

GFBTF – GIT Revert Activity | Page 1 of 8 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Revert Activity:
Undoing a public commit using revert

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Revert Activity | Page 2 of 8 https://www.majorguidancesolutions.com

Introduction
Sometimes we have made a commit and we need to undo the commit. In many cases, when the commit is private, we can

simply ‘reset’ back to where we want to go. However, there are times when a commit has been made public. In these cases,

one of the safest ways to undo the commit is to use the revert command.

In essence, a revert command simply reverses the original commit(s) and gets the repository back to the state where it was

before the reverted commit(s). The system then records a new commit that manages the “undo” operations, and allows us to

publish a public commit that will allow all other dependent users to be able to easily get the latest changes, which include the

revert commit with changes reverted. The public commit allows for history to remain in tact. As with any merge, reset,

rebase, and/or pull operation, a revert requires any conflicts to be resolved for the operation to complete successfully.

Let’s gets started!

GFBTF – GIT Revert Activity | Page 3 of 8 https://www.majorguidancesolutions.com

GFBTF: Git Revert Activity

Step 1: Make sure you have a valid working
repository, where a pull request was just closed on
master.

a) Clone the repo with a commit to revert or get the latest on your
existing repo.
 [git clone <repo> <folder>]
[cd <folder>]

--if getting latest:
[git checkout master]
[git fetch origin]
[git pull origin master]

b) Create a new branch for changes
[git checkout -b GitRevertDemo]

Notes

GFBTF – GIT Revert Activity | Page 4 of 8 https://www.majorguidancesolutions.com

Step 2: Create a simple commit chain, then revert one
commit:

a) Make a small change
[code info.txt]
[git status]

b) Add and commit the change
[git commit -am “I want to revert this change”]

c) View the log – find the commit to revert to, revert it.
[git log --oneline]

d) Revert the commit.
NOTE: it is important to NOT enter the commit you want to revert TO, but only
the commit you want to revert. IF there are other commits, they would be
reverted. For example, on this chain:

GFBTF – GIT Revert Activity | Page 5 of 8 https://www.majorguidancesolutions.com

If I stated [git revert 1a3444a], I would actually be trying to revert BOTH
2b482c4 and 1a3444a from where I am at, and that would be a mess. Instead, I
want to revert 2b482c4 -> which essentially should get my repo to be the same
as 1a3444a, just with both commits.

[git revert 2b482c4]

I just need to enter a message to perform the revert. I changed it to ‘reverted a
bad change’

Save and Exit:

GFBTF – GIT Revert Activity | Page 6 of 8 https://www.majorguidancesolutions.com

[git log --oneline]

e) See the differences
[git difftool 57e83de 1a3444a]

//as expected, no difference, difftool not launched
[git difftool 57e83de 2b482c4]

[git difftool 2b482c4 1a3444a]

GFBTF – GIT Revert Activity | Page 7 of 8 https://www.majorguidancesolutions.com

f) If you want to go further
If you want a bigger challenge, make a couple of commits and revert the first
commit in the chain (you’ll need to revert everything back that you did)

If you want an even bigger challenge, revert a merge commit. That will require
you being able to determine parents. Here are a couple of hints.
1) You can always see merge commit parents by using the command:

[git show --pretty=raw <commit>]
2) You can dive into the commit parent differences with the following

commands
[git show <commit>^1] //parent 1
[git show <commit>^2] //parent 2

g) Delete your branch that essentially has no changes [no need to merge]
[git branch –D <branchname>] //need to force it since has unmerged commits

 This concludes our GIT Revert Activity.

GFBTF – GIT Revert Activity | Page 8 of 8 https://www.majorguidancesolutions.com

Closing Thoughts
Using Git Revert is one way we can ‘undo’ a commit while keeping the commit
history in tact. For this demo, we took a quick look into the command and hit a
pretty easy revert scenario. Much more difficult revert scenarios exist,
however this is beyond the detail I wanted to spend on our first encounter with
the command.

The nice thing about a revert operation is that as long as there were no
conflicts to resolve [such as when reverting a merge commit], the system will
auto-revert for us and we just need to enter a message.

The main thing to remember is that we don’t want to enter the commit id of
the commit we want to get back to, but rather, we want to enter the commit id
of the first commit (and any of its descendants) that we want to undo.

The last part gives a couple of challenges if you want to go deeper with the
revert command.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

