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EQUATION SHEET

Circle Geometry

Diameter Circumference Area
d=2r C=2nr =nd A = nr? 1 revolution = 360° = 2x radians
Triangle Geometry
Area
Angles Pythagorean theorem c
1 b
A = 5bh 6, + 6, + 6; = 180° c?=a’+ b?
-
a
sin(6) sin(20) = 2sin(0)cos(0)
Trig identities:  tan(0) = sin?(0) + cos?(0) = 1
cos(6) cos(20) = cos?(@) — sin?(0)

Law of sines Law of cosines

a _ b _ ¢ c’= a’+ b? - 2abcos(C)
sin(A) sin(B) sin(C)

opposite adjacent opposite
g %,o sin(@) = s cos(0) = J tan(0) = p!o
"0 Ox otenuse otenuse adjacen
z o hy hy d t
Q. Ys.
o e : : :
O . 6 . +[ opposite : 1 adjacent : 4 [ opposite
Adjacent 6 = sin 6 = cos 6 = tan :
hypotenuse hypotenuse adjacent

Quadratic Formula

Quadratic formula for
ax’+bx+c=0

-b + Jb%-4ac
2a

X =



1D and 2D Kinematics

Variables Sl Unit
delta t time S
Average speed A = final — initial x  horizontal position m
riz
total distance _ . -
Vavg = - Ax = Xy — X, Y  vertical position m
total time
or loci m
AX = X — X, V. velocity 3
a acceleration %
Horizontal motion: Vertical motion: Subscripts
i O initial
Displacement: AX = X; — X; Ay = y; — Y;
f _  final
X | horizontal
AXx Ay
Velocity: vV, = — Vy = — y  vertical
At At
Velocity _ —
(rearranged): Xp= X = VAt ys=Yyi + vyAt
Av, Av,
Acceleration: a, = a, = —=
At At
Acceleration
(rearranged): Vi = Vxi + a5At Vys = vy + a At
Kinematic equations for _ 1 2 _ 1_ .2
constant acceleration: e 2 axt Yi=Yyitv,t+ 2 a,t
2 2
v)%f = v)%i + 2ax(xf - xi) Vyf = Vyi + zay(yf - yl)
Projectile Motion
Range
Range (if y. = yy)
v; sin(0) + ~/(vi sin(0))? + 2gy; vZsin(20)
Ax = v; cos(0) Ax = —

g g



Circular and Rotational Motion

Variables

S tangential position

As tangential displacement
V; tangential velocity
a; tangential acceleration
Circular motion
(tangential description)
Position: S m
Displacement: As = s;—s;, m
As m
Velocity: Vi=— <
At
. Avi m
Acceleration: Qg =—
At s
Kinematic equations 1 5
with acceleration: S =s; + vt + Eatt
2 _ 2
Vig = Vi + 2a.(s; — s))

Newton's 2nd Law of Motion

Newton’s 2nd law of motion

é
Foot = ma or

SF=m3

> : the sum of

S| Unit

m

wl3w|3 3

Variables SI Unit
@ angular position rad
AO angular displacement  rad
W  angular velocity %
A&  angular acceleration %

Conversion
(Angular variable must use radians)

<
s=rb
As = r AO
Vi = rw
a,=ra

>

S

Rotational motion
(angular description)

@ rad
AO = 6;—6;, rad
AO rad
w = S
At
Aw rad
At S
_ 1 .2
ef = 9i + wit + Eat
w? = w? + 2a(6; — 6,

Variables S| Unit
F force N= kgs;m
m mass

a acceleration

v  velocity

w|3 w3 §




Gravitational Force & Weight

Newton’s Law of Universal Gravitation
(gravitational force)

Gmq,ym,

Fg= r2 =F1on2=F20n1

Gravitational field strength
or acceleration due to gravity

GM
9= 7%
r

Gravitational force on mass
in gravitational field

GMm
Fp=mg = Fj= 2

Friction
Maximum static friction force

fS max = “SFH

M, : coefficient of static friction

Kinetic friction force
f. = uF,

M, : coefficient of kinetic friction

Rolling friction force
fl' = "‘an

M, : coefficient of kinetic friction

Constants Unit Name
G 6.67x10™" kgn.‘:z gravitational constant
Variables S| Unit
F, gravitational force N
W  weight force N
m mass kg
M mass producing a field kg
r distance between centers m
g gravitational acceleration %
Weight force
F,=mg or w=mg
Variables Sl Unit
f, static friction force N
f.  kinetic friction force N
f.  rolling friction force N
M coefficient of static friction
M, coefficient of kinetic friction
M, coefficient of rolling friction
F, normal force N



Spring Force

Variables Sl Unit
Spring force Equivalent spring constant  Equivalent spring constant F g N
(Hooke's Law) for springs in series for springs in parallel sp  Spring torce
Fsp — kAx 1 1 . l . keq = ky + ky + ... Ax displacement m
keq k, k, k  spring constant %
Elasticity of Materials
Variables S| Unit
) F force N
“Spring constant”
for a material Elastic Force Stress k spring constant %
K = Y_’:A F = Y—’:AAL £ _ YATL Y, E Young's modulus %2
A cross-sectional area m?
L length m
Torque
Variables S| Unit
Torque T  torque N-m
T=r or T=r,F G i‘D F | force N
CW CCW r distance from rotation axis m
Rotational Dynamics
Variables Sl Unit
Newton’s 2nd law of motion T  torque N-m
applied to rotation
| rotational inertia kg -m?
T=la o 7=l rad
A angular acceleration 2
> :the sum of __
m mass kg
Rotational inertia for a system of masses r distance from rotation axis m
| = Ymir? = mqr? + myrs + myri + ...
Rotational inertia for common shapes:
Solid sphere Sphere shell Solid cylinder Cylinder shell Solid rod Solid rod
(center) (center) (center) (center) (center) (end)
_ 2 2 _ 2 2 1 2 _ 2 _ 1 2 _ 1 2
I—5mR I—3mR I—2mR I = mR I—12 L I—3mL



Center of Mass

x coordinate of center of mass y coordinate of center of mass

of a system

mqxq; + myx, + ...

Xcom = Ycom =

m; + m, + ...

Uniform Circular Motion

of a system

miy, + myy,

m, + m, + ...

Frequency Tangential velocity
1 2nr
f=— V= — v=2nrf
T T

Centripetal Acceleration and Force

Centripetal acceleration

2
é v L)
ac= — (towards center of circle)

v : tangential speed (m/s)
r : radius of circular path (m)

Centripetal acceleration
(other variables substituted for speed)

v2

21 \2
— = w?r = (2rnf)%r = (%) r

dc

w : angular speed (rad/s)
f: frequency (Hz = rev/s)
T : period (s)

F =

C

Variables S| Unit

X  x position m
¥ . Y y position m
m  mass kg
Variables S| Unit
. m
v velocity 3
r radius m
T period S
f frequency Hz=cy§|es
W angular velocity %
Variables SI Unit
m
a. centripetal acceleration &2
] m
a acceleration 2
. m
v velocity ry
r radius m
t time S

Centripetal force

2

v .
m— (towards center of circle)



Orbital Motion

Constants Unit Name Variables S| Unit
3
G 6.67x10" kgnfsz gravitational constant M  planet mass kg
m  object mass kg
Orbital d Orbital period
roita spee e R planet radius m
3
v = ﬂ T=2n I r  orbital radius m
J r GM m
vV  orbital speed <
T  orbital period S
Orbital period for elliptical orbit
Orbital period for elliptical orbit  (assuming M is much larger than m) Fg gravitational force N
3 3 [5 i
a a centripetal force N
r=20 T=o2n |2 °
G(M + m) GM
Kinetic energy of object Gravitational potential Variables S| Unit
in a circular orbit energy of two-mass system
E total energy J
1_,_GMm GMm
K= Zmve = P U, = - p K kinetic enerrgy J
U, potential energy J
Total energy of object
in a circular orbit
GMm
E=K+ U_,= -
9 2r
Kinetic Energy
Variables S| Unit
Kinetic ener
9y K kinetic energy J
1 .2
K = 2 mv m mass kg
V  speed %
Rotational Variables Sl Unit
kinetic energy K..+ rotational kinetic energy J
1
Krot = E’wz I rotational inertia kg .m?
W  angular speed rad

S



Gravitational Potential Energy

Gravitational potential energy

Constants
G 6.67x107"

of a two-mass system

Unit

3

Name

kg -s?

gravitational constant

U, = - GMm Variables S| Unit
r
Ug gravitational potential energy J
U,=0atr=o
M  planet mass kg
m  object mass kg
h . . . .
C ange in gravitational Grawtatlon.al potential energy F distance between centers m
potential energy of an of an object-earth system
object-earth system *relative to a reference point y  height m
AU, = mgAy U,=mgy U;=0aty-= 0 g gravitational acceleration %
Spring Potential Energy
Variables S| Unit
Spring potential
P egangy Usp spring potential energy J
N
k  spring constant —
U, = %ksz m
Ax displacement m
Ax or Ay
Conservation of Energy
Variables S| Unit
E energy J
Conservation of energy
(universe and isolated systems) K  kinetic energy J
AE. ... =0 , Eiotali = Eiotalf U, gravitational potential energy J
U,, spring potential energy J
Work
Variables Sl Unit
Work Work W  work J=N-m
AEysiem = W W = F,d E  energy J
F, : component of force parallel to d F force N
*F is an external force d displacement m

d : displacement of the system



Power

Power Power
AE w

= — P=—= F"v
At t

F, : component of force parallel to v
*F is an external force
v : velocity of the system

Momentum
Momentum Momentum vector components
- — - — —
p=myv P, = My, py = my,
Angular momentum
Ccw CCW
Impulse

Impulse
J=Ap =F, At

avg

F.vq : average force over time

Rotational impulse
AL = 7,,4 At

T,,g - average torque over time

Variables Sl Unit
P power W= %
E energy J
W  work J
F force N
v  velocity %
Variables Sl Unit
P momentum kng
m mass kg
v  velocity %
Variables S| Unit
L  angular momentum kg;mz
| rotational inertia kg -m?
W angular velocity %
Variables S| Unit
J impulse kgT'm=N-S
P momentum kg;m
F force N
t time S
Variables Sl Unit
T  torque N-m
L  angular momentum kg;mz
| rotational inertia kg -m?
rad

W angular velocity S



Conservation of Momentum

Law of conservation of momentum
(universe and isolated systems)

Aptotal =0 1 Ptotali = Ptotal f

Apx total — 0 1 Pxitotal = Pxf total
Apy total — 0, pyi total = pyf total

Law of conservation of angular momentum
(universe and isolated systems)

ALtotal =0 1 Ltotali = Ltotalf C 3
Ccw

CCW

Simple Harmonic Motion

Period of a Frequency of a
mass-spring oscillation mass-spring oscillation

m 1 k

R = 2xlm

Maximum velocity of a
mass-spring oscillation

Vmax=A/£
m

Period of a Frequency of a
pendulum oscillation pendulum oscillation

L 1T /9

T,=2n | = fo=—/[=

g 2nd L

Maximum velocity of a
pendulum oscillation

Vmax = emax ‘ gL

Variables Sl Unit
P momentum kg;m
m mass kg
v  velocity %
J impulse kg;m
F force N
t time S
Variables S| Unit
L  angular momentum kg;mz
I  rotational inertia kg -m?
W angular velocity %
Variables Sl Unit
T  period S
f  frequency Hz = Cyzles
A  amplitude m
m  mass kg
k  spring constant %
U,, spring potential energy J
K  kinetic energy J
Variables S| Unit
T period S
f  frequency Hz = Cyzles
6@ angle rad
L length m
g grav. acceleration %
U, grav. potential energy J
K kinetic energy J



Waves

Variables S| Unit
Speed of a wave A wavelength m
Wave speed Linear density in a string T period s
A m _ Ts f frequency Hz = Cyzles
v=Af=— H T Vstring = | —
! H A amplitude m, ...

v  velocity

Sound
Constants Unit Name Constants Unit Name
b, 1x10" W ihreshold of hearin R 8.3145 - ideal gas constant
0 m? g mol -K
Variables Sl Unit
Speed of sound in a gas v velocity %
YyRT y  adiabatic index
Vsound = Ve
M T temperature K
M  molar mass %
Variables Sl Unit
. . W
Sound intensity Sound intensity level | sound intensity m2
P P power J
| = S°”r°2‘* B=(10 dB)Iogm(Ii) 3
4nr 0 r distance from source m
B sound intensity level dB
Observed frequency, Observed frequency, Variables S| Unit
receding sound source approaching sound source
r F f. source frequency Hz
S S
f, = T+ (v/v) f, = 1= (v./v) f, observed frequency Hz
S S
V. source speed %
m
Observed frequency, Observed frequency, Vo observer speed B
receding observer approaching observer v speed of sound %

f

S

f

fo=<1_ﬁ>5 f°=<1+ﬁ>
v v



Wave Interference

Variables Sl Unit
d in-line path length m
Beat frequency
r radial path length m
fbeat = |f1 - f2|
A wavelength m
m  number of wavelengths
In-line interference: Radial interference:
Constructive interference Constructive interference (point C)
Ad=mA m=0,1,2,... Ar=mA m=20,1,2,...
Destructive interference Destructive interference (point D)
Ad=<m+%>)\ m=20,1, 2, ... Ar=<m+%>)\ m=20,1, 2, ...
Standing Waves
Variables Sl Unit
Both ends are either nodes or antinodes: A wavelength m
Wavelengths Frequencies f  frequency Hz
2L v %
Ap=— m=1,23,... f,=—=m|— =1,23, .. L length m
m A 2L
. m
v  velocity —
S
One end is a node, one end is an antinode: m | mode
Wavelengths Frequencies
A it 1,3, 5 f Y ( Y ) 1,3, 5
=— m=1,3,5, ... = — =m|— =1,3,5,..
" m A, 4L



Fluids

Values Unit Name
Pressure unit conversions: k ]
1 bar = 100.000 Pa Pwater 1,000 Fgg, density of water (4°C)
’ k P
1 atm = 101,325 Pa Pice 916  —5  density of ice (0°C)
1 psi = 6,894.757 Pa Pmerc 13,600 % density of mercury (0°C)
1 torr = 1 mmHg = 1/760 atm = 133.322 Pa
1inHg = 25.4 mmHg ~ 3,386.38 Pa atm 101,325 Pa  standard atmospheric pressure
1 inH,0 = 2.54 cmH,0 = 249.082 Pa g 9.8 % gravitational acceleration
Density Pressure Variables SI Unit
m F P... absolute pressure Pa
p== P=—
% A Pgy.uge gauge pressure Pa
Po reference pressure Pa
P.., atmospheric pressure Pa
Absolute pressure vs gauge pressure
Variables Sl Unit
P.ps = Pgauge + P <+—» Pgauge = Pps — Py kg
density —
P, is usually P, (1 atm) P m’
m mass kg
V  volume m?3
Absolute pressure at Gauge pressure at Pressure difference P pressure Pa= ﬂz
depth below surface depth below surface  between two depths m
F force N
Pabs=pgh+P0 Pgauge=pgh AP:pgAh
A area m?2
h depth m
m
v velocity —
Buoyant force on S
object from fluid t time S
Fg = psVig Y height m

