt us too badly:
[git clean -d -x -f --dry-run]

/g/Data/GFBTF/Den

-clean)
$ git clean -d -x -f --dry-run

would remove readme.txt

That looks ok to me. Let’s doit:
[git clean -d -x -]
/g/Data/GFBTF/DemoFa
-clean)
$ git clean -d -x -f
Removing readme.txt

/g/Data/GFBTF/DemoFdg

-clean)

$ git status

on branch reset-and-clean

nothing to commit, working tree clean

So this points out that we can use clean anytime (not just after a reset) to just get
our files and folders cleaned up on our local repository.

b) Perform an interactive clean
We've seen that the clean command can be destructive. What if the dry-run
command above had listed one file that we wanted to keep? In that case we
couldn’t have used the -f option. For this reason, there is an interative option.
[mkdir resources]
[cd resources]
[touch important.dll]
[touch notimportant.dll]
[touch readme.txt]

GFBTF — GIT Reset and Clean Activity | Page 10 of 13 https://www.majorguidancesolutions.com
&
/tj

"IAJOR GLHDANCE

/g/Data/GFBTF

—c]eaﬁ)
$ mkdir resources

/g/Data/GFBTF

-clean)
$ cd resources

/g/Data/(

(reset-and-clean)

$ touch important.dll

/g/Data/(
(reset-and-clean)
$ touch notimportant.dll

/g/Data/(
(reset-and-clean)
$ touch readme.txt

(ls]

[git status]
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity/resourd
(reset-and-clean)

5 1s
important.dl1l notimportant.d1ll readme.txt

/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity/resourd
(reset-and-clean)
§ git status
bn branch reset-and-clean

ntracked files:
(use "git add <file>..." to include in what will be committed)

othing added to commit but untracked files present (use "git add" to track)

[git clean -d -x -i] // i => interactive x => cleans even ignored files
/g/Data/GFBTF/DemoFolder/ResetAndCleanActivity/reso

(reset-and-clean)
$ git clean -d -x -i
would remove the following items:
important.dll notimportant.dll readme.txt

#%% Commands ***
1: clean 2: filter by pattern 3: select by numbers
4: ask each 5: quit 6: help

\
[choose option 4] //you can play with the others if you want

GFBTF — GIT Reset and Clean Activity | Page 11 of 13 https://www.majorguidancesolutions.com
f/<:::z¢&

"IAJOR GLHDANCE

/g/Data/GFBTF/DemoFR

(reset-and-clean)

$ git clean -d -x -i

would remove the following items:
important.dll notimportant.dll reac

kS Con'ln'lands TR
1: clean 2: filter by
4: ask each 5: quit
4
Remove important.dll [y/N]? |

[keep important.dll]
[remove therest]

4
Remove important.dll [y/N]? n
Remove notimportant.d]% [y/N]? y
Remove readme.txt [y/N]? y
Removing notimportant.dll
Removing readme.txt

/g/Data/GFBTF/DemoFolder
(reset-and-clean) :
$ git status .
on branch reset-and-clean

nothing to commit, working tree clean

/g/Data/GFBTF/DemoFolder

(reset-and-clean)

This concludes our reset and clean activity.

GFBTF — GIT Reset and Clean Activity | Page 12 of 13 https://www.majorguidancesolutions.com
&
'/k‘)/

"IAJOR GLHDANCE

Closing Thoughts

In this activity, we have seen how we can use the fairly safe “soft reset” in
order to reset our repository back to the state it was in at the last commit Notes
without losing any changes.

We've also seen how we can reset back to any other commit in our history. It's

very important to remember, however, that anytime there is a history re-write
capability, we should be very careful not to do this against a commit history

that is public.

We wrapped up the activity with a look at using the [git clean] command to
clear out our working directory of files that are untracked, which can happen

on a hard reset when we’ve added files, or a build added files, etc.

It is equally important to remember that a git clean operation is destructive to
our working directory, so we examined the --dry-run capability, as well as doing

an interactive clean with the —i flag.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

GFBTF — GIT Reset and Clean Activity | Page 13 of 13 https://www.majorguidancesolutions.com
L7
/kﬁj/

"IAJOR GLHDANCE

