

GFBTF – GIT Reset and Clean Activity | Page 1 of 13 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Reset and Clean Activity:
Reset changes and clean up your repo/working

directory

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Reset and Clean Activity | Page 2 of 13 https://www.majorguidancesolutions.com

Introduction
The command [git reset] is a command that can be used to reset your current repository to the state it was in at any particular

commit. The commit you may be targeting is the last commit [throwing away your current changes, for example]. The

commit you may be targeting could also be a few commits down the chain in history. Going back in history can be somewhat

dangerous however, so it is critical to use caution when resetting back to a previous commit that is deep in history.

Additionally, if the commit chain is public, and other developers rely on this commit history, then you should probably try to

find another way to “reset” your code, unless it is simply unavoidable.

In this activity, we’re going to look at different types of resets and some scenarios where we would want to use a soft reset

[fairly harmless] to a hard reset [red flag: can be very dangerous]. Reset is one of the few commands that gives us the ability

to really wreck our repository, but it should still not induce panic and fear. Always remember, if you are scared to do

something, you can fork a repo and try it there, with no risk of your changes causing the main repo to become corrupt.

The [git clean] command gives us a lot of power, and can be used to recursively wipe out files and folders. For that reason you

may want to do a dry run or practice your command on a secondary copy of the repository in order to avoid problems. The

clean command gives a lot of options, so doing research and running dry runs before performing the actual clean may be your

best friends when it comes time to do some cleanup.

Let’s gets started!

GFBTF – GIT Reset and Clean Activity | Page 3 of 13 https://www.majorguidancesolutions.com

GFBTF: Git Reset and Clean Activity

Step 1: Resetting your current branch to the most
recent [HEAD] commit:

a) Start with any repo, make sure you have the latest in master, and create
a feature branch.
First clone the repo if it doesn’t exist:
[git clone <link> <folder>]

If you didn’t clone, make sure master is up to date
[git checkout master]
[git fetch origin]
[git pull origin master]

[git checkout –b reset-and-clean]

b) Make some changes and then perform a soft reset
[code info.txt]
[git status]

Notes

GFBTF – GIT Reset and Clean Activity | Page 4 of 13 https://www.majorguidancesolutions.com

Now reset the state of the repo:
[git reset]

Nothing happens. So [reset] didn’t actually remove the changes. That is good to
know. So what does reset do in this case? Nothing. If the changes are staged
for commit, then something would have happened.

c) Stage a change, make another change, perform a soft reset.
[git add info.txt]
[git status]

[code info.txt]
[git status]

Now perform the reset
[git reset]

GFBTF – GIT Reset and Clean Activity | Page 5 of 13 https://www.majorguidancesolutions.com

[git status]

Check the file. Changes are still there, but now there is nothing that is staged for
commit.
[git difftool]

Step 2: Resetting to a previous commit:
 Sometimes we commit our changes and then decide we don’t want the commit
 anymore. Let’s take a look at how we might be able to do that:

a) Commit the previous changes

 [git commit -am “I think I want to commit these changes”]

GFBTF – GIT Reset and Clean Activity | Page 6 of 13 https://www.majorguidancesolutions.com

b) Reset back to the previous commit
 Now we decide that we don’t want to have that commit after all. What do we
 do?
 We can reset back to the previous commit [5c552cf in this case]
 Using git log we can see the commit history as well [if not using GitVis]
 [git log --oneline]

 [git reset 5c552cf]

 [git status]

GFBTF – GIT Reset and Clean Activity | Page 7 of 13 https://www.majorguidancesolutions.com

c) Cleanup the unreachable commit
To clean up the commits we just need to make sure we have the reflog set to
expire our commits and then run the garbage collector. I have these commands
aliased, but in case you don’t and you want to run these [or want the commands
for later reference], here they are:
[git reflog expire –expire-unreachable=now –all]
And
[git gc –prune=now]

And here are my aliases in my global config [check out the aliasing activity for
more info about aliasing]:

GFBTF – GIT Reset and Clean Activity | Page 8 of 13 https://www.majorguidancesolutions.com

 Even though we moved back to a previous commit, we didn’t lose the changes
 that were in the commit that we were on
 [git status]

Step 3: Performing a hard reset:
a) Reset back to HEAD with a hard reset. This will remove any changes, so

we only want to do this when we are sure that we don’t mind losing
changes.
[git reset --hard]

[git status]

Step 4: Performing a hard reset when untracked files
are present:
 When all of the files are tracked, performing a hard reset will not remove the
 untracked files. Sometimes we want that to happen as well.

a) Make some changes to info.txt
***Before you begin, if you are on a repo that has any important files, you might
want to do a quick backup. Our clean operation we are about to run is going to
wipe the slate for untracked files***

GFBTF – GIT Reset and Clean Activity | Page 9 of 13 https://www.majorguidancesolutions.com

[code info.txt]
[git status]

a) Add a second text file that is going to remain untracked
[touch readme.txt]
[git status]

b) Perform a hard reset back to HEAD
[git reset –hard]
[git status]

The readme.txt file is still there. We need to run a clean to get rid of it.

GFBTF – GIT Reset and Clean Activity | Page 10 of 13 https://www.majorguidancesolutions.com

Step 5: Cleaning our repo with [git clean]:
 Sometimes there are files that end up in our repo that we don’t want anymore.
Other times we create a file and don’t want it anymore. In either case, we need an easy
way to clean up our directory to get our working directory to line up with what the repo
says it should have at the latest commit.

a) Perform a full clean
***one last warning. Issuing this command will wipe out all files that aren’t in
the repo from this folder and in it’s subfolders.***
Since the clean command is destructive, let’s do a dry-run to make sure it won’t
hurt us too badly:
[git clean -d -x -f --dry-run]

That looks ok to me. Let’s do it:
[git clean -d -x -f]

So this points out that we can use clean anytime (not just after a reset) to just get
our files and folders cleaned up on our local repository.

b) Perform an interactive clean
We’ve seen that the clean command can be destructive. What if the dry-run
command above had listed one file that we wanted to keep? In that case we
couldn’t have used the -f option. For this reason, there is an interative option.
[mkdir resources]
[cd resources]
[touch important.dll]
[touch notimportant.dll]
[touch readme.txt]

GFBTF – GIT Reset and Clean Activity | Page 11 of 13 https://www.majorguidancesolutions.com

[ls]
[git status]

[git clean -d -x -i] // i => interactive x => cleans even ignored files

[choose option 4] //you can play with the others if you want

GFBTF – GIT Reset and Clean Activity | Page 12 of 13 https://www.majorguidancesolutions.com

[keep important.dll]
[remove the rest]

This concludes our reset and clean activity.

GFBTF – GIT Reset and Clean Activity | Page 13 of 13 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity, we have seen how we can use the fairly safe “soft reset” in
order to reset our repository back to the state it was in at the last commit
without losing any changes.

We’ve also seen how we can reset back to any other commit in our history. It’s
very important to remember, however, that anytime there is a history re-write
capability, we should be very careful not to do this against a commit history
that is public.

We wrapped up the activity with a look at using the [git clean] command to
clear out our working directory of files that are untracked, which can happen
on a hard reset when we’ve added files, or a build added files, etc.

It is equally important to remember that a git clean operation is destructive to
our working directory, so we examined the --dry-run capability, as well as doing
an interactive clean with the –i flag.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