Conservation

Flow rate of flow rate

|4 Av,. = A,v
2 = Av 1V1 2V2
At

Bernoulli’'s equation

P+ pgy + %pv2 = constant

Torricelli’'s theorem

v=4J2gAy

1 1
Py + pgy, + 3pvi = P, + pgy, + 5pV;



S| Units and Prefixes

S| Units
Length [FRRRRRRNRY
Mass ﬂ
Time D
Temperature i

00000
Amount of substance ©€Q0%©
e 8580

Electrical current (00 0 =

\I/

_@_

Light intensity

Unit Conversion

meter
kilogram
second
kelvin
mole
amp

candela

mol

cd

BASICS

Prefix Symbol
tera- T
giga- G
mega- M
kilo- k
hecto- h
deka- da
deci- d
centi- o
milli- m
micro- M
nano- n
pico- p

Example: Convert 1 day into units of seconds

Exponent Decimal
10'2  1,000,000,000,000
10° 1,000,000,000
10° 1,000,000
103 1,000
102 100
10’ 10
10° 1
107 0.1
102 0.01
103 0.001
10°  0.000001
107  0.000 000001
102 0.000 000 000 001

Word
trillion A
billion
million

thousand Blg
hundred

ten

one

tenth
hundredth
thousandth Small
millionth

billionth
trillionth \ 4

1. Find the equal amounts (the relationships) for the units that you're working with
2. Write the starting amount
3. Multiply by the equal amounts as fractions
4. Cross out units that are on both the top and bottom of the list of fractions
5. Multiply the numbers to get the final amount, which will have the units that are remaining
1 day 24 hours 60 minutes 60 seconds 86,400 seconds
— X — X X =
1 day 1 hour 1 minute

Starting Amount Equal Amounts Final Amount

Scientific Notation

3800 0.00024
1. Move the decimal until there is only 1 number 3.8.0.0. O O O g\% 4

i AR A NN
to the left of it 7 34

1
2.4x10

How to write a number in Scientific Notation

2. Write down the new number and “x 10"

3. Count how many times you moved the decimal

\_/\./\./ N NN )
3 1 2 3 4
left + 4— —» right -
4. Write that number as your exponent 3 -4
- If you moved the decimal left, the exponent is positive 3'8 X1 O 2.4 "1 O

- If you moved the decimal right, the exponent is negative



Order of Operations ,
- (2-1)(1+3)  (5-2)

PEMDAS Parentheses X > + 8-5) -
2
Please Excuse My Dear Aunt Sally Exponents X = (1)(4) + 3 — 1
2 3
1. Parentheses  (1+2) a9
) 2. Exponents 32 Multiplication X = 2 + 3 -1
3. Multiplication  (2)(4) A o
: 4. Division % Division X = E) - 3 1
5. Addition 342
. Addition, Subtraction x =2 + 3 = 1
6. Subtraction 3-2

Solving Equations

Do the same thing to both sides of the equation: Example: Solve for m
Given: F=ma, F=10, a=2

@ Rearrange the equation,

Left Right then plug in numbers
F=ma
5+x=12 o
Rearrange F Divide both
Subtract5 54 x-5=12-5 Subtract5 equation - m sides by a
x=17
Plug in (1 0) _
numbers (2) =m
2x = 8 S=m
Divide by 2 2x = 8 Divide by 2
Plug in numbers, then
x=4 g .
rearrange the equation
F = ma
1=1
Add5 6=6 Add5 Plug in —
numbers (10) = m(2)
Multiply by 3 18 =18 Multiply by 3
Divide bv 2 9=09 Divide bv 2 Rearrange _ Divide both
g g equation S=m sides by 2



The Quadratic Formula

x : any unknown variable

. _ 2 _
If an equation is in this form: ax“+ bx + ¢=0 a. b, c: constants

- 2 _
Quadratic Formula X = b + ‘/b 4ac
2
-b + Jb?-4ac a
the two solutions (values) of xare: x = or
2a -b — Jb?-4ac
X =
2a

* Some physics equations require you to solve for an unknown variable in a quadratic equation. If you need to solve
for the variable by hand (without having a calculator solve it for you), use the quadratic formula.

® Rearrange the equation so it matches the form shown above where each term is added together. If there is no
constant in the place of a or b then the constant would be 1. If a term is being subtracted then change the
equation so you're adding a negative term.

® There will be two solutions: one solution when using the “+” and one solution when using the “-" of the “+". Both
solutions may not be possible values for the physical quantity being represented, so double check the solutions.

Example: —
8= 24 5¢— 2 L5 J(-5)2—4(1)(6)

2(1)
t?-5t+6=0 t=3

(1)t° + (-5)t + (6) or
VooV Y , _ Z(:5) — V(:5)* - 4(1)(6)

at? + bt + c 2(1)

Il
o

Il
o

t=2



Circle and Triangle Geometry

6, +6,+06,=180°

C d=2r
/ r ® = 1 radian 1
C=2nr =nd - Area—i
d
U A = nr? T

r : radius C : circumference 1 revolution = 360° = 2x radians 0, 05
d:diameter A: area -

Right Triangle Trigonometry

8 SOH _ CAH _ TOA Pythagorean Theorem
a Sine Cosine Tangent c? = 3%+ b2
8‘ Opposite Adjacent Opposite
Hypotenuse Hypotenuse Adjacent
Adjacent
Opposite Opposite
sin(0) = PP 0 = sin'1< PP ) = arcsin()
Hypotenuse Hypotenuse
Adjacent [ Adjacent
cos(0) = @ = cos’ = arccos( )
Hypotenuse Hypotenuse
Opposite Opposite
tan(0) = p!o 6 = tan'1< p!o ) = arctan()
Adjacent Adjacent
Trigonometric Identities and Laws
sin(6) sin(20) = 2sin(6)cos(6)
tan(0) = sin%(0) + cos?(@) = 1

cos(0)

cos(20) = cos?(0) — sin?(0)

Law of sines .
Law of cosines

a : b : C
sin(A)  sin(B)  sin(C)

c’= a%?+ b%? - 2abcos(C)




Special Triangles

45-45-90 triangle 30-60-90 triangle
xJ2 x [#°7 N\« 0\, 15 30°\
X T X X
2 x3 —
2
45°
. X 60° 60°
2 x X
2
Vectors
A A : magnitude
y A, : x component

A,: y component

Magnitude and direction:

e A vector is a quantity that includes a magnitude and a direction. Some

o
examples of vector quantities are displacement, velocity, acceleration and force. 100 m, 30
* Vectors can be represented graphically as arrows and the x and y components Components:
represent the amount of the vector that points in the x and y directions. (87 m, 50 m)
I

* The magnitude is the value of the vector (which is always positive) and is " ~
represented by the length of the vector arrow. 87 m i+ 50mj

* The direction of a vector is usually described as an angle.

* A vector and its components form a right triangle so we can use right triangle
geometry to find the magnitude, angle and components.

e Each vector can be fully described using either the magnitude and direction, or
the combination of the x and y components.



Vector Angles - Using Compass and Other Directions

- = == horizontal, horizon

N 40°

60° north of west A 40° north of east
30° west of north 50° east of north

40° below the horizontal

30° above, from or relative

W « » E vertical to the horizontal
60° to the right of, from or
E relative to the vertical
60°

20° south of west 45° south of east 30° horizontal
70° west of south 45° east of south horizon

\ 4 ground

S

e If an angle is described as “40° north of east” we can imagine a vector that points in the east direction and then
rotates 40° so it also points towards the north direction.

n n

* An angle can be described relative to a horizontal line referred to as “the horizontal”, “the horizon” or sometimes

|II

“the ground” depending on the scenario. An angle can also be described relative to a vertical line or “the vertical”.

Vector Angles - Using Convention

>

Reference angles:
smallest angle between
vector and x axis,
always positive

Positive angles:
counterclockwise

e/“ie from the +x axis

Zo Negative angles:
clockwise
from the +x axis

A vector’s angle is measured
at the start of the vector

ty ty ty
A A
00 -270° e 90° 180°
—Pp +x -x <« \D -xX < v » +X (9—>+x
_1 800 2700 '900
v \
"y -y

® The conventional way to describe the angle of a vector is counterclockwise from the positive x axis (0° to 360°).
e If an angle is negative then the angle is clockwise from the positive x axis (0° to -360°).

e |[f a vector’s angle is described using a single value with no other information (such as “60°") or if the angle is
greater than 90°, then the angle is likely the conventional angle.

e This conventional angle (positive or negative, -360° to 360°) can be used with the sin() and cos( ) functions to find
the x and y components of the vector, and it will result in the correct +/- signs for the component directions.



Finding the Components of a Vector

Using a reference angle:

A, = Acos(0)
A, = Asin(6)

A, = Asin(0)
A = Acos(6)

Ay

!
o

e A vector and its components form a right triangle: the magnitude of a vector is the length of the hypotenuse, and
the x and y components are the two legs.

* The angle between the vector and the x component is often used but not always, so don’t memorize if the x or y
components go with sin() or cos( ), just remember how to use the right triangle trig functions.

Using the conventional angle:

(2]
O
n
2
+

-360° -270° -180° -90° 0° 90° 180° 270° 360°

+  + + . +

A, = Acos(0)
A, = Asin(0) -6

* The conventional angle (-360° to 360°) can be used with the sin() and cos( ) functions to find the components of the
vector with the correct +/- signs for the component directions, regardless of the vector’s angle.

® The x component uses cos( ) and the y component uses sin( ).

Finding the Magnitude and Angle of a Vector

Note: Plug positive values into the tan™'( ) function and the result will be a positive reference angle

* Use the Pythagorean Theorem to find the magnitude of the vector which is the length of the hypotenuse.

* The inverse tan( ) relationship can always be used to find the angle, but once we know the components we can also
use one of the other inverse trig relationships.



Adding Vectors Graphically Using the Tip-to-Tail Method

Tip (end)

/ Tip (end) B
Tail (start) A Tail (start)

Resultant vector C=A+B

* We can add vectors graphically by drawing them out using the tip-to-tail method.
* The tail is the start of the vector and the tip is the end of the vector (the tip of the arrow).
* Each new vector to be added starts at the tip (end) of the previous vector.

* The resultant vector is the sum of the other vectors and it points from the tail (start) of the first vector to the tip
(end) of the last vector. Any number of vectors can be added together in this way.

A and B
A added tip-to-tail

Adding Vectors Using Components

>

oy

<

>
. . . . = -

* Find the x and y components of each individual vector, add the C=A+
x components together, then add the y components together. N N
* Note that a vector is the sum of its 2 component vectors. C,=A
C,=A

C =C,+C,



Negative Vectors and Subtracting Vectors

>
>
|
o]

* The negative of a vector has the same magnitude but the opposite direction as the original vector.
e Adding a vector with its negative results in the 0 vector so they “cancel” each other.
e Subtracting a vector is the same as adding its negative vector.

Multiplying and Dividing Vectors by a Scalar Value

* Multiplying or dividing a vector by a scalar (a number) ® The components are each scaled (multiplied
scales the magnitude (length) of the vector but doesn’t or divided) by the same value as the vector.
change its direction (angle).



1D MOTION (LINEAR MOTION)

Variables and Kinematic Equations

Variables SI Unit .
Variable .
t time S v |
X  horizontal position m < f
y vertical position m Subscript
o m " . . u
v  velocity < horizontal velocity
i m
a acceleration 2

Horizontal motion

®
-X{m) €« | » X m
(m) 4—— — (m)
Displacement: Ax = X; — X;
Velocit ox
elocity: vV, = —
y x = At
Velocity _
(rearranged): B0 e VR
Av,
Acceleration: a, =
At

Acceleration
(rearranged):

Kinematic equations for
constant acceleration:

Vs = Vv, + aAt

1axt2

X;= X; + vt + >

2 _

2
Vis = Vi + 2a,(x; — Xx;)

X

y

Subscripts delta
0 initial A = final — initial
final
Ax = X; — X;
horizontal or
vertical Ax = X = Xo

Vertical motion

y (m)

<
Il

y; + v At

5 =Avy
Y At

vy = v, + a At
— 1. ;2
yi=yi tv,t+ ant

v2

yf = Vsi + 2a,(ys — yi)

* The kinematic equations for horizontal motion and vertical motion are the same, but we use different variables and
subscripts to represent the different directions. Any equation can be rearranged algebraically.

e “A_"and"”_;— _," are interchangeable. “t” and “At" are often used interchangeably.



1D Motion (Linear Motion)

Horizontal motion Vertical motion
y (m)
A
2 +
e
-X({m) €— 4 4 4 4 ' 4 4 4 4 —P» X (m i
()-10-8-6-4-20246810 (m) 0
_1 +
-2+
* 1-dimensional motion (1D motion or linear motion) is a category of motion . /
where an object only moves along a straight line, in either direction. -y (m)
* The x axis is typically used to describe horizontal motion and the y axis is
typically used to describe vertical motion.
Average Speed
300 km
Vavg = —0—— = 60 km/h
5 hours
Average speed : l
total distance 150 km 150 km
Vovg = ——— = 3 hours ——— = 2 hours
9 total time - 50 km/h - 75km/h |
50 km/h ey 75 km/h
vi t+ v, (50 km/h) + (75 km/h)
vavg # 2 vavg # 2 - 62.5 km/h

* The average speed of an object over some period of time is the total distance traveled divided by the total amount
of time. The average speed is not the average or mean of the different speeds during that period.

* Average speed is the “time-weighted-average speed” where each of the different speeds is weighted based on the
amount of time spent traveling at that speed (instead of the amount of distance traveled at that speed).

Scalar and Vector Quantities

de
magn\'\'.u
(value: length) rection
Scalars Vectors / _-p dire
P
distance displacement displacement velocit acceleration
5m 5 m in the north direction P y
2 km 2 km in the +x direction d v a
- > >
speed velocity 3 m/s
8 m/s 8 m/s to the left TZ m 4_/ 9.8 m/s?
60 km/h 60 km/h in the east direction

* A scalar quantity includes only a magnitude (a value) and no direction. Distance and speed are scalars.
* A vector quantity includes both a magnitude and a direction. Displacement and velocity are vectors.

e When a vector quantity is represented using an arrow, the length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector.



Motion Graphs

velocity = acceleration =
slope of slope of
position graph velocity graph
Position Velocity Acceleration
A A A
20 20 20
15 / 15 o 15
x (m) 10 v (m/s) o a (m/s?) 10
5 5 5
Tz 3 > % Tz 3 > Tz 3 >
Time, t (s) e — Time, t (s) “_ — Time, t (s)
A position = A velocity =

area under

area under

velocity graph acceleration graph

* A motion graph shows an object’s position, velocity or acceleration over time.

* The instantaneous slope of the position graph (the slope at a single point or instant in time) is the instantaneous
velocity of the object at that time. Using calculus, velocity is the derivative of position with respect to time.

