GIT: From Beginner To
Fearless

GIT Reflog Activity:
A simple exercise using git reflog

Brian Gorman, Author/Instructor/Trainer

©2109 - MajorGuidanceSolutions

GFBTF — GIT Reflog Activity | Page 1 of 7 https://www.majorguidancesolutions.com
&
./__)

'IAJOR GLIDANCE

Introduction

In life, things go wrong. In GIT, if you do something that somehow messed up your repo (which is not that easy to do), along
comes REFLOG to save the day.

If you’ve seen any of the videos for the course where | use GitViz, or have worked through other activities where a branch was
deleted, commits were reset, amended, or otherwise became ‘unreachable.” When we look at regular log in GIT, an
unreachable commit is not listed. However, the reflog shows us everything that we have in cache for our current repository.
And, to answer your question -> Yes, GitHub has a reflog as well. However, | believe that using the GitHub reflog would
require using the GitHub API, and that is outside the scope of what we are covering in this course.

For this activity, we’re going to take a look at our local reflog and see how we can glean information from it, as well as how
that information is useful to us when things are not quite going the way we’d have liked them to.

Let’s gets started!

GFBTF — GIT Reflog Activity | Page 2 of 7 https://www.majorguidancesolutions.com
o

I'IAJOR BLIDANCE

GFBTF: Git Reflog Activity

Notes
a) Inorderto do this activity, you should be on an active local repo that
has a chain of commits.
If you don’t have an active repo with a few commits, then take a moment right
now to create a local repo that has 5-10 commits. Make sure to also do a few
things like switch your branch a couple of times. If you want to get even more
ambitious, do some amend, rebase, revert, and/or reset operations.
b) Reviewing the reflog
To take our first look at the reflog, simply enter the command:
[git reflog]
Note: Your reflog will undoubtedly be different — but also similar to this:
/g/Data/GFBTF/Defaultweb (master)
$ git reflog
f2746¢c6 (HEAD -> master) HEAD@{O0}: commit: Added the files from the release
HEAD@{1}: commit: added pattern for gitIgnore on [Bb]in/**
HEAD@{2}: commit: Continuing with the .gitIgnore activity
HEAD@{3}: commit: Added the 1important resource files
HEAD@{4}: commit: changes to tracked file in ignored folder are stil
: commit: added the local gitIgnore file
: commit: added info.txt during gitIgnore Activity
: reset: moving to head
: commit: Added the h4 tag change
HEAD@{9}: commit: Added the h3 tag for upcoming_changes
HEAD@{10}: commit: Added an h2 tag to the details page
HEAD@{11}: reset: moving to head
HEAD@{12}: reset: moving to head
HEAD@{13}: commit: Added the rest of the files
HEAD@{14}: commit (initial): Added the About.html file
Here, | have some 15 objects in my reflog, and these are mostly commits and
resets. Had | switched branches, that would show here as well.
Note that each commit has the commit message, which can be useful.
Additionally, the commit SHA1 that tracks the action is listed to the left. For
example, | “added the rest of the files” to commit 874d595, then did stuff and
reset back to it two more times. Pretty cool to see this.
Note that each entry has “HEAD@ {n}”. This means we can start the list from
any place (for example if you had 100 reflog entries, you could start at 50).
Something similar to this:
[git reflog HEADQR{9}]
/g/Data/GFBTF/Defaultweb (master)
$ git reflog HEAD@{9}
cb5204a HEAD@{9}: commit: Added the h3 tag for upcoming changes
331b291 HEAD@{10}: commit: Added an h2 tag to the details page
874d595 HEAD@{11l}: reset: moving to head
874d595 HEAD@{12}: reset: moving to head
874d595 HEAD@{13}: commit: Added the rest of the files
691692 HEAD@{14}: commit (initial): Added the About.html file
GFBTF — GIT Reflog Activity | Page 3 of 7 https://www.majorguidancesolutions.com

&

'IAJOR GLIDANCE

c) Using time entries to review the reflog
The reflog is powerful in ways that we can check the state of the repo at specific
commits as well as specific times. For example, suppose you want to see the
reflog for some time periods. You know you had a branch 2 days ago:

[git reflog HEAD @{2.days.ago}]

/g/pata/GFBTF/Defaultweb (master)
$ git reflog HEAD@{2.days.ago}
f2746c6 (HEAD -> master) HEAD@{wed Jul 5 16:29:13 2017 -0500}: commit: Added the
files from the release folder
f7376?2bTEADm{WEd Jul 5 15:48:33 2017 -0500}: commit: added pattern for gitIgnor
e on [Bb]in
524f0f7 HEAD@{Wed Jul 5 15:41:36 2017 -0500}: commit: Continuing with the .gitIg
nore activity I
Oazis?e HEaD@{wed Jul 5 15:22:56 2017 -0500}: commit: Added the important resour
ce files
43239f4 HEaD@{wed Jul 5 14:38:31 2017 -0500}: commit: changes to tracked file in
ignored folder are still tracked
21%4e71 HEAD@{wed Jul 5 14:31:11 2017 -0500}: commit: added the local gitIgnore
ile

Here you can see that this repo is actually quite a bit older. If your repo is
newer, then it becomes more useful. Here are some of the different time
constraints we can use:
{1.minute.ago}...{2.minutes.ago}...{253.minutes.ago}...{<n>.minutes.ago}
{1.hour.ago}...{2.hours.ago}...{n.hours.ago}
{1.day.ago}...{2.days.ago}...

{yesterday}
{1.week.ago}...{2.weeks.ago}...{n.weeks.ago}
{n.month(s).ago}

{n.year(s).ago}

And specific date {yyyy-mm-dd.hh:mm:ss}

[git reflog HEADE{2017-07-05.11:51:38}]

GFBTF/Defaultweb

refWog HE
EAD ! 3 500}: commit ed the h4 tag change
vad 0 0500}: commit: the h3 tag for upcum1n? [EGTEE
commit: an h? tag to the detai page
set: moving to head
set: o head
0}: commit: 1 the rest of the files
0}: commit (): Added the About.html file

Note, if you try a date prior to the repo, GIT will yell at you and tell you that
there are no such entries

[git reflog HEAD@{4.years.ago}]

/g/Data/GFBTF/Defaultweb (master)
$ git reflog HEAD@{4.years.ago}

wvarning: Log for 'HEAD' only goes back to wed, 5 Jul 2017 09:56:05 -0500.

a) Find a couple of entries in your reflog to compare by index
If you don’t have a lot, then you will want to create some.

[git diff HEAD@{9} HEADQ{3}]
[git difftool HEADQ@{9} HEADQR{3}]
/g/Data/GFBTF/Defaultweb (master)

$ git difftool HEAD@{9} HEA

//shows a bunch of changes so we can see the differences between the two
commits

GFBTF — GIT Reflog Activity | Page 4 of 7 https://www.majorguidancesolutions.com

&

'IAJOR GLIDANCE

mailto:HEAD@%7b2.days.ago%7d
mailto:HEAD@%7B2017-07-05.11:51:38%7D
mailto:HEAD@%7b4.years.ago%7d

b) Compare the differences in a repo over a timespan
[git diff HEAD@{1l.day.6.hours.ago} HEADQ@{14}]
[git difftool HEADE{1.day.6.hours.ago} HEADQ@{14}]
//more differences
[git diff HEADQR{1l4.days.22.hours.ago} HEADQ{l.minute.agol}]
[git difftool HEAD(@{84.days.ago} HEAD@{now}]
//etc. You can keep playing with this as you would like.

c) Checkout a reflog
[git reflog]

b (m
reflog . -
746c6 (HEAD mas @ checkout: moving from c8

to HEAD@
ed the files fr
itIgnore on [Bb]

commit: Continuing with the .gitIgnore activit
commit: Added the important resource files
commit: changes to tracked file in ignored folder are still tracked
commit: added the local gitIgnore file
commit: add

reset: r
commit: Added the h4 tag change

i d the h3 tag for upcoming changes
Eag to the details page

to
ng to head
commit the rest of the files
}: commit (initial): Added the About.html file

Assume for some reason you need to go back to HEAD@{10}

[git checkout HEADQ@{10}]

/g/Data/GFBTF/Defaultweb (master)
$ git checkout HEAD@{10}
Note: checking out 'HEAD@{10}'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to_create a new branch to retain commits you create, you ma
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at c8672c8... Added the h4 tag change

/g/Data/GFBTF/Defaultweb ((c8672c8...))

