

GFBTF – Team Flow with Merge Conflict | Page 1 of 18 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

Team Branching and
Merging With a Pull
Request and Conflict

Resolution

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – Team Flow with Merge Conflict | Page 2 of 18 https://www.majorguidancesolutions.com

Introduction
If you’ve followed along to this point, we are in a really good place with understanding how to get changes out to the

repository at GitHub (or other REMOTE). However, we’ve only taken the happy path so far – where only one user is pushing

and there have been no conflicts.

In the real world, for most of us who will be using GIT, conflicts will be a regular occurrence, and resolving them while merging

will become part of the necessary routine.

In this activity, we’re going to simulate how a merge conflict might happen in a team environment. To keep this very simple,

we’ll be performing all changes ourselves, so we’ll have to pretend some of the changes come from another developer. If you

really want to take it to the next level, you could go to the level of setting up an organization, creating a second account and

using a team repository for your two accounts. However, to simulate the team for this activity, we aren’t going to go that

deep.

The general flow of what we’ll do is to get the current version of the repository to our local machine. We’ll then make some

changes on a feature branch on our machine, and push them up to GitHub. In the meantime, we’ll create a branch at GitHub

and make a change there which will conflict with our changes. We’ll merge the other developer’s changes into master first,

and then see what it would take to resolve the conflict on our local machine for our feature branch.

Let’s get started!

GFBTF – Team Flow with Merge Conflict | Page 3 of 18 https://www.majorguidancesolutions.com

Team branching and merging - pull request and merge conflict

Step 1: Make sure your local repository is up to date
a) Get the latest version of the remote master

Perform the operations that follow to make sure our current local repository is
in sync.
[git checkout master]

[git fetch origin]

[git pull origin master]

b) Create a local branch and push the branch to GitHub.
 [git checkout -b developer-one-branch]

Now push the branch using the -u flag since it is unpublished:

[git push origin -u developer-one-branch]

Notes

GFBTF – Team Flow with Merge Conflict | Page 4 of 18 https://www.majorguidancesolutions.com

Step 2: Make some changes on your local branch
and push

a) Create a simple change
[code details.html]
Enter a change similar to the following:

b) Make sure you have saved and have changes to commit:

c) Add, Commit, Push
[git commit –am ‘Developer one critical changes’]

[git push origin developer-one-branch]

d) Review current commit history
[git log --oneline]

Note your recent commit id [mine is 8d80062].

GFBTF – Team Flow with Merge Conflict | Page 5 of 18 https://www.majorguidancesolutions.com

Step 3: Create a feature branch at GitHub then
Merge a change from it directly at GitHub

a) Log in to GitHub and browse to your repository
After getting to the correct repository, locate the “Branch:” dropdown (which
should be pointing to master. Select this dropdown and enter a new branch
name in the empty box. Also note, we could switch to our other branch(es) that
are listed in the dropdown if we would like:

b) Enter the branch name into the dropdown
[developer-two-branch]

 Then select the “Create Branch” button – making sure it says “from ‘master’”

GFBTF – Team Flow with Merge Conflict | Page 6 of 18 https://www.majorguidancesolutions.com

c) Make sure you are on the developer two branch and make a change
Make sure you have your dev 2 branch selected in the dropdown

 On the main file listing, select the ‘details.html’ file:

 When this opens in GitHub, select the “Edit” pencil on the top-right corner of
 the file:

 Change anything about the file in generally the same area we made the
 currently unmerged change for dev 1:

GFBTF – Team Flow with Merge Conflict | Page 7 of 18 https://www.majorguidancesolutions.com

 Add a commit message and create a commit directly on this branch:

 By pressing the “Commit Changes” button. Note the commit id:

d) Create and merge a pull request
As we are pretending to be developer two, imagine that another developer had
created a local feature branch and had made this change, pushed it up, and is
now asking for a pull request. You know this will eventually conflict with your
changes, but their changes are ready and there is nothing wrong with the code,
so you are going to go ahead and merge their commits, then you’ll resolve on
your branch eventually before merging your code to master.