® The area under the curve of the velocity graph for a period of time (the area between the graph line and the
horizontal axis between two time points) is the displacement or the change in position of the object during that time
(areas above the horizontal axis are positive and areas below the horizontal axis are negative). Using calculus, the
change in position is the integral of velocity with respect to time.
* The instantaneous slope of the velocity graph is the instantaneous acceleration of the object.

* The area under the curve of the acceleration graph for a period of time is the change in velocity during that time.

Examples of motion graphs:

Position Velocity Acceleration
2
A X (m) AV (m/s) A 3 (m/s?)
20 20 20 0s,1s,2s,3s
Constant 15 15 15 oo
Position 10 10 10 | . : : : —> X
(non-zero) S 5 5 Om 5m 10m 15m 20m 25 m
== ‘o> T
Time t(s) Time t(s) Time t(s)
A A A
20 20 20
Constant 15 15 15 0s 1s 2s 3s
Velocity 10 10 10 arem——— X
I i i } } +—p
(non-zero) > > > Om 5m 10m 15m 20m 25m
=7 % T3> ‘o>
Time t(s) Time t(s) Time t(s)
A A A
20 20 20
Constant 15 15 15 O0s 1s 2s 3s
Acceleration 10 10 10 : , . . > X
(non-zero) 5 5 5 Om 5m 10m 15m 20m 25m
== % T3> ‘o751
Time t(s) Time t(s) Time t(s)



Instantaneous vs Average Velocity

Instantaneous velocity

X (m)
A Position-time graph
20 1 slope:
18 4 12m/s —p
16 ¢4
14 ¢
12 4
slope:
10 ¢+ 8 m/s
8 4
6
4+
2
' —p t (s)
0 1 2 3
Instantaneous
t X v
Os Om 0
1s 2m 4
2s 8 m 8
3s 18 m 12
Om/s 4 m/s 8 m/s 12 m/s
—> — —
Os 1s 2s 3s
’ ' ' + —» X (m)
0 5 10 15 20

* Instantaneous velocity (or instantaneous speed) is the
velocity of an object at a single instant in time.

e It is represented as the instantaneous slope of the
position-time graph at a single point.

Average velocity

x (m)
A Position-time graph
20 ¢
18 1
16 ¢+ average slope:

10 m/s

14 t \

12 +

10 + :
average slope:
81 6 m/s

pV

6+
average slope:
4 - 2 m/s
2.. -------- 4
0 ' —p» t (s)
0] 1 2 3
Average
t X v
Os Om
1 , }(2m-0m)/(1s)=2m/s
25 8m }(8m-2m)/(1s)=6m/s
> 2 Y (18 m-8m)/(15s)=10m/s
3s 18 m
6—m=6 m/s
1s
2—r:=2m/s / %=10m/s
[ 4 W L L}
Os 1s 2s 3s
’ ' ' + —» X (m)
0 5 10 15 20

* The average velocity (or average speed) of an object
is the displacement divided by a period of time.

* It is represented as the average slope of the position-
time graph for a period of time (between two points).



2D MOTION

Variables and Kinematic Equations

Variables Sl Unit Subscripts delta
Variable . - e . . el
t time s i O initial A = final — initial
X  horizontal position m X <} f _ final AX = X; — X;
y vertical position m Subscript x  horizontal or
. AX = X — Xgq
vV  velocity % “horizontal velocity” y vertical
. m
a acceleration 2
y (m)
A
34
24

An object's x motion
and y motion are 1.
independent of each other

Vertical motion Horizontal motion
Displacement: Ay = y;— y; AX = X; — X;
: Ay Ax
Velocity: vy = — v, = —
At At
Velocity —
(rearranged): ys=Yyi t VyAt Xg = Xx; + VXAt
Av, Av,
Acceleration: a, = —= a, =
At At
Acceleration
(rearranged): Vys = Vy; T ayAt Vif = Vi T a,At
Kinematic equations for _ 1 2 _ 1 2
constant acceleration: Yi=Yit vyt + ant Xp= X+ Vit + Eaxt
2 2
vif = vii + Zay(yf - yl) Vxf = Vxi + 2ax(xf - xi)



* An object’s x motion and y motion are completely independent of each other, so the x and y motions can be
described separately. The kinematic equations for an object in 2D motion are just a combination of the 1D kinematic
equations for horizontal motion and vertical motion.

* When starting with a 2D displacement, velocity or acceleration vector, the vector can be broken down into its x and
y components and the kinematic equations apply to the x and y motions separately.

* When starting with separate x and y motions, a 2D displacement, velocity or acceleration vector can be found by
combining the x and y motion components.

2D Position and Coordinates
2D coordinate system

Coordinates (Cartesian coordinate system)
(x,y) +y (m)
(x position, y position) A
34
e |[f an object is in two-dimensional (2D) motion it has an x 21 (2,1)
position and a y position at every moment in time. J . 1 £
* The position of an object or a point in 2D space is orngmn ‘*ij
described using coordinates on a 2D plane (known as a -x (m) <« » x (m)
Cartesian coordinate system). -3 -2 -1 1 2 3
* Coordinates are a pair of values: the first value represents (-3,-2) 11 (1,-2)
the position of the object along the x axis, the second 21 (M
value represents the position along the y axis. /
® The axes of the 2D coordinate system are just like the x -3¢
and y axes from linear (1D) motion. v
* The origin of the coordinate system has coordinates (0, 0). -y (m)
2D Displacement Vectors
Displacement vector
y (m) (();f’ é/‘;) Magnitude and angle: X component
A ' 2 2
54 d = Jax® + ay x displacement
Magnitude ? [ By
4 4 | 6 =tan"' | — AX = Xz — X;
' AX
1Ay = 3 m
31 ! 5m, 36.9°
Yy component
'
24  Leec-lbcecccaoao-- > Components:
— Yy component
(1,2) Ax = fm Ax = d cos(6) .
11 (x,y) Xcomponent Ay = d sin(6) y displacement
0 \ | | | | —» x (m) Ax =4m, Ay =3 m Ay = y: — vy,

o 1 2 3 4 5 6

* When an object moves in 2D its x position and y position both change, so it has an x displacement and a
y displacement at the same time. The 2D displacement is represented with a vector connecting the initial and final
positions, and the x and y displacements are the components of the displacement vector.

® The components of the displacement vector (the x and y displacements) can be calculated using the initial and final
coordinates, or using the magnitude and angle of the vector. The magnitude and angle of the vector can be
calculated using the x and y components.



Velocity Vectors

y (m) :
A Instantaneous velocity vectors
4+
Constant
34 velocity
4 m/s
24
Constant
14 velocity
2 m/s
0 \ \ \ \ \ \ \ \ \ —» x (m)
0 1 2 3 4 S 6 7 8 9 10

* In 1D and 2D motion, the velocity of an object can be represented using a velocity vector.

* This is usually representing the instantaneous velocity of the object: the magnitude (speed) and direction of the
velocity at an instant in time, as opposed to an average velocity.

* When comparing the lengths of several vectors, the length of the vector represents the magnitude of the velocity
(the speed). Otherwise, the length of the velocity vector is arbitrary.

2D Velocity Vectors

y (m) Velocity vector X component
A Magnitude and angle: x velocity
? ? v=1Jvi+ V] Ax
® Magnitude = —
< | 9 ' V,
& =2m/ : 0 = tan™ hd, at
N v=<omis ‘v, = 1.7 m/s - Vy
' ! o
Il !y component 2m/s, 60
>
> , y component
' Components:
v, = v cos(0) y velocity
v, = vsin(0) - A_y
v,=1m/s, v, = 1.7 m/s y
> x (m) ’ at
------- >
v, = 1m/s

* When an object moves in 2D its x and y positions are changing at the same time, so it has an x velocity and a
y velocity at every moment. The velocity is represented as a vector, and the x and y velocities are the components.

* The velocity components can be thought of as the velocities of the object’s shadows along the x and y axes.

® The components of the velocity vector (the x and y velocities) can be calculated using the magnitude and angle of
the vector. The magnitude and angle of the vector can be calculated using the x and y components.



PROJECTILE MOTION

Projectile Motion

projectile *no air resistance*

. Acceleration
X S trajectory due to gravity:

-g =l—9.8 m/s?
X

* Projectile motion is the motion of an object while it's only being affected by gravity and no other forces. An object
is only in projectile motion while in the air, not when it's touching the ground or other objects.

e Also referred to as “free fall” (although “free fall” may only refer to 1D projectile motion).

» The vertical acceleration is the acceleration due to gravity, g = 9.8 m/s?, which always acts downwards.

» There is no horizontal acceleration so the horizontal velocity is constant.

» The object in projectile motion is called a projectile and the path is called the trajectory.

Initial Velocity Vector

v, = 0m/s 2 Vi =0m/s 0
| |
. . V: V..:
Vi Vi Vi Vi | Y
> &----r v . & v, =0m/s
Vi - _ Yy
cos(0) v v,
V,; = V; cos(0) Vyi = v;sin(6)
*cos and sin are reversed if the other angle is used
Example:

V,; = V; cos(0) Vyi = V;sin(0)

5m/s .
Vi = (5 m/s)cos(60°) v, = (5 m/s)sin(60°)
vV, = 2.5 m/s v = 4.3 m/s

e The components of the initial velocity vector are the initial horizontal velocity and the initial vertical velocity.

* The angle is usually between the vector and the horizontal component but double check which angle is given
before using the trig functions (cosine for the adjacent component and sine for the opposite component).

o If the vector is vertical or horizontal then the parallel component is equal to the vector (and the other is zero).

* The initial horizontal velocity will be the horizontal velocity for the entire motion.

e The initial vertical velocity can be used with the vertical motion kinematic equations.



Kinematic Equations and Variables

Variables Sl Unit Subscripts delta
t  time s variable i 0 initial A = final — initial
—1> :
X  horizontal position m vx 4— f _ final AX = X; — X;
Y  vertical position m subscript x  horizontal or
. — “horizontal velocity” y  vertical AXx = X — X
v  velocity 3
) m
a acceleration 2
1D projectile motion 2D projectile motion
*The vertical and horizontal motion are independent
+_y +y
- . = - 2 =
A a, = -g = -9.8 m/s? A lay g =-9.8m/s a, =0
Vx = Vyi
t;
Vy| o Y o ti Vy| o Yi O e
t t
vy; YI—< vy; y -
t Yot vliv =v ) I 4 ot
Vy: y Vy:
\/ \/
t Yot t Yy ot
| i |
! ! X: X X X S
Vy. Vy, i
' ' P P =P &-=-P
v v Xi Vx Vx Vx
Vertical motion: Horizontal motion:
Displacement: Ay = yi — Y; Displacement: Ax = x; — X;
Av, AXx
Acceleration: a, = — Velocity: v, = —
At At
Acceleration _ Velocity _
(rearranged): Vys = Vyi + ayAt (rearranged): X; = X; + v, At

Kinematic equations for

1_ .2
. — . + T 4+ —
constant acceleration: i Yi VY't 2 ayt

fo = Vfi + 2a,(y: — y;)

* 1D projectile motion only includes motion in the vertical (y) direction and 2D projectile motion includes motion

in the vertical (y) direction and the horizontal (x) direction.
e Like with any 2D motion, the horizontal and vertical motions (x and y motions) are independent from each other

and we use separate variables and equations for each direction.



Range

Steps for finding the range:
1. Find the initial horizontal and vertical velocity components, v,; and v,;

2. Find the time in the air from the y motion using this equation: y; = y; + v;t + antz

2. Use that time to find the range (horizontal displacement) using this equation: Ax = v, At

Range:
(if y; = yy)
vi' sin(26) Omax range = 45°
X = .
g (if yi = y3)
Vi
9.

Range

* The range of a projectile motion is the horizontal distance (Ax) traveled by the projectile.

e The range depends on the initial speed, initial angle, initial height and final height.

e If the initial and final heights are the same (like if a projectile starts and ends on the ground) then an initial launch
angle of 45° will result in the maximum range (for any given initial speed). The range decreases as the angle moves
farther from 45°. Two angles that are the same amount greater than and less than 45° (such as 30° and 60°) will
result in the same range as each other.

e If the initial height is greater than the final height, the angle corresponding to the maximum range is less than 45°.



Motion Graphs

Here are some example graphs for the projectile motion shown below. The graphs for each projectile motion are
different but there are some common things for every motion:

* There is no horizontal acceleration so a, is always 0 m/s2.
* The slope of the velocity graph is the acceleration so v, is a flat line and is always the same as v,; .
* The slope of the position graph is the velocity so x is a straight line with a constant slope.

a, =0
a(t)=0
+a, (m/s?)
A
40
30 +
20 +
10 +
0 p—tpp—ei—+—P> 1 (S)
104 172 3 45
-20 -
.30 +
240 +
\ 4
- a, (m/s2)
y (m)
A t=2s
20— — O
= 1 =
151 t sw. vt 3s
101 lay = -g = -9.8 m/s?
. a, =0
v, =
t=4s
>

25 30 35 40 X(m)




e The vertical acceleration is always 9.8 m/s? downwards so a, is -9.8 m/s? (if up is the positive direction).

* The slope of the velocity graph is the acceleration so v, is a straight line with a constant slope. A projectile is at

the maximum height in the trajectory when v, is 0 m/s.

» The slope of the position graph is the velocity so the y graph is a curved line (parabola) because the velocity is
changing (there is acceleration). y is at its maximum when the slope (velocity) is zero.

|4 a
y y y
yi=yi + vt + %ayt2 Ve = vy + a At ay =-g = -9.8 m/s?
y(t) = 19.6t + 59.817 v,(t) = 19.6 — 9.8t a(t) = 9.8
+y (m) +v, (m/s) +a, (m/s?)
A : A A
25 1 max height 25 ] 25 |
20 t 20 t
15 15 1
10 ¢ 10 ¢
5 + 5 +
Yi—»0 0 —t—t—t+—p t (S)
51 54 12345
-10 1 -10 ¢
-15 + _15 +
-20 + _20 +
-25 + _25 +
v v
-y (m) -a, (m/s?)
y (m)
A t=2s
20— — O
= 1 . =
151 t sV. vt 3s
10 4 lay = -g = -9.8 m/s?
a, =0
Vi = 22m/s = 19.6 m/s

10 15 20 25 30 35 40 X(m)

v,; = 10.0 m/s



CIRCULAR & ROTATIONAL MOTION

Circular vs Rotational Motion

Circular Motion Rotational Motion
* Object travels along a circular path (circumference of * Object rotates about its own center (a point or axis
a circle whose center lies outside of the object). that passes through the object).
* A point on a rotating object is in circular motion. e Typically uses the angular description of motion.
e Typically uses the tangential description of motion. e All points on the object have the same angular motion.

Circular Motion (Tangential Description)
Variables SI Unit

tangential position m

40
50 30 2o s
S
+s(m) As tangential displacement
10 C
V; tangential velocity
0
' a; tangential acceleration
10 C=2nar
s (m) 20
=0 70 30 1

Sf —_ Si + Vtit + Eattz

wl3w|3 3

As AVt
— Vi = . dy = —— 2 _ 2
As = s¢ — s; YAt ‘ At Vig = Vi T 2a(s; — s)
Tangential Tangential Tangential Kinematic equations with
displacement velocity acceleration constant acceleration

* Circular motion typically uses the tangential desciption of motion.
* The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).