$ |
If we wanted to do anything, we could checkout a branch from here to create a
new commit, etc.

9

: n 72c878f2
movi er to HEAD@
{ : Added the fil from the rele
commit ed pattern for gitignore on [Bb]in/#**
commit: Continuing with the .gitIgnore
2a8de HEA commit ed T important resource fi

Note we can see the movement.
Go back to master
[git checkout master]

GFBTF — GIT Reflog Activity | Page 5 of 7 https://www.majorguidancesolutions.com

&

'IAJOR GLIDANCE

mailto:HEAD@%7b1.day.6.hours.ago%7d
mailto:HEAD@%7b1.day.6.hours.ago%7d
mailto:HEAD@%7b14.days.22.hours.ago%7d
mailto:HEAD@%7b1.minute.ago%7d
mailto:HEAD@%7b84.days.ago%7d

There are many times when we rewrite history, drop branches, or perform
other various operations in GIT which end up “orphaning” a commit.
Essentially, the commit is in a state that is referred to as “unreachable.”
Keeping these commits around is not always a bad idea (as long as they are
around we can checkout the commit and work with it). However, there are
other times when you just want to clean up or perhaps the unreachable
commits are getting very stale. In these cases we want to cleanup the
unreachable commits at a certain expiration date.

a) Cleanup anything older than 14 days
[git reflog expire --expire-unreachable=14.days.ago -all]
[git gc --prune=14.days.ago]

/g/Data/GFBTF/Defaultweb (master)
$ git reflog expire --expire-unreachable=14.days.ago --all

/g/Data/GFBTF/Defaultweb (master)
$ git gc --prune=14.days.ago
Counting objects: 62, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (50/50), done.
Writing objects: 100% (62/62), done.
Total 62 (delta 22), reused 0 (delta 0)

b) Clean up all the loose objects and expired/unreachable commits as of
now

[git reflog expire --expire-unreachable=now --all]

[git gc —prune=now]

/g/Data/GFBTF/Defaultweb (master)
$ git reflog expire --expire-unreachable=now --all

/g/Data/GFBTF/Defaultweb (master)
$ git gc --prune=now

Counting objects: 62, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (28/28), done.
Writing objects: 100% (62/62), done.
Total 62 (delta 22), reused 62 (delta 22)

This concludes our git reflog activity.

GFBTF — GIT Reflog Activity | Page 6 of 7 https://www.majorguidancesolutions.com

&

'IAJOR GLIDANCE

Closing Thoughts

In this activity, we learned about looking into the reflog in order to see the
history of our repo as it has been interacted with at the local level. The reflog Notes
is a powerful tool when you need to find the general commits around a

timeframe or within a few commits.

Once we pull up the reflog, we can easily start comparing the repository on
reflog indexes as well as via timespan queries. This can be very useful when we

need to recover some history that has been incorrectly dropped. Perhaps a
rebase went awry or a cherry-pick missed a commit. We can use the reflog to

look for the lost commits and then can work to restore that commit into our
history as necessary.

We also saw how to do this by performing a checkout directly at any reflog

entry. Once checked out, we enter the detached-head state, where we can
further checkout a branch based on the state of the repo at a particular

moment as shown in the reflog. This would allow us to work from that commit
if we wanted to make further changes from that point in history.

Finally, we saw how we can use the reflog to set unreachable objects to expired

and then run the garbage collector to clean up the expired unreachable
objects. This is a nice way to clean up the unreachable commits, but is

probably not something you will want to do regularly — especially if you might
want to restore a commit from the reflog.

Take a few minutes to make some notes about the various commands we’ve

learned about in this activity, and practice using them.

GFBTF — GIT Reflog Activity | Page 7 of 7 https://www.majorguidancesolutions.com
&
/__J

'IAJOR GLIDANCE