Browse to the branch under the branches tab and select “New Pull Request”
Alternatively, just click on the developer-two-branch “Compare & Pull Request”

GFBTF – Team Flow with Merge Conflict | Page 8 of 18 https://www.majorguidancesolutions.com

Note that their changes are able to be merged:

Which is indicated by the green “Able to merge” next to the checkmark.
Create and Merge the pull request, pretending to be the code reviewer that
allowed the request for dev 2’s changes to be merged:

After the merge, go ahead and delete the branch:

Note the merge commit ID:

Also note that GitHub has an ‘auto-revert’ button. If you needed to rollback,
you could click Revert. You can also restore the branch if you want. We don’t
need to do either right now, but note your options.

The merge commit id for me was 738163c.

GFBTF – Team Flow with Merge Conflict | Page 9 of 18 https://www.majorguidancesolutions.com

So here is my current history at GitHub (click on ‘Commits’ from the main
screen to see yours):

Step 4: Create the pull request for developer one
a) Create the Pull Request

While still at GitHub, create a new pull request for the dev 1 changes:

Note the message: “Can’t automatically merge”
This is expected. We knew there would be a conflict. Good news: We can still
create the PR. Even better news, for something this simple we could easily
resolve right at GitHub (if you want to do that, you can, and then you could re-
simulate another conflict and continue this again to resolve at Local first, which
is the recommended way to do this to keep from making mistakes).

Go ahead and create the pull request, even with the conflict still not resolved:

GFBTF – Team Flow with Merge Conflict | Page 10 of 18 https://www.majorguidancesolutions.com

We are going to resolve at Local. This is the way I would recommend resolving a
merge conflict, because you won’t have any syntax help at GitHub. It would be
very easy to create a “fix” at GitHub for this, but what if I mistype something? I
may not know. Therefore, just get the changes pulled locally and fix the conflict
with our mergetool, and then we’ll be easily able to merge. Remember – real
world changes are rarely going to be this easy to fix.

Step 5: Bring the latest changes back to our local
repo, merge and resolve the conflict, then push

a) Now that we have a couple of commits in the chain on master and a
conflict to resolve, we first want to just get everything up to date on
master locally:
[git checkout master]
[git fetch origin]

Note: It is critical for us to get our local master even with the remote master to
ensure we have all of the bits for the merge commit.

GFBTF – Team Flow with Merge Conflict | Page 11 of 18 https://www.majorguidancesolutions.com

[git pull origin master]

[git log --oneline]

 As we expected, we have the latest now for master, including dev two’s merged
 changes

b) Merge the changes into our local feature branch via master
Our goal here is to make sure that we can put our own changes into the
repository. What we need to do is get the changes that are in conflict and
already at GitHub, and then we merge to our feature branch where we are
working. In this way, we don’t lose the other developer’s changes. We may
need to modify their change slightly if it affects our code, or we might be able to
just manually merge our change within their changes. The end goal is to keep
all of their functional changes as well as adding ours. As the developer, we have
to discern how to resolve this so no functionality is lost.

 Switch to our dev branch:
[git checkout developer-one-branch]

 Merge their changes from master into ours:
[git merge master]

 Note, we are now in conflict and the branch is appended with | MERGING on it.
 IF we didn’t want to continue, we could just abort [git merge --abort].
 We are going to continue with the merge, however.

GFBTF – Team Flow with Merge Conflict | Page 12 of 18 https://www.majorguidancesolutions.com

c) Resolve the conflict with our mergetool
NOTE: If you haven’t setup a mergetool, you will be taken back to 1979 in the
VIM merge editor. Therefore, make sure you have first setup your default
mergetool using the activity “setting VSCode to be our default mergetool”]

[git mergetool]

And the code is opened in VSCode

 We’re going to click on the item that says “Accept Both Changes” which then
 gives us:

 We could clean this up further if we would wish. It will be your job as the
 developer to review the conflict and make sure that your changes and the
 other changes play nice and all intended functionality is still intact after the
 merge resolution.

 Save the changes and close VSCode to continue the merge operation
 Once you save and close you get taken back to the terminal:

 Now you have two choices: commit or continue. If you want to commit,
 just type the command [git commit -m ‘merge resolved’]. I’m going

GFBTF – Team Flow with Merge Conflict | Page 13 of 18 https://www.majorguidancesolutions.com

 to go the continue route here, and if you have multiple conflicts you would want
 to do this as well, if you weren’t already automatically taken to the next conflict.