» Tangential motion is sometimes referred to as the “linear” motion of an object in circular motion because the
displacement, velocity and acceleration are directed along a tangent line.

/ / A Direction of motion

""\ at an instant in time
Tangent lines Tangent line
* At a point on a curve, the tangent line passing through ® For an object in circular motion, the
it matches the curvature or “slope” of the curve. instantaneous direction of the motion

e For a circle, a tangent line only touches one point. is always tangent to the circle.



Rotational Motion (Angular Description)
Variables S| Unit

90° ©  angular position rad

AO angular displacement  rad

W  angular velocity %
A  angular acceleration %
s
6 w a RPM: revolutions
“theta” “omega” "“alpha” " minute
-90°
_ 1 .2
ef —_— Gi + wit + Eat
w A6 - Aw
= = 2 _ .2
A@ = 6; — 6 At At wi = wi + 2a(6; — 6))
Angular Angular Angular Kinematic equations with
displacement velocity acceleration constant acceleration

* Rotational motion typically uses the angular description of motion.
* Can also be used to describe the angle that is “swept out” by an object in circular motion.

* All points on a rotating object have the same angular motion because they rotate together (but they may have
different tangential motions depending on their distance from the center).

* The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).

Converting Between Tangential & Angular Descriptions

Conversion
(Angular variable must use radians)

Tangential description « » Angular description
‘ S
C Position: S m s=rb @ rad
Displacement: As =s;—s;, m As =rAfO AB = 6;— 6, rad
: : — As m AO rad
Circumference: C = 2nr Velocity: v,= — < Vi=rw w = S
At At
1 circumference <«— 271 radians
i o Avi m Aw rad
! c!rcumference <« 360 . Acceleration: a; = — — a,=ra a = >
1 circumference <«— 1 revolution At S At S

1 circumference <«— 1 cycle

® |n some cases, we need to convert from
one description to another.

® This conversion is based on the definition
of a radian, or the relationship between
the circumference and the number of
radians in a circle.




NEWTON'S 1ST & 2ND LAWS

Forces

e A force is a push or a pull that acts on an object and is caused by something else. For example, if you push on a
box then you are applying a force on the box. The force is acting on the box and the force is caused by you.

e Multiple forces can be acting on an object at the same time.

» Forces are vector quantities which means they have a magnitude (a strength or value) and a direction. Forces are
often described using vector arrows which have a length (representing the magnitude) and a direction. The force
vector arrow typically starts on the object that the force is acting on and points in the direction of the push or pull.

» Forces are not visible, but you can often see the effect of a force, like the motion (or lack of motion) of an object.

» The forces acting on an object are related to the object’s motion (or lack of motion) as described by Newton'’s laws
of motion. However, a force exists on its own regardless of how an object is moving.

* The Sl unit of force is a Newton (N) which is derived from other Sl units: N = kg-m/s2. 1 Newton (1 N) is equal to
approximately 0.22 pounds of force (Ibf).

A person pushes a box to the right A force is acting on the box
e The force is caused by the person

It's conventional to draw the force
vector starting on the object:

Force
Force
or >
\ force
vector
A person pulls a rope attached e A force is acting on the box
to a box to the right e The force is caused by the rope

Force




e There are different types of forces which can be grouped into 2 categories: contact forces and non-contact forces.

» Contact forces are when the object and the thing causing the force are in contact with each other. These forces
are usually easier to “see” and they include any push or pull using contact, friction forces, tension forces, spring
forces and normal forces (or reaction forces).

* Non-contact forces are when the object and the thing causing the force are not in contact with each other. These
forces are harder to “see” because the force is acting from a distance. These include gravitational forces (or
weight forces), magnetic forces and electric forces.

Contact forces Non-contact forces
applied force PN
_> (. ’
- -
@ gravitational
force
S spring
. force
tension
e

gravitational
force

U—» <«
friction

_¥ maghnetic
normal force

| |




Free Body Diagrams

A free body diagram (FBD) or a force diagram is a picture that shows a single object or system (a body) and all
of the forces acting on that object. We can draw the object itself or represent the object as a particle using a dot.

e We need to include a coordinate system which establishes the positive x and y directions.

* We do not include the things that are causing the forces, only the forces themselves.

* We do not include any forces that are caused by this object on other things, only the forces acting on this object.

e A free body diagram is used with Newton’s 2nd law of motion to analyze the net force and motion of the object.

Picture of a box on the ground Free body diagram of the box
being pulled by a rope and the forces acting on the box

object is represented
object is shown J P

with a plcture T as a particle F
n
f ¢¥— f 4—/
+
y F, : normal force ’!
T : tension force 9
L} + X Fg f : friction force

F, : gravitational force



Newton's 1st Law of Motion

Variables S| Unit
e [saac Newton'’s three laws of motion describe the relationship between an F force N= kg il
object’s motion and the forces that are acting on that object. These laws are 2
the foundation for what'’s known as Newtonian mechanics and they describe m | mass kg
why and how an object moves (or doesn’t move), which may not be intuitive . m
g . T o a acceleration 2
at first. They're often written in different ways, but the fundamental principle S
behind each law is simple and very specific as it applies to physics. v  velocity %

* Newton'’s 1st law of motion: An object at rest (with zero velocity) will remain at rest and an object in motion
will maintain its velocity (continue moving in a straight line at a constant speed) unless there is a net force acting on
the object (the vector sum of all of the forces acting on the object is not zero).

e A simpler but less descriptive version: An object will maintain its state of motion unless acted on by a net force.

e This law also provides the definition of inertia. Inertia is the tendency of an object to remain at rest (if at rest) or to
remain in motion (if in motion), or the tendency of an object to resist a change to its current state (at rest or in
motion). All objects have inertia, which is proportional to their mass.

An object at rest (with zero velocity) will remain at rest
if there is no net force acting on it

t=0s,1s,2s5...

An object in motion will maintain its velocity (move in a straight line at a constant speed)
if there is no net force acting on it

t=0s t=1s t=2s t=3s
Fiet =0 ‘
a=20

— e — —



» This law means that an object which is already in motion does not require any force to continue moving. The
forces acting on an object do affect its motion (see Newton’s 2nd law of motion), but nothing causes an object to
continue moving at a constant velocity, it will do that on its own.

» This may not be intuitive because we often see moving objects appear to slow down and stop on their own, and it
seems they would require a force to keep moving. In reality, most objects are experiencing a friction force from
any surface they're touching and from the air. The friction force is causing the object to slow down, and if the
friction was removed the object would continue moving forever with a constant velocity.

e When thinking about an object’s motion, it might help to imagine the object is sliding on ice (with zero friction) or
the object is floating in outer space (with zero friction or air resistance, and assuming no force of gravity). In the
absence of any forces, the object will remain at rest or will continue moving with a constant velocity forever. Then
we can add back the forces acting on the object to analyze its motion.

If a block is sliding on a surface with friction, the friction force causes the block to slow down and stop

F..70 a#0

frictionforce O's 1s 2s 3s
on the block v v v v=20
the entire time —» . o —>
\a
f «—

If a block is sliding on ice with no friction force, the block would keep moving forever

F...= 0 a= 0 (assuming no friction or air resistance)
Os 1s 2s 3s
v v v v
—> —> —> —>

If a block is moving freely in space with no forces acting on it, the block will keep moving forever

F...=0 a = 0 (assuming no air resistance or other forces)
Os 1s 2s 3s
v v |74 |74
— — e >



» This law also means that an object at rest may have forces acting on it, and an object that is moving at a
constant velocity may have forces acting on it.

* Newton'’s 1st law of motion says that an object will remain at rest or maintain a constant velocity if there is no
net force or no unbalanced force acting on it. If there are multiple forces acting on the object but they “cancel

out” (the vector sum of all of the forces is zero) then there is no net force.

e For example, imagine an object is being pulled to the left and to the right, like in a game of tug-of-war. If the two
forces are equal in magnitude (or strength) then they “cancel” each other out because they act in opposite
directions. The net force on the object would be zero and the object would remain at rest (if it was already at rest),
or the object would continue moving at a constant velocity (if it was already moving).

Two people pull on a box with equal force in opposite directions
¢ The net force acting on the box is zero (there is no unbalanced force)
e If the box is at rest, it will remain at rest and won't move

v=_0
F, = 50 Ne——e—— F, = 50 N
F1=F2
Fnet=o=F2_F1
a=20

Two rocket thrusters pull on a box with equal force in opposite directions
* The net force acting on the box is zero (there is no unbalanced force)
o If the box was moving it will continue moving at a constant velocity

Os 1s 2s
F, <——» F, F, «<——» F, F, «<——» F,
(l

[ ‘\‘\‘\“\
a — \\N\\.\ L ‘\\“\.\ b

|4 \'4 |4



Newton's 2nd Law of Motion

* Newton’s 2nd law of motion: A net force F,, (the vector sum of all forces) acting on an object of mass m will
cause it to accelerate at a rate of a in the same direction as the net force, and the net force is equal to the mass
multiplied by the acceleration: F,., = ma

e [t's important to remember that the forces acting on an object are related to its acceleration, not its velocity.

* In a way, Newton'’s 2nd law also covers Newton'’s 1st law. Acceleration is the change in an object’s velocity. If the
net force acting on an object is zero, the acceleration is zero and the velocity will remain the same. If the object is
at rest (has zero velocity) it will remain at rest. If the object is moving (has a velocity) it will maintain that velocity.

e The relationship F = ma is the source of the base Sl units used in the unit of force, the Newton (N).

Newton’s 2nd law of motion )
’_:, Units:

net M= 4 [ 5 m
F..=ma o )F=ma N = kg 3
S

>:the sumof

—>
a

* This may be the first time we're discussing mass. All objects have mass, and there are several ways to define or
think about mass:

e As a simple starting point, you can think of an object’s mass as the “weight” of the object. Heavier objects have
more mass and lighter objects have less mass. It's important to know that mass and weight are two separate things,
which will be covered later, but in the presence of gravity an object’s weight is proportional to its mass.

* Mass is the amount of matter contained in an object.

* Mass is related to the inertia of an object (for now it’s fair to say they are the same thing). An object with more mass
has more inertia and will resist a change to its current state (at rest or in motion) more than an object with less mass.
This is essentially Newton’s 2nd law: the amount an object changes its motion (the acceleration) due to a net force
is proportional to its mass (F,ey = ma, m=F,,/a, a=F,/m).

® The Sl unit of mass is the kilogram (kg).



e An important part of Newton’s 1st and 2nd laws is that only a net force causes an acceleration, and the forces

and the acceleration are vectors.

* Free body diagrams are used in combination with Newton’s 2nd law to determine the net force vector acting on
an object and the acceleration vector.

e In almost every scenario we're going to analyze the components of the net force and the acceleration in the
x and y directions separately, just like in kinematics, because the x and y directions are independent.

o If a force is not parallel to the x or y axis then we need to find the x and y components of that force.

e We will end up with two equations (one for each direction) that describe the relationship between the forces and
the acceleration. Then we can plug in all of the known values to solve for an unknown value.

Free body diagram of the
forces acting on an object

F,
F3<$_>F4
by !
t,..F
+ X
7 N
N%—»(m
4 N

2
ty
L, .

The net force acting on an object
is the vector sum of all the forces

>
> F, ZATZFY
FX

—» > F,

ZFX= (F4) + ('F3)
SF, = (F;) + (- Fy)

>
3N ZTZFY
> F,

4 N

SF,=(6N)+(-2N)= 4N
SF,=(7N)+(-4N)=3N

Newton’s 2nd law applies

to each direction

a Ta
ay / : y
aX

aX
>F, = ma,
ZFy = ma,
a
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3N =(2kg)a, a, = 1.5m/s?



Steps for drawing a free body diagram and applying Newton’s 2nd law:

1. Establish the origin and the positive directions of the x and y axes. This will determine whether each force is
positive or negative when added together. It's useful to set up one of the axes parallel to the direction of the
object’s motion, or to have the axes parallel to most of the force vectors.

2. Draw a free body diagram of the object and all of the forces acting on the object. If a force is not parallel to

one of the axes, find the x and y components of the force.

. Add the forces in the x direction and apply Newton’s 2nd law in the x direction: 2 F, = ma,

. Add the forces in the y direction and apply Newton’s 2nd law in the y direction: 2 F, = ma

5. Use those equations to solve for an unknown variable or answer a question.
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NEWTON'S 3RD LAW & NORMAL FORCE

Newton's 3rd Law of Motion

Variables Sl Unit
Feona = Faons F force N
A 5 Fapo.,g forceof AactingonB N
F normal force N
FB on A < | > FA on B "
Fq gravitional force N

Free body diagram of object A 1 Free body diagram of object B
There is a pair of forces that exist when
B two objects interact with each other. Only
one of these forces is included in the free
» Faong body diagram for each object because the
\ two forces are exerted on two different
objects. We do not include both forces in
the free body diagram of one object.

A

FBonA<

/

the force acting on object A
caused by object B

the force acting on object B
caused by object A

* Newton’s 3rd law of motion: If object A exerts a force on object B, then object B exerts an equal and opposite
force on object A (the force is equal in magnitude and opposite in direction).

e This law is sometimes stated as “every action has an equal and opposite reaction”. This can be confusing because
the words “action” and “reaction” may be misinterpreted as motion or something more complex, but they really
just refer to a pair of forces that exist simultaneously (the “action” doesn’t happen before the “reaction”).

e Another common point of confusion is the phrase “equal and opposite forces”. When used to describe the pair
of forces from Newton'’s 3rd law of motion, it's accurate to say that two objects exert “equal and opposite forces”
on each other when they interact (those two forces are inherently equal in magnitude and opposite in direction).
The phrase is also sometimes used to describe two forces that are acting on an object that happen to have the
same magnitude and opposite directions, resulting in zero net force and zero acceleration in that direction (due
to Newton'’s 1st and 2nd laws). In that case, the two forces are entirely separate and have separate causes, and
it's a coincidence that they are equal in magnitude and opposite in direction.

e [t may help to remember that the pair of forces described in Newton’s 3rd law must be the same type of force:
two normal forces, two gravitational forces, two friction forces, two tension forces, etc.

These two forces are a pair of “equal and opposite” These two forces happen to be “equal and
forces according to Newton'’s 3rd law, but the opposite” but they are separate forces that act
forces act on two separate objects on the same object (unrelated to Newton'’s 3rd law)

F,=50N F,=50N

— -« —
FBonA< | >FAonB
A
|
PRI B F, = 50 N F, =50 N
| <« —
0
'

Fnet=o



e A pair of forces can result from the physical contact between two objects (contact force pairs) or between two
objects that are at a distance (non-contact force pairs).
e [f two objects are in contact they each apply a force on the other object. This can be a pushing force (such as a

normal force) or a pulling force (such as a tension force). This is sometimes referred to as a “reaction force” or
simply a “contact force”.

Contact force pairs

Fbox on rope = Frope on box
F
table on book Fbox on rope Frope on box

< I >
Fbook on table l l
< I >
I
Fwall on person Fperson on wall < ! >
rope on person person on rope
Ftable on book = Fbook on table Fwall on person — Fperson on wall F - F

rope on person — ! person on rope

» There is an attractive gravitational force that acts between any two objects due to their mass.
e Although not covered in this course, there is an attractive magnetic force between opposite poles of a magnet

and a repulsive force between similar poles. There is also an attractive electric force between two oppositely
charged particles, and a repulsive force between two particles with the same charge.

Non-contact force pairs

Gravitational force Magnetic force

A B
( L 4 ; FB on A FA on B
e N S—p <—N S
ng, earth on ball FB on A FAonB
<5 N N 5s—
TFg,ballonearth FBonA=FAonB
Electric force
Fg, earth on ball = Fg, ball on earth \FC on A
FB on A FA on B
o A — —» B
Gravitational force
/‘ F
~ ConB
‘MF B Fg, moon on earth Frong = Fgona on
' = F
\ F FBonC_FConB / BonC
g, earth on moon
FA onC — FC on A =
Fg, moon on earth — Fg, earth on moon



Normal Force

e A normal force is just a term for the pushing force that arises when two objects are in contact.

e Normal force is represented as “F,” or “N" which should not be confused with a Newton (N), the unit of force.

e At a macroscopic level, a normal force is a contact force that prevents two solid objects from passing through each
other. The surfaces of each object may appear to be touching, but at the atomic level the electrons in one object

are repelling the electrons in the other object with an electric force (to put it simply). In a way, pushing two objects
together is similar to pushing two extremely strong repelling magnets together.

electric force of table electrons
normal force exerted
on book electrons
by the table on the book

n, table on book

A

8th EDITION

/' Fn, book on table
Fe l
normal force exerted electric force of book electrons
by the book on the table

on table electrons

e This is called a normal force because “normal” means perpendicular in geometry, and a normal force always acts
perpendicular to the surface that the object is contacting.

F

n

A

F,is “normal” (perpendicular) to the surface

90°

surface

F

n, ramp on block

F

n, road on car

Fn, block on ramp

n, car on road



e If a book is resting on a table, the book exerts a downwards normal force on the table and the table exerts an
upwards normal force on the book with the same magnitude. Separately, the table exerts a downwards normal
force on the ground and the ground exerts an upwards normal force on the table. Note that there are also
gravitational force pairs between the earth and the book, and between the earth and the table. Technically there
is a gravitational force acting between the book and the table, but it's so weak that it's usually ignored.

? Fn, table on book

| PHYSICS  mmomon |

¢ Fn, book on table
F

n, ground on table

F

n, table on ground

T Fn, table on book

|

lF , earth on book

| PHYSICS

Fn, ground on table T

Fg, earth on table l Fn, book on table

Fg, table on earth T Fg, book on earth

n, table on ground l

F
Fn, book on table — Fn, table on book
F F

n, table on ground = n, ground on table

F

n, wall on person < ' > Fn, person on wall

F

n, floor on person

F

n, person on floor

F

Fg, earth on person l

]

y

]

)

)

n, floor on person ’

F y
y

n, wall on person €— : _>Fn, person on wall

y

y

y

]

o

Fg, person on earthT

*gravitational force pairs between the
floor, the wall and the earth not shown

Fn, person on wall = Fn, wall on person
F F

n, person on floor — ' n, floor on person



» The normal force may be less intuitive at first because its magnitude can change based on the other forces
being exerted on the object. We usually can’t visualize a change in the normal force because the object and the
surface don’t appear to get closer or farther from each other.

e When thinking about the normal force, we can imagine placing a flat scale or a spring between the object and the
surface to visualize the normal force. A scale measures the force acting on both sides (which are equal in
magnitude if the scale is not accelerating). A spring will change length when a force is applied to both ends (which
are also equal in magnitude if the spring is not accelerating).

A scale would measure the normal force between the book and the table

8N 3N
5N SN 4 Fous
F fousn || F, "y
‘n PHYSICS h EDIT] . l PHYSICS
| PHYSICS| sswmos | | PHYSICS e ‘
F, 3
SN \ 4
8N
20N A0 N
1l 1b .8 Ib

A scale would measure the normal force between the person and the wall

Fpush Fpush Fpush Fpush
S8ON— 80ON—» 100N —» 100 N —»

o
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e [t's worth noting that the normal force acting upwards on an object is sometimes equal in magnitude to the
gravitational force (weight) acting downwards on the object, but not always. This is only true if those are the only
two forces acting on the object in those directions and the object is not accelerating, but the normal force
depends on other forces being exerted on the object along the same axis.

A book is sitting at rest on a table. The only forces acting on the book are the gravitational
force (weight) and the normal force from the table. The net force on the book is zero
(it is not accelerating) so the normal force is equal in magnitude to the gravitational force.

5 N >N
Fn, table on book Fn ZF)’ — may
PHYSICS  ssfmox | PHYSICS _sammox | ay =0 ZFy — Fn — Fg — m(O)
F. —
Fn, book on table v g F" Fg
SN 5N F,= 5N

A book is sitting at rest on a table and someone pushes down on the book with a force
of 3 N. The net force on the book is still zero (it is not accelerating) so the normal force
increases and is equal in magnitude to the gravitational force plus the push force.

8N
3N SAN A 2F, = ma,
Fous —F _ _
Push ¢ Fn, table on book Fn ZFY Fn Fg Fpush m(O)
| PHYSICS  sufmor | | PHYSICS  swsomos | a, = 0 Fn = F + Fpush
F Foush & | F, FF=5N+3N
n, book on table 3N v
v 5N F,= 8N
8N

A book is sitting at rest on a table and someone pulls up on the book with a force
of 4 N. The net force on the book is still zero (it is not accelerating) so the normal force
decreases and is equal in magnitude to the gravitational force minus the pull force.

4 N
FpuIIT ZF — Mma
1N T N Y Y
n table on book puII + Fn _ ZFy — Fn + Fpu|| - Fg - m(O)
| PHYSICS  minfos | | PHYSICS  sumon l a, = 0 F=E
lF n— I'g™ Thoull
1N nbookontable g Fn=5N_4N
>N F,= 1N

e An important thing to remember is that a normal force can’t cause an object to accelerate if that acceleration
means the objects are no longer in contact with each other, because then the normal force would be zero.



GRAVITY & WEIGHT

Newton's Law of Universal Gravitation

Constants Unit Name
Newton’s Law of Universal Gravitation ] 3
- G 6.67x10"" —"5 gravitational constant
(gravitational force) kg-s
Gmym, . .
F, gravitational force N
w  weight force N
‘\ m  mass kg
|
! two masses attract each M  mass producing a field kg
r | other from a distance
similar to how two magnets r distance between centers m
attract each other m
"2
s

F F g gravitational acceleration
C> <D

* Newton'’s law of universal gravitation: Every object in the universe attracts every other object in the universe
with a gravitational force that depends on their masses and the distance between their centers.

* This law treats objects as point masses which means the gravitational force behaves as if each object’s mass is
concentrated at a single point (its center of mass, which depends on the object’s shape).

¢ Remember that r is the distance between the centers of the two objects, not between their surfaces.

» A gravitational force is always an attractive force that acts towards the center of the other object.

» Based on this equation, the greater the mass of either object the greater the gravitational force. The farther
apart the two objects are the smaller the gravitational force.

e The constant G in the equation is the universal gravitational constant whose value is given above.

¢ It doesn’t matter which mass is m; and m,, and one mass does not need to be larger than the other. It's not the
case that only large masses pull on small masses, any two masses pull on each other with the equal force.

» Gravitational forces come in pairs as described in Newton'’s 3rd law of motion. The gravitational force exerted on
mass 1 by mass 2 is equal in magnitude and opposite in direction to the gravitational force exerted on mass 2 by
mass 1. Each mass pulls on the other with the same amount of force.



e This gravitational force is what we experience as gravity on earth. However, notice that Newton’s law of universal
gravitation does not describe gravity using the words “earth”, “falling”, “down”, etc. A gravitational force acts

between every two objects in the universe: the earth and the moon attract each other, the earth and a book
attract each other, and a book and a cup attract each other because they all have mass.

Gravitational force between two small objects
m, = 1 kg Gmm,
m, = 0.2 kg

Fy = 2
PRI
‘@

W

W
(’mn\\\\\\
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Ty

. G(0.2 kg)(1 kg)
g (1 m)2

1m

*not to scale

F,=1.33x10"" N
Gravitational force between a ball and the earth
Gm;m
m, = 5.97 x 10% kg F=—0> 2
m, =1kg -

9 r2

_ G(1 kg)(5.97 x 10** kg)
| =

(6.37 x 10° m)?
r=6.4x10°m

F,=9.8N
( " . n
gravity" or —
weight force

/. Fg’ :ﬁon ball Fg = 9.8N Fg, ball on earth

m, = 1 kg .’)—p +—

N
' r = 6.37 x10° m (distance to center of the earth) |
N

* We call the gravitational force between the earth and an object near the surface of the earth the weight force
acting on the object. Although we’re used to saying objects are pulled “down” by gravity, it's more accurate to say
that objects are pulled towards the center of the earth.



o If all objects are attracted to each other by a gravitational force, why don’t we experience this? For example, if a
book and a cup are sitting next to each other on a table, why don’t they move towards each other? There must be
one or more forces acting in the opposite direction as the gravitational force so that the net force on each object
is zero. In most cases that force is friction, but electrostatic forces or other forces may also be involved.

Gravitational force between a book and a cup

G(2 kg)(0.5 k
— (2 kg)l 9) = 7.4%x10"° N = 0.00000000074 N

J (0.3 m)?
If there’s no friction, the book and the cup Friction forces prevent the book and the
will slowly accelerate towards each other cup from accelerating towards each other

gravitational force
between book and cup

—» a,_, = 0.00000000037 m/s?
acup = 0.0000000015 m/s? ¢——

static friction force deup = 0 m/s?
mz — 0.5 kg [ ab00k= Om/52 Fg= FS
: =
== =
mq 2 kg Fg Fg | Fs. FS — Fg Fg Fg | FS
PHYSICS  suromon | ——Jp < \J < | — I | ‘ l

r=0.3m

e If the book and the cup were floating in space with no other forces acting on them besides the gravitational force
between them, they would slowly accelerate towards each other. In the example above, it would take a few hours
for the book and the cup to hit each other (starting from rest).

* In most scenarios there is a static friction force acting between the objects and a surface that opposes the
gravitational force and prevents the objects from accelerating towards each other. For a 2 kg book the maximum
static friction force could be around 4 N, which means you could push against a resting book with up to 4 N of
force before you overcome friction and it begins to slide. That's much more than the gravitational force.

e The gravitational force is very weak compared to the other fundamental forces and the forces we normally
experience. Gravity is often associated with the earth and other planets because planets have such a large mass
that the gravitational force is significant compared to other forces.



Gravitational Field and Weight

e While Newton'’s law of universal gravitation treats gravity as a force that exists between two point masses, there
is another way to think about gravity: the interaction between a mass and a gravitational field.

» A gravitational field exists around every object due to its mass. The field is not visible on its own and is more like
a mathematical representation of how a second mass would interact with the mass creating the field at any
position in space. A gravitational field is a vector field and is sometimes referred to as a “gravitational acceleration
field” because it consists of a vector at every point in space which shows the direction and magnitude of the
gravitational acceleration vector at that point.

» The direction of the gravitational field is always towards the center of the mass producing the field.

* Note that a gravitational field is produced by a single mass. If a second mass is placed in that gravitational field
it will experience a gravitational force towards the first mass due to the field. (The second mass also produces its
own field which causes the first mass to also experience a gravitational force towards the second mass).

e A mass does not experience a force from its own gravitational field, only the field from another mass.

e In the equations below the variable M represents the mass producing the field and the variable m represents a
a second mass in that field, experiencing a force. These two masses can be any size, M does not have to be larger
than m, but this is often applied to a planet and a small mass where the planet mass is M.

A gravitational field exists around every mass A second mass placed in that gravitational field
will experience a gravitational force towards the
g is the gravitational field strength and the mass that is creating the field

acceleration due to gravity at every point in space
Gravitational force on mass

GM N m in gravitational field
g = 7 Units; — = =3 GMm
kg S Fg =mg = Fg — —
r
, g -
v v s
® -
) \g 7 §i/ )
g g
“a .\1 . 15.. ‘g/‘ i
o g
9 g g 9 I
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\LQJ,



e If the mass producing the gravitational field is the earth, we can look at the strength of the field at different
distances from the center of the earth. As we zoom in, the gravitational field lines appear to be more parallel (the
earth doesn’t appear as curved) and the field strength doesn’t vary as much within the smaller window height.

* Near the surface of the earth (where the value of ris equal to the radius of the earth) the value of g is 9.8 N/kg
or 9.8 m/s2. That's the strength of the gravitational field and the acceleration due to gravity for any object.

The value of g depends on the distance r from the center of the earth

_ G(5.97 x 10** kg) — 98 m)/ 2/ Near the surface of the earth
9= (6.37 x10° m)2 = 7.om/s the value of g is about 9.8 m/s2

* The weight force acting on an object (sometimes referred to as “the weight of an object”) is just the gravitational
force acting on that object when it's near the earth (or any large body like the moon or another planet).
¢ Unless a different value is given, assume the value of g is 9.8 m/s2 when finding the weight of an object on earth.

g = 9.8 m/s? 3 kg
| PHYSICS  swwomos |
Weight force
F,=(3kg)g =29.4N
F,=mg or w=mg 1 kg 4

F, or w L
IFg = (1kg)g = 9.8 N
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e A common confusion is the difference between mass (m) and weight (Fy) because they are sometimes used
interchangeably outside of physics.

* An object’s mass is its inertia, which is how much it resists a change to its state of motion as described in
Newton'’s 1st law of motion. An object’s mass doesn’t change no matter where it is in the universe.

* An object’s weight is the gravitational force acting on the object when it's in the gravitational field of another
mass (usually the earth, the moon or another planet).

e An object’s weight is proportional to its mass so we often measure an object’s weight instead of its mass because
the value of g is relatively constant near the surface of earth.

» The strength of gravity is different near the surface of the moon and other planets because of the difference in the
the planet’s mass and radius. Even though the mass of an object is the same everywhere, its weight will change.

Mass Weight on Earth Weight on the moon Weight on Mars
lg = 1.6 m/s?
PR
( m=1k
« 7
Fg = 1.6N
0.4 1b
< m = 80 kg
J Jng = 128 N
J 29 Ib
\_ J

Apparent Weight

* The weight of an object is the gravitational force pulling the object down (towards the center of the planet). The
weight does not change due to the motion of the object or other forces acting on it.

* The apparent weight of an object is the normal force between the object and the surface below it, or the tension
force in the rope that the object is hanging from.

* Think about how and why you feel your own weight when standing or sitting in a chair. It may seem like you're
feeling the force of gravity, but you're actually feeling the contact forces that are supporting you from below (the
normal force acting upwards on your body from the floor or the chair).

e Remember that a scale placed between two objects (or an object and a surface) measures the normal force
between the two objects, so a scale measures your apparent weight, not your actual weight.