 Continue the merge with --continue
 [git merge --continue]

 Since there are no more conflicts, this brings up the editor to add a commit
 message, which is already set if I want to keep the default message:

 I’m going to use this message as-is, save it, and close. Saving will then create
 the commit in the terminal:

 Now look at our history to make sure it looks correct:
 [git log --oneline]

 And that shows us being in place, including the commits from both developers
 in our history, so we know we are now safe to push and merge at GitHub:

 [git push origin developer-one-branch]

GFBTF – Team Flow with Merge Conflict | Page 14 of 18 https://www.majorguidancesolutions.com

d) Now we can merge the pull request at GitHub

 Go ahead and merge and confirm. This will get everything up to date. Then
 delete the branch at REMOTE.

 And review the commits on the repository:

GFBTF – Team Flow with Merge Conflict | Page 15 of 18 https://www.majorguidancesolutions.com

 Does that lineup with what we have locally on master?

 [git checkout master]
 [git log --oneline]

 NO! we are missing the final merge commit!

Step 6: Cleanup
a) Optional cleanup

We already see that we don’t have the merge commit – so let’s get that:
 [git fetch origin --prune]

Wait! What’s prune? Oh yeah, “prune” will delete any references [not the
actual branch] on my local that no longer exist on remote. In the message you
see that it has deleted the origin/deveper-one-branch, so we should no longer
see ‘origin/developer-one-branch’ in our branch list after this, right?
[git branch -a]

GFBTF – Team Flow with Merge Conflict | Page 16 of 18 https://www.majorguidancesolutions.com

Hey, it’s still there locally! -- Yes, we have to also delete our branch locally to
make it go away for good. This is for our protection – in case someone deletes
our remote branch and we didn’t want that to happen. Note, however, there is
no longer a branch: remotes/origin/developer-one-branch – as our local
repository did prune its refs so that it knows there is no such branch at
upstream remote.

[git pull origin master]

[git log --oneline]

And we are up-to-date!

Let’s delete the local copy of the dev 1 branch, and any other branches we no
longer want around:
[git branch -d developer-one-branch]

NOTE: Since ALL commits are fully-merged, we should not need to force delete
with a capital “D” here. If that is the case, something went wrong with your
merge and/or the branch has been further modified since pushing to remote.

This concludes our team merge conflict resolution activity.

GFBTF – Team Flow with Merge Conflict | Page 17 of 18 https://www.majorguidancesolutions.com

Closing Thoughts
Hopefully this was a fun and enlightening activity, as this is something that we
want to “master”! To be certain, working with a team is a critical part of
working with GIT and surely you will run into many conflicts in your daily
development experiences.

What we saw here was the fact that one developer made a change and those
changes were merged into master while we were working on a conflicting
change in the same general area of code. While we could have fixed this issue
directly at GitHub, it is much safer – and much more realistic - to fix code
conflicts on our local branch, and then be easily able to merge our changes at
GitHub once the conflicts are fully resolved.

If this is new to you, I would recommend practicing this activity a few times to
get the flow and understanding down of each piece of the puzzle. Once you’re
confident that you have this down, you should be in fairly good control of the
ability to work with GIT as a team at a very functional level.

In summary, when you are ready to commit your changes, here is the flow:

1) Pull master to your local to get even with master
2) Merge master into your feature branch so your feature branch is even

with master
3) Resolve any code conflicts and commit the merge locally
4) Push your changes to Remote
5) Make a pull-request and have another developer review your changes

and merge your code into the master branch
6) Delete your feature branch
7) Pull master to your local with prune
8) Delete your local version of the feature branch

Really – this is as difficult as it gets on a day-to-day basis. As we continue to
learn about GIT, hopefully this process will become second nature and there
will be no fear left when it comes to worrying about wrecking the repository or
fouling up the code.

Of course, there are always complications that can happen, and there are
certain operations to fix those things – which we’ll be learning in the upcoming
sections of the course. However, what we’ve seen to this point is mostly

Notes

GFBTF – Team Flow with Merge Conflict | Page 18 of 18 https://www.majorguidancesolutions.com

everything you would need to know to work in a general manner with your
team to have successful source control in place on your valuable code.