* Weightlessness is a term used to describe when an object has zero apparent weight. This does not mean the
object has zero weight. If there is a gravitational force acting on the object then it still has weight.

e In the fifth elevator example, the elevator is accelerating downwards at 9.8 m/s? and the person’s apparent weight
is zero. There is still a weight force pulling them down, causing them to accelerate downwards at g, 9.8 m/s2. In
this example the elevator, the person and the scale are all in free fall. The person still has weight but they are
experiencing weightlessness, just like if they were falling through the air without an elevator.
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o If you're not accelerating up or down then your weight and apparent weight are equal. The net force in the
vertical direction is zero, and your weight force is equal in magnitude to the normal force acting upwards. This is
the case in many “normal” scenarios (like standing on the ground, sitting in a chair) because we're usually not

accelerating up or down.

The apparent weight (normal force) is equal to the actual weight if the acceleration is zero

Fy weight of the person

T scale measures apparent
(normal force on person)

"B5 N
J J J v "0 Ib
m = 80 kg /
JJ J —
ng or w
Fy=mg = 784N F, = 784 N <— weight
a, = 0 m/s? F, — Fy = m(0 m/s?) F, = 784 N <— apparent weight
F, = Fy
F,= 784 N

The apparent weight (tension force) is equal to the actual weight if the acceleration is zero

Q-»
TT \ scale measures apparent weight

of the block (tension force in rope)

Fg = mg = 98 N ng or w Fg = 98 N <«— weight
T =98N <«— apparent weight

y
T — F, = m(0 m/s?)
T=F,
T=98N

o If an object is accelerating up or down then the apparent weight is not equal to the weight. The net force
in the vertical direction is not zero so the normal force (or the tension force) is likely not equal to the weight force.
* Imagine you're standing on a scale in an elevator. If the elevator is not moving (the acceleration is zero) your
apparent weight is equal to your weight. If the elevator is moving at a constant velocity (the acceleration is still
zero) your apparent weight is still equal to your weight. But if you and the elevator are accelerating up or down
then your apparent weight is not equal to your actual weight - you'll feel lighter or heavier than your true weight.
 For each of the following examples the elevator has a different motion. Look through the free body diagrams and
Newton’s 2nd law equations to see how the acceleration affects the apparent weight of the person.



The apparent weight of the person changes if the elevator is accelerating.
The actual weight of person is always: F; = mg = 784 N

not moving moving up at a accelerating down accelerating down

constant velocity

accelerating up

v, = 0m/s ?v =2m/s

y
a, = 0 m/s2 a, = 0 m/s2 *a = -1 m/s? *ay = -9.8 m/s?

I 1 | |

LL_._\_"J L—é—'_lj  — LL—;—"JJ B \—J
v v v v
a4 N "EH N 504 N 04 N 0N
"5 b "5 Ib 19 b 158 b U b

apparent weight: apparent weight: apparent weight: apparent weight: apparent weight:

F,=784 N F,=784 N F,= 864 N F,=704 N F,=0N
weight: weight: weight: weight: weight:
F,= 784 N F,= 784 N F,= 784 N F,= 784 N F,= 784 N

weightlessness
Ir Ir Fn te
m = 80 kg
& & " " "
2F, = ma, 2F, = ma, 2F, = ma,

F, — Fy = (80 kg)(0 m/s?) F, — Fy = (80 kg)(1 m/s?) F, — Fy = (80 kg)(-9.8 m/s?)
F,=F F,=F,+ 8N F,=F,— 784N
F,=784 N F,= 864 N F,=ON

2F, = ma, 2F, = ma,
F, — Fy = (80 kg)(0 m/s?) F, — Fy = (80 kg)(-1 m/s?)
F,=Fy F,=F,— 80N
F.= 784 N F,=704 N



FRICTION

Friction
Variables Sl Unit
* Friction is a force that acts between two objects that are in £ tatic friction f N
contact with each other (or between an object and a surface) s staticiriction Torce
which acts to oppose or prevent motion. f.  kinetic friction force N
e The friction force is the reason why moving objects appear to
slow down and stop on their own, and why most objects remain f.  rolling friction force N

at rest. Without the friction force between objects and the

. o M. coefficient of static friction
surface they're on, things would be sliding everywhere. You also

wouldn’t be able to walk forward, ride a bike or drive a car. M, coefficient of kinetic friction
 The friction force arises between the surfaces of two objects P £ rolling frict
which is rough at the microscopic level. In simple terms, the Hr  coeflicient ot rofling friction
mountains” from one surface get stuck in the “valleys” in the F, normal force N

other surface, which results in sideways forces that prevent or
oppose motion (the force acts parallel to the surface).

A pair of friction forces is caused by surface roughness at a microscopic level

friction force

ftable on book

| pinisics s |

—>
fbook on table

e Friction forces come in pairs as described in Newton'’s 3rd law of motion. In the example above, a book is being
pushed across a table. The table applies a friction force on the book and the book applies a friction force on the
table with an equal magnitude in the opposite direction.

» There are several types of friction: static friction, kinetic friction, rolling friction and others. The drag force (air
resistance) is also a type of friction between an object and the air around it.

* The friction force on an object always acts parallel to the surface and in the direction that opposes its motion or
prevents its motion (if it's not moving).

The friction force always acts parallel to the surface

NN,

f Foul \




Static Friction

e Static friction is a type of friction force that acts on a static (not moving) object to prevent it from moving.

¢ If you push or pull an object and it doesn’t move, there is a static friction force acting in the opposite direction as
the force you're applying.

* Notice that the equation below can be used to find the maximum static friction force acting on an object. Unlike
kinetic friction, the magnitude of a static friction force depends on other forces acting on the object along the
same axis, like a normal force does. To find the static friction force on an object the other forces must be known.

The static friction force depends on the other forces acting on the object along the same axis

F F, | F
F ! f F . push g n 2 push
L e — ; < ; >
S =
ZFx = ma, Fgl
Foun — fs = m(0 m/s?)
fs = Fpull ZFy = ma,
f, — F, = m(0 m/s?)
f,=F,

e The maximum static friction force that is possible between an object and a surface depends on the coefficient of
static friction between the two surfaces and the normal force between the two surfaces.

e The coefficient of friction u (the Greek letter “mu”) is a value that depnds on the materials and the conditions
of the two surfaces. The value is usually between 0 and 1 and it does not have a unit.

T Some static friction coefficients:
Maximum static friction force Fa
fe max FpuII Materials M
f max = MsF, <+ —> Tire / road (dry) 1.0
M, : coefficient of static friction j Tire / road (wet) 0.2
> Skin / metal 0.9
Hs Steel / aluminum 0.6
coefficient of static friction Steel / ice 0.03

between box and ground

e Again, the equation above can be used to calculate the maximum possible static friction force.
e The actual static friction force is some value between zero and that maximum value, and depends on the other

forces being applied along the same axis.



Example: A 10 kg box is sitting on the ground at rest. The normal force between the box and the ground is equal
to the weight force, 98 N. The coefficient of static friction between the box and the ground is 0.5. The maximum
static friction force between the box and the ground is 49 N. A rightwards pulling force is then applied to the box.

>F, = ma,
F, - F, = m(0 m/s?)
F,=F,=mg = (10 kg)(9.8 m/s?) = 98 N

= uF,=(0.5)(98 N) = 49 N F.

fS maxXx

!

If the applied force is zero (there’s no other forces acting parallel
to the surface) there is no static friction force because there are no
forces for friction to “react to” or any motion to prevent.

As the applied force increases, the static friction “reacts” and also
increases so it has the same magnitude in the opposite direction.

Eventually the applied force equals the maximum static friction
force that’s possible between the box and the ground.

If the applied force is greater than the maximum static friction
force, the box will begin to slide and the friction transitions from
static friction to kinetic friction.

A graph of the static friction force vs the applied
force is a straight line with a slope of 1. The static
friction force is equal to the applied force until it
reaches the maximum static friction force (which
is found using the equation above). The points
represent the above diagrams.

magnitude of the
friction force

I

g

m = 10 kg
M, = 0.5
fS=ON Fpu||=ON
fs= 20 N Fpu||= 20 N
« >
fs=4ON Fpu||=40N
«— —>
fsmax
fs=49N Fpu||=49N
«— —
fk Fpu||= 50N
«— —
f(N)
ol fomax=HF=49N
50 1 K»

40
30 +
20 +
10 4+

0

static friction f,

—— e —Jp> Fpu" (N)
O 10 20 30 40 50 60

magnitude of the pulling force



e When an object like a wheel is rolling, there is only a single point of contact between the object and the surface
(this is a simplification, there is a small surface area instead of a point if the object deforms).

e As the object rotates, the point on the edge of the object which is in contact with the surface changes.

» At any one moment, the contact point on the rolling object is not moving relative to the surface.

» This means that there is a momentary static friction force between that point on the edge of the object and the
surface that it’s rolling on. If this static friction didn’t exist for a car tire, the tire would slip and the car would not be
able to drive forwards.

e Torque and rotational dynamics are responsible for a car driving forwards as its wheels rotate without slipping, but
it's worth noting here that static friction is responsible for the concept of “rolling without slipping”.

A point on the edge of a rolling object has no velocity during the moment it’s in contact with the ground

There is a momentary static friction force acting on the contact point, causing the object to move forward
*This is not rolling friction, this is just how rolling without slipping occurs

v
—>

previous contact points

f

s, road on wheel at point

f

s, road on wheel at point
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Kinetic Friction

e Kinetic friction, also referred to as sliding friction is a type of friction force that acts on a moving object in the
opposite direction as its motion.

» More specifically, kinetic friction occurs between two surfaces that moving relative to each other. For example,
the contact point on a tire does not move relative to the road as seen in the static friction section. Even though the
car is “moving” that doesn’t mean every friction force involved with the motion is kinetic friction.

e Unlike static friction, kinetic friction does not depend on other forces along the same axis or the velocity. It
only depends on the normal force acting perpendicular to the surface and the coefficient of kinetic friction.

» For the same object, surface and normal force, the kinetic friction will be less than the maximum static friction.

Kinetic friction force TF“
fk v
fk = IJan <4+ —_
M, : coefficient of kinetic friction j

Hi
coefficient of kinetic friction
between box and ground

Example: A 10 kg box is sliding along the ground. The normal force between the box and the ground is equal
to the weight force, 98 N. The coefficient of kinetic friction between the box and the ground is 0.4. The kinetic
friction force is 39.2 N regardless of the velocity and any other horizontal forces.

\"4
—
2F, = ma, T
F, —
F, — Fy = m(0 m/s?) £ fm 10kg
F,= F, = mg = (10 kg)(9.8 m/s?) = 98 N «—= <«
f. = uF, =(0.4)(98 N) = 39.2 N ng ", = 0.4

The kinetic friction force always acts in the opposite direction as the velocity and is always equal to p F,

1 m/s 10 m/s 5m/s
—> — «—
f,=39.2N f,=39.2N Four = 50N Foun = 20N f,=39.2N
-« «— — «— —>



Transition From Static Friction to Kinetic Friction

e If an object begins at rest and a force is applied parallel to the surface, a static friction force acts on the object to
prevent it from moving. If the applied force exceeds the maximum possible static friction force, the object begins
to slide and the friction force transitions from a static friction force to a kinetic friction force.

* The magnitude of the static friction force changes based on the applied force, but the kinetic friction force is
constant while the object is moving.

¢ The kinetic friction force is always less than the maximum static friction force.

Example: A 10 kg box is sitting on the ground at rest. The normal force between the box and the ground is equal
to the weight force, 98 N. The coefficient of static friction between the box and the ground is 0.5. The maximum
static friction force between the box and the ground is 49 N. A rightwards pulling force is then applied to the box.

>F, = ma, T

F, —
F, — Fy = m(0 m/s?) m = 10 kg
F,= F, = mg = (10 kg)(9.8 m/s?) = 98 N

f. max = MsF, = (0.5)(98 N) = 49 N ng U, = 0.5

When the box is moving a kinetic friction force replaces the static friction force. The coefficient of kinetic friction
between the box and the ground is 0.4. The kinetic friction force is always 39.2 N when the box is moving.

|74
F, — F, = m(0 m/s?) ; ’ y
F,= F,= mg = (10 kg)(9.8 m/s?) = 98 N «—= PRLE

f = WF, = (0.4)(98 N) = 39.2 N ng



If the applied force is zero (there’s no other forces acting parallel
to the surface) there is no static friction force because there are no
forces for friction to “react to” or any motion to prevent.

As the applied force increases, the static friction “reacts” and also
increases so it has the same magnitude in the opposite direction.

Eventually the applied force equals the maximum static friction
force that’s possible between the box and the ground.

If the applied force is greater than the maximum static friction
force, the box will begin to slide and the friction transitions from

static friction to kinetic friction.

The kinetic friction force is constant regardless of the applied force

or the velocity of the box.

magnitude of the
friction force

f (N)

0

A fsmax="‘an=49N
60 +

50 +
40 t
30 +
20 +
10 {

static friction f,

fS=ON Fpu||=ON
fs = 30 N Fpull = 30 N
«— —
fS max
fs = 49 N Fpu|| =49 N
«— —
—>
fk = 39.2N Fpull = 50N
«— —
\"4
fk —_ 39.2 N Fpu|| —_ 60 N
4—

0 10 20 30 40 50 60 70 80 90100

magnitude of the pulling force

—» Fou (N)

transition from static to kinetic friction

ikinetic friction f, = pu F, = 39.2 N



Rolling Friction

* Rolling friction is a type of friction force that acts on an object that is rolling on a surface, also sometimes referred
to as rolling resistance or rolling drag.

e Rolling friction refers to the force acting on the object while the object is rolling, not a force that prevents a static
object from beginning to roll (unless otherwise stated in a given scenario).

* When an object is rolling along the ground, the surface of the object deforms and interacts with the surface of the
ground. This is a complex interaction with many factors, but the overall effect on the rolling object can be treated
as a single rolling friction force.

Rolling friction force

fl' = ’Jan

M, : coefficient of kinetic friction

H,

coefficient of rolling friction
between box and ground

* Rolling friction should be thought of as an “overall friction force” acting a rolling object. This is in contrast to
kinetic friction which acts on a sliding object. In most scenarios, only one of these two types of friction should be
be used for a moving object.

Object or wheels are rolling without slipping, Object or wheels are sliding,
rolling friction is used kinetic friction (sliding friction) is used
v v
— —
fk fk
+— N \
&S B

car is sliding on ice, wheels are
slipping and not turning



SPRING FORCE

Spring Force and Hooke's Law

Variables SI Unit
A spring changes length when a force is applied to both ends. If the forces .
. F., spring force N
pull the ends away from each other the spring gets longer. If the forces push P
the ends together the spring gets shorter. Ax displacement m
¢ In the real world there are different types of springs with different behaviors, N
and all materials actually behave similar to springs. But we usually start out k  spring constant m

by working with “ideal springs”.
¢ An ideal spring is...
e massless: the spring itself has no mass, no inertia and no weight
e frictionless: there are no friction forces acting on or within the spring itself
e linearly elastic / follows Hooke’s law: the change in length is linearly proportional to the applied force

* Hooke's Law states that the magnitude of the force required Spring force
to stretch or compress a spring by a displacement of Ax is (Hooke's Law)
linearly proportional to that the displacement, F, = kAx, F = kAx
where k is the spring constant or stiffness of the spring. sp

original, relaxed or
~unstretched length |

When no force is applied the spring is at its original | |

| |
length, relaxed length or unstretched length FSP =0 W FSP =0
k

A X

—
When a tension (pulling) force is applied to both ends |

the spring gets longer by a change of Ax FSPW Fop

| Ax | force applied
: : : : ! — to sprin
When a compression (pushing) force is applied to both pring

| |
ends the spring gets shorter by a change of Ax FSP l "VUUUUUY — FSP —



e The spring constant k is a value that represents the stiffness of a particular spring. A spring that is more stiff has
a higher spring constant and requires more force to cause the same displacement as a spring that is less stiff and
has a lower spring constant.

e The spring constant has a unit of Newtons/meter (N/m) given by units of force and displacement in Hooke’s law.

k = 100 N/m/spring is less stiff

I Fsp= kAX
109 8 8'3'8'8 8 Oy
' I—|Ax_02m (20 N) = (100 N/m)Ax

Fo=20N 0000000 5e>F,=20N ax=02m

k = 200 N/m/spring is more stiff F o= kAx
sp

I '—IAx = 0.1m (20 N) = (200 N/m)Ax
Fo= 20N eI~ F, = 20N Bx=01m

e Since the change in length Ax is linearly proportional to the spring force F,, a graph of the spring force vs the
displacement is a straight line.

e If the spring force is on the vertical axis and the displacement is on the horizontal axis, the slope of the graph is
the spring constant k. If the axes are flipped the slope is 1/k.

Hooke's Law: F.. = kAXx

sp
Fp (N) the slope is the
A spring consant k Fo=0 W
100 1 !
80 t | |—| AX
¥ 200 N/m Fo e SSSSII->F,
. 60 + P [ sp
spring , .
foree 407 k = 100 N/m : — Ax
201 Fot— LIS F,
0 —» Ax (m) : '

0 0102030405

displacement (change in length) FSPW Fsp



¢ A source of common confusion is the direction and magnitude of the spring force.

e A “spring force” is not a fundamental type of force like the gravitational force. When we use the term “spring
force” we either mean a force exerted on the spring by an object, or the force exerted on an object by the spring.

e First, the forces acting on each end of a spring are equal in magnitude and opposite in direction. Not because
they are a pair of equal and opposite forces as described in Newton’s 3rd law of motion, but because we're
treating the spring as ideal and we’re assuming the net force acting on the spring is zero. In cases where the
the spring is in static equilibrium and not moving (and therefore not accelerating) this must be true according to
Newton’s 2nd law of motion, F,., = ma. Even in cases where one or both ends of the spring are accelerating and
the forces acting on the ends are changing, an ideal spring has no mass and we assume it instantaneously
transmits forces from one end to the other. This is the same thing that happens for an ideal rope when working
with tension forces, so you can think of the “spring force” on an object like a tension force acting on the object.

e Even when one end of the spring is fixed to a wall or a non-moving object, the wall still exerts a force on the
spring just like if it were being pulled or pushed by a person or some other more “visible” force. If the wall was
not exerting this force, the net force would not be zero and the spring would accelerate. Again, this is the same
thing that happens with the tension force in a rope.

In both cases the spring is in static equilibrium (not moving) so the net force acting on the spring is zero.
The wall exerts a force on the spring just like if it were pulled or pushed by a person.

k=100 N/m k=100 N/m
CAX = 0.1m . rAx = 0.1 m
~ 29992909 | ~ Q22909

10N<—W>10N 10N<—'\wuuuou-°—>10N
F F

wall on spring person on spring person on spring person on spring

>F, = ma, > F

X

10N — 10 N = m(0 m/s?) 10N - 10N

= ma,
m(0 m/s?)

* Second, in the context of Hooke’s Law the spring force F, refers to the magnitude of the force acting on each
end of a spring (they're the same). We don’t double the force or add the forces from each end together.

k = 100 N/m

-
: .
128 883333, | Fp = kAx

(TON) = (100 N/m)(0.1 m)

10 N 00000000~ 10N

{ {

F,, in Hooke's Law Fs, in Hooke's Law



e Third, when we use the term “spring force” we need to be specific about which object the force is exerted on and
which object is causing the force. When a spring is attached to an object the spring and the object exert contact
forces on each other. The force exerted on the spring by the object is equal and opposite to the force exerted on
the object by the spring (these are a pair of forces as described in Newton’s 3rd law of motion).

* When a spring changes length, it also exerts a force on the objects it’s in contact with (again this is just from
Newton'’s 3rd law of motion). The force exerted by the spring on an object is called the restoring force because
this force is trying to restore the spring to its original length.

* In most cases, we're focused on an object that is in contact with a spring, not the spring itself. In those scenarios
we usually call the force exerted on the object by the spring the “spring force” F,,

e It's also important to clearly label the forces in a free body diagram so we know what a force is acting on and what
is causing the force. Remember, the free body diagram for an object only shows the forces acting on that object.

Free body diagrams of the wall, the spring and the person when the spring is stretched

V98380000 ;
! We're usually focused on the
TAX .. :
— object in contact with the
: spring, not the spring itself.
OO0

A free body diagram of the
object shows the “restoring

1 £ force” exerted on the object
—p <+— by the spring, which is equal

“restoring force” “restoring force”

F . F,. F F . and opposite to the force
spring wa person spring .
on wall on spring on spring on person exgrted OI‘T th.e Spring by ?he
§ ) § y object, which is the force in
a pair of equal and a pair of equal and Hooke's Law.
opposite forces opposite forces

Free body diagrams of the wall, the spring and the person when the spring is compressed

“restoring force” “restoring force”

L

A e b

Fspring Fwall Fperson Fspring
on wall on spring on spring on person
L J L J
a pair of equal and a pair of equal and
opposite forces opposite forces

Force vectors drawn in the conventional way, pointing away from the object they're acting on:

« «—iy— —>

Fspring Fperson Fwall Fspring

on wall on spring on spring on person



Examples of free body diagrams and Newton’s 2nd law involving spring forces

F,,¢— m —»F

pull
>F, = ma,
Fpull - Fsp = m(O)

Fsp = kAx Fpu|| - (kAX) =0

Ay can be used
instead of Ax for
vertical displacements
k /
it
m m

2F, = ma,
F,, = kay Fp = Fg = m(0)

F, = mg (kAy) — (mg) =0

I( |_' a =
e m +—F...
]

Fpush<_ m _>Fsp
|

>F, = ma,

Fso — Foush = m(0)

F, = kax  (kAx) — Foysh =0

2F, = ma,
F.,— F, = m(0
F,, = kAy s~ Fg = m(0)

F.=mg (kdy)-(mg)=0



Combining Springs in Series and Parallel

e Multiple springs can be combined together in series or in parallel.
e Together, the group of springs can be treated as a single spring with an equivalent spring constant k., . The
equivalent spring constant is calculated in a different way for springs in series and springs in parallel.

Two springs added in series Two springs added in parallel

equivalent

. spring constant
equivalent

ki spring constant ki ky —p Keq
_> keq /

e Springs added in series are connected end-to-end.

e Adding an additional spring in series always decreases the equivalent spring constant or stiffness.

» The original lengths of the springs are added together.

» The force applied to the end of a series of springs is the same force applied to each individual spring.
» The displacements of each spring are added together.

Equivalent spring constant for Example:
springs in series 1 1 1
= — + —
k1 _ I: +kl+"' keq 100 ~ 300
eq L . keq = 75 N/m
k, k, = 100 N/m

—> Keq —> keq = 75 N/m
k> k, = 300 N/m



Combining Springs in Series and Parallel

e A group of springs can be added together and treated as a single spring with an equivalent spring constant k..

e Springs added in series are connected end-to-end.

» Adding an additional spring in series always decreases the equivalent spring constant or stiffness.

e The original lengths of the springs are added together.

» The force applied to the end of a series of springs is the same force applied to each individual spring.
e The displacements of each spring are added together.

Equivalent spring constant for Example:
springs in series 1 1 1
= — + —
1 _1 .1, keq 100 = 300
keq k1 k2 keq = 75 N/m
k, k, = 100 N/m
_> keq _> keq =75 N/m
k> k, = 300 N/m

e Springs added in parallel are all connected to the same two objects or surfaces at each end.

» The equivalent spring constant is just the sum of the individual spring constants.

e Adding an additional spring in parallel always increases the equivalent spring constant or stiffness.

» Each spring has the same displacement but a different amount of force.

e When adding springs in parallel like this, they must have the same original length and we’re assuming the object
translates (moves linearly) but doesn't rotate, even though there are different forces acting on it at different points.

Equivalent spring constant for Example:
springs in parallel
pring>n P keq = 100 + 300

keq = k1 + k2 * .. keq = 400 N/m

k1 k2 —» keq k1 k2 —» keq — 400 N/m

L
I

100 N/m
k, = 300 N/m



e Groups of springs can be in series and in parallel with other groups of springs. First, the springs within a group
are added together (in series or parallel) and then the groups can be added together (in series or parallel).

1. Springs 1 and 3 are added in series to get an equivalent spring constant k3
2. Spring “1+3" and spring 2 are added in parallel to get a final equivalent spring constant k45,3

1 _ 1 N 1
k1+3 k1 k3
1 _ 1 . 1 K142 = kqus + ks
ki,s 100~ 300 k.., =75 + 200
ky,s = 75 N/m K1.3., = 275 N/m

—> —>

k, =100 N/m
k, =200 N/m k, =200 N/m

ki3 =75 N/m k14342 = 275 N/m

k; =300 N/m

1. Springs 1 and 2 are added in parallel to get an equivalent spring constant k.,
2. Springs 3 and 4 are added in parallel to get an equivalent spring constant ks34
3. Spring “1+2"” and spring “3+4" are added in series to get a final equivalent spring constant kq,5,3.4

1 _ 1
Kii2+3+4 K1z Kaua
1 1.1
kiez = kq + ko = 100 + 200 = 300 Kivinra 300 T 700
ky.q = ks + k, = 300 + 400 = 700 Kqii2i3.4 =210 N/m

—>

% § k1424344 =210 N/m

ks =300 N/m k, =400 N/m k3., = 700 N/m




Elasticity of Materials

» The elastic behavior of materials is complex and depend on many Variables S| Unit
factors such as material properties, the shape and dimensions of the
object, the directions of the applied forces, the change in length F force N
itself, and more. k spring constant N

* A basic model can be used to describe the elastic behavior of a rI:II
material in a way that’s similar to a spring. Note that this model is only Y, E Young's modulus m?2
accurate up to a certain amount of strain (percent change in A cross-sectional area m>2
length), after which the material no longer behaves “elastically”
and will begin to permanently deform and eventually break. L length m
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e Young's modulus Y (sometimes referred to as the elastic modulus E ) is a property of the material that describes
its stiffness. This is a material property that does not depend on the size or shape of the object, and is not the
same as a spring constant k. However, an equivalent “spring constant” k can be found using the object’s Young's
modulus, cross sectional area and original length as shown in the equation above.

e Like a spring, the force applied to the object is proportional to its change in length, now represented as AL.

e Because objects are different shapes and sizes, it's often more useful to work with a concept called stress which
is the amount of force applied per unit of area. It's also more useful to describe the percent change in length,
known as strain (AL/L) instead of the absolute change in length.



TENSION & PULLEY SYSTEMS

Tension
Variables S| Unit

e Tension is a pulling force that we usually associate with ropes, strings, cables, .
T tension force N

wires, or other long and thin objects.
e If a rope is attached to an object or surface and the rope is pulled, a tension
force arises in the rope and that same tension force is exerted on the objects at both ends of the rope.
* A tension force always acts in the same direction as the rope, and is always a pulling force (not a pushing force).
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i’: \ tension force exerted lF

? on box by rope

» An ideal rope (string, cable, etc.)...
e is massless: the rope itself has no mass, no inertia and no weight
e does not change length, regardless of the tension
* We assume that the tension force is the same at both ends of an ideal rope but acts in opposite directions.
any change in the force at one end is instantly transmitted to the other end. This also applies to ropes passing
around ideal pulleys.

e We could think of a rope as a spring with an infinite spring constant (stiffness) which never changes length no
matter how much force is applied. Tension force in a rope is like the spring force in a spring.

A person pulling a rope attached to a box Free body diagrams of the box, rope and person
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Pulley Systems

e When a rope passes around a pulley, the rope and the tension force change direction. The pulley rotates as the
rope moves in either direction.

The tension force at the end of a rope The rope and the tension force
acts in the direction of the end of the rope change direction around a pulley
+— —> <+—
T T T v “

Ti 11 lT
e An ideal pulley is...
e massless: the pulley has no mass, no inertia and no weight
e frictionless: there are no friction forces acting within the pulley and it would rotate freely forever
e When a rope passes around an ideal pulley, the tension force is still the same at both ends of the rope.
* When a rope passes around a real or non-ideal pulley that has mass, the pulley has rotational inertia and the
torque and rotational dynamics of the pulley need to be considered in addition to the other objects involved.
e If a pulley is not frictionless, the mechanical energy of the system (the ropes and other objects) may be lost
as thermal energy due to friction.

|deal pulley (massless, frictionless) Real pulley (with mass)
(0.4
<4+ <4+ _
T T, t=rF,
- r Tt = l
r=T T, #T, rotational dynamics
tension force is the same tension force is NOT the same of pulley need
at both ends of the rope at both ends of the rope to be considered
T



e If the rope is ideal and doesn’t change length, both objects at each end of the rope move together. During any
period of time, both objects must move the same displacement (even if the directions are different) because
they’re attached to the same rope. If the two objects did not move the same displacement, the rope would have
to change length or break.

¢ Since one object can’t move faster than the other, their displacements, velocities and accelerations have the
same magnitude (but the directions may be different).

* This means we can set the magnitudes of the accelerations equal to each other in order to solve a system of
equations that we get from Newton'’s 2nd law for both obects.

Objects connected by a rope have the same displacement, velocity and acceleration (magnitudes)

magnitudes are equal: a
a 3 Ax, = AXx, \ vl
v v Vi = Vo _X>
— — T 1 1
1 2 _>Fpu|| Y,
Y
Ax Ax magnitudes are equal:
> > g qual: 2 Ay
Ax, = A
1 2 —»F, X1 T AV
Vi =V,

dq = a, 2 lv la



* This means that we can treat both objects and the rope as a single system (or object). If we're trying to find the
acceleration, we can draw free body diagrams and apply Newton’s 2nd law to each object. Or we can draw a free
body diagram and apply Newton'’s 2nd law to the system using the total mass of each object.

o If we do that, the tension force becomes an internal force and is not included in the free body diagram. So we
can use this method to find the acceleration, but not the tension.

e Instead of using the x and y directions for the forces and acceleration, we can use a new direction that is always
parallel to the rope as it bends around the pulley, and just focus on the positive and negative directions. Think of
this as “straightening out” the rope into a “rope axis” while keeping the direction of the forces relative to the rope.

Separate free body diagrams and The same blocks and rope are

Newton'’s 2nd law for each block treated as a single system with a total
mass, using a shared “rope axis”
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TORQUE

Torque
Variables SI Unit
e In simple terms, torque is like a rotational force.
: : : T  torque N-m
e When a force is applied to an object and that force does not
point directly at or away from the object’s axis of rotation, that F force N
force generates a torque.
e If an object is forced to rotate around one point or axis, like a r  distance from rotation axis m
wheel rotating about an axle or a door rotating about a hinge, that
is the axis of rotation. If an object is free to rotate about any axis,
its axis of rotation will pass through its center of mass. E
torque on P
torque on a door FF
_ a wrench a7 r
F — applied force e’
- —
T
radial line G
distance between force
and axis of rotation roos
axis of rotation “F

e When you push or pull on a door or a wrench, you're applying a linear force at some distance from the object’s
axis of rotation and generating a torque on that object which causes it to rotate.

e Torque is represented with the Greek letter 7 (tau).

e The Sl unit of torque is Newton-meters (N-m) which is given by the equation below.

e Only the component of the force that is perpendicular to the radial line between the center of rotation and the
point where the force is applied contributes to the torque.

e If the force is not already perpendicular to the radial line, there are two ways to calculate the torque:

Multiply the distance between the axis of rotation Multiply the perpendiuclar distance between
and the point where the force is applied (r) times the the axis of rotation and the line of force(r,)
component of the force vector that is perpendicular times the force (F)

to the radial line (F,)

Torque Torque

T = rF, = rFsin(0) T=r,F=rsin(6)F

o
g o - 4
- o
- 4
—_— — rJ_ ~‘~ o’ \
§~ o .
/\ line of force

LY
o ¢
L
4

;7 extends from
¢ the force vector




e When looking at the plane of rotation, a torque can either be clockwise (CW) or counterclockwise (CCW).

e Counterclockwise is the positive direction using convention, and clockwise is the negative direction, just like in
rotational or circular kinematics. This is important when adding several torques to find the net torque.

» The direction of the torque is the direction that the force would cause the object to rotate (CW or CCW).

F, would rotate the wrench counterclockwise

: : e so it generates a positive torque
counterclockwise torque is positive

clockwise torque is negative

D

cw CCw

F, would rotate the wrench clockwise
so it generates a negative torque

e A force whose line of force passes through the axis of rotation (the force points directly at or away from the axis
of rotation) does not generate a torque because there is no force component perpendicular to the radial line.

F, and F, do not generate a torque because they act parallel to the radial line
(directly at or away from the axis of rotation)

axis of axis of
rotation rotation




Example: A massless pole is pinned to a wall and is free to rotate about its left end. At the right end of the pole a
mass is hanging straight down and a rope pulls the pole up with a tension force at an angle. What are the torques
generated by the hanging mass and the tension force about the point of rotation on the left?

\T= 10 N

point of
rotation L=05m 60°
\massless pole
m = 3 kg
Torque from hanging mass: Torque from upper rope:
T, = Tsin(60°)
o[ @
L=05m
F, = mg
T=rF T=rF
T = (L)(mg) T = (L)(Tsin(60°))
T = (0.5 m)(3 kg)(9.8 m/s?) T = (0.5 m)(10 N)sin(60°)
T = 14.7 Nm (magnitude of torque) T = 4.3 Nm (magnitude of torque)
T = -14.7 Nm 7T = 4.3 Nm

torque is clockwise so it's negative torque is counterclockwise so it's positive



ROTATIONAL DYNAMICS

Net Torque and Rotational Dynamics
Variables Sl Unit

* Newton'’s laws of motion described how objects move and the
T torque N-m

relationship between linear forces and linear acceleration.
Newton’s 1st and 2nd laws of motion can also be applied to | rotational inertia kg -m?
torques and rotational motion.

. rad
* When working with rotational dynamics, it will help to review the Q@ angular acceleration s2
material on rotational kinematics. m mass kg

» The rotational version of a force is a torque.
» The rotational version of acceleration is angular acceleration. r distance from rotation axis m
e The rotational version of mass is rotational inertia, also referred

to as the moment of inertia.

* Newton'’s 1st law of motion (applied to rotation): An object at rest (with no angular velocity) will remain at rest
and a rotating object will maintain its angular velocity unless there is a net torque acting on the object (the sum of
all the torques acting on the object is not zero).

e When we see a rotating or spinning object slow down, there must be a net torque acting on the object caused by
forces such as friction or air resistance. In the absence of a net torque a rotating object will rotate forever.

e If an object is not rotating (or if it's rotating at a constant angular velocity) that doesn’t mean there are no torques
acting on the object, only that the net torque is zero (the torques balance each other in opposite directions).

An object at rest (with zero angular velocity) will A rotating object will maintain its angular
remain at rest if there is no net torque acting on it velocity if there is no net torque acting on it
Thet = 0 Thet — 0
a=20 a=20

t T, t T,
w=20 w=20



* Newton’s 2nd law of motion (applied to rotation): A net torque 7., acting on an object with a rotational inertia
I will cause an angular acceleration a in the same direction as the net torque, and the net torque is equal to the
rotational inertia multiplied by the angular acceleration: 7,., = la

* The rotational inertia or the moment of inertia is covered in another section, but it's a value that represents the
mass of an object and how far that mass is distributed from the axis of rotation.

Newton’s 2nd law of motion rotational inertia
applied to rotation

T.e=la o 7=l

net torque — T

net o — angular

> : the sum of __ acceleration

The net torque is the sum of all of the torques acting on an object

Tt = 2T =T+ Tp — T3
counterclockwise torque is positive

clockwise torque is negative +74
“ IR F,
+7, [ &
ojo (@47,
CW  CCW = F,

Newton’s 2nd law of motion for linear motion and rotational motion

Linear Rotational

a

>
net Thet
>F = ma >T = la
F: force (N) <4—» 1:torque (N-m)
m: mass (kg) <4—» |: rotational inertia (kg-m?)

a: acceleration (m/s?) €4——» «a: angular acceleration (rad/s?)



o If the net torque acting on an object or system is zero, the angular acceleration is zero and we say the object or
system is in a state of rotational equilibrium.

e If an object or system is not rotating (or is rotating at a constant angular velocity), the net torque acting about any
point on the object or system is zero, not just about the object’s pivot point or center of mass. We can use this to
analyze the forces and torques acting on an object or system.

Two blocks sit on a massless beam on a pivot
point and the system is in rotational equilibrium

A mass hangs from the end of a massless pole
which is supported by an upper rope at an angle,

a=20
Thet = 0
o Axq AXx, '
m
1 m,
PiV,Ot_/v K beam is massless
point so it does not
generate a torque
pivot
point
AXx4 - AXx,
........ @--ccccccccccccccns
TZP
Fy1 ~y U Fg2
2T = la
T, — T, = 1(0)

(ryF) — (r,F) =0
(Ax;m,;g) — (Ax,m,g) =0

Any variable can be solved for if
the other variables are known

and the system is in rotational equilibrium
a=20
Tnet =0

ivo T
goin:cc 9\
\’O T =

massless
pole m

>T = la
Tt — T,, = 1(0)
(rr F) = (r Fry) = O
(LTsin(@)) — (Lmg) =0

Any variable can be solved for if
the other variables are known



o If the net torque acting on an object is not zero, the object is not in rotational equilibrium and it will rotate with an
angular acceleration.

A rope is wrapped around a pulley that has mass and rotational inertia, so the tensions in the sections of
rope on each side of the pulley are not equal. The ropes are massless and there are no other masses
involved. The different tension forces cause the pulley to rotate with an angular acceleration.

a axis of
A ~ rotation
R v R
, I N G ‘ ........
@ 5°% pulley has rotational Do w— Note: If there were other
R L T, T, T :
v inertia [ -—v 2 objects attached to the ropes
~—V they would also have mass
4\ a and their own inertia, and the
massless rope, angular acceleration of the
no other masses 27 = la pulley would also depend on
T, - T, = la the linear dynamics of those
T1l sz (rFy) — (r,F,) = lat masses and the rope.

(RT,) = (RT,) = la

Any variable can be solved for if
the other variables are known



Rotational Inertia (Moment of Inertia)

* An object’s rotational inertia I, also referred to as the moment of inertia, is the object’s resistance to angular
acceleration. The greater the rotational inertia, the more an object will resist a change to its state of rotation.

* The word “moment” has nothing to do with time and “rotational inertia” may be easier to remember, but the term
“moment of inertia” is still widely used.

» The rotational inertia can be thought of as the position-weighted sum of its mass or its mass distribution.

* The more mass an object has and the farther that mass is distributed from the axis of rotation, the greater the
object’s rotational inertia.

A hammer is easier to rotate quickly (an angular You automatically stick your arms out when trying to
acceleration) when held and rotated about the balance because it increases your rotational inertia
end with more mass and your resistance to rotation (falling sideways)
greater smaller axis of
rotational inertia: rotational inertia: rotation
| |- arm mass is clo.ser
more mass to axis of rotation

tarther from
point of rotation

greater

o \ rotational :
. o arm mass is
inertia |

farther from
axis of rotation

— \4

¥~ pointof ¥

rotation T

more mass '\

more mass is
added farther
from axis of
rotation

closer to
point of rotation



e The rotational inertia for a system of point masses (or a group of objects) can be calculated using the equation

below, which is the sum of each mass m multiplied by the square of the distance between its own center and the

axis of rotation r2.

system’s axis
of rotation PY

m1 oov
Rotational inertia for a system of masses ° ry .
-« .. r
| = Ymir? = mir? + myrd + mars + -
- it 171 272 373 see
individual
r\ mass
| / 3‘\“ /
distance from center of one ®
mass to system’s axis of rotation m;

e Any rigid body (an object that does not change shape) can be modeled as a system of many individual point
masses or particles (small sections of the object, molecules, atoms or even subatomic particles). If an object has
a complex shape the rotational inertia will usually be given if needed.

* Many objects can be modeled as one of the shapes shown below.

Rotational inertia for some common shapes, where m is the total mass of the object, r is the radius,
L is the total length of the object, and the axis of rotation is either through the center or one end

Solid sphere Solid cylinder Solid rod
(center) (center) (center) < ”
’_ngZ | = 1mRZ | = 1 L2 L

~ 5 2 12
Sphere shell Cylinder shell Solid rod
(center) (center) (end) //_
| = 2mR? | = mR? I = 1mL2 L

— 3 - — 3




CENTER OF MASS

Center of Mass
Variables S| Unit

* The center of mass (COM) of an object or a system of masses is the

mass-weighted average position of an object or a system of masses. X X position m
e If an object is symmetrical and has a uniform density, the center of mass is located y y position m
at the center of the object (the center of the width, length and height of the object).
e If an object is not symmetrical or does not have a uniform density, the center of m  mass kg

mass moves closer to areas of the object with more mass.
* The center of mass of an object or a sytem does not have to lie directly on the
object and can be located in the empty space near the physical object(s).

The center of mass of a symmetrical object with uniform density is located at the center of the object

sphere block beam / pole ring

<
v <

center of mass COM does not
(COM) lie on the object

The center of mass of an asymmetrical object is located closer to areas with more mass

triangular block hammer car with front engine table

COM does not
lie on the object

el

The center of mass of a system depends on the location and mass of each object

e
S

of system of object



* Objects and systems also have a center of gravity (COG). When an object or system is in a gravitational field,
there is a gravitational force acting on every particle in the object or every mass in the system. However, we can
treat all of those forces as a single, total gravitational force acting on a single point - the center of gravity (this
is what we usually do).

o If we assume all of the object or system is within a uniform gravitational field (meaning the acceleration due to
gravity g is the same everywhere across the object or system, which is a good approximation) then the center
of mass and the center of gravity are at the same point.

We can treat the gravitational forces acting on each particle as a
single, total gravitational force acting at the object’s center of mass

an object is a
system of atoms

total gravitational
gravitational force force acting at
on each atom center of gravity

When in a uniform gravitational field, the center of gravity is located at the center of mass

*outer space, no gravitational field

center of mass
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e The center of mass of a system or group of masses can be calculated using the equations below.

o If all of the masses lie on a single line only one coordinate (x) is needed. If the masses are distributed in 2D space
then two coordinates (x, y) are needed. Although not covered here, (x,y, z) would be used in 3D space.

* The coordinates used for each object are the coordinates of that object’s own center of mass, which will be in
the middle of the object if the object is symmetrical.

* The origin of the coordinate system is arbitrary. If it's not given you can choose the origin (where x and y are zero).

(m)
A

x coordinate of center of mass

system of objects in 2D space
of a system

mix,; + myx, + ...

Xcom =
m; + m, + ...

(6,3.3) @

/’ 2 kg
1 kg COM Sy

of system

y coordinate of center of mass
of a system

N WA U O <
)
~
Q

m,y,; + myy, + ...

— 14
=t m,+m, + ...
0

0 1 2 3 45 6 7 8 9

» x (m)

AID
o

(1kg)(2m) + (2kg)(8 m) + (3 kg)(6m) _ -~

(1 kg) + (2 kg) + (3 kg) COM of system:
(6,3.3)

Xcom =

 (1kg)(1m) + (2kg)(2m) + (3kg)(5m)
Yeom = (1kg) + (2 kg) + (3 kg) -

3.3 m



e An object or a system will balance on its center of mass (center of gravity) on a pivot point or when suspended
from above. Since we can treat the individual gravitational forces acting on each object as a single gravitational
force acting on the system’s center of mass, that single gravitational force will not generate a torque if it's
directly above or below the point of rotation.

Objects and systems will be balanced (in rotational equilibrium) when the pivot point or suspension point
is in vertical alignment with the center of mass

pivot is directly below
the object’'s COM

Q---_-----

\

object is suspended
above its COM

If we look at each object separately, the individual
gravitational forces generate individual torques
about the pivot point. If the pivot point is directly
below the system’s center of mass, the net torque

will be zero so the system is balanced.

(6 m)(2.8 N)

T =l

(58.8 Nm) — (58.8 Nm) = I«
(O Nm) = I(0 rad/s2)

f

net torque
is zero

\

massless
beam

-(3 m)(19.6 N)

angular acceleration
is zero

"

pivot is directly below
the system’s COM

If we treat the objects as a system, a single
gravitational force acts at the system’s center of
mass. If the pivot point is directly below the
system’s center of mass, that single gravitational
force points directly at the point of rotation and
does not generate a torque, so the net torque on
the system is zero and the system is balanced.

system of 2 blocks

massless
beam

| |
| |
E msystem =3 kg E
| |
| |
: l
" system > "
& COM :
\ e _ el _ e )
Fg system
Toystem = FF = (0 M)(29.4 N) = O Nm
force is in line with
point of rotation, r=0
27T = la
(O Nm) = I(0 rad/s2)
net torque  angular acceleration
is zero is zero



CENTRIPETAL ACCELERATION & FORCE

Uniform Circular Motion
Variables S| Unit

¢ Uniform circular motion is when an object travels in a circular path with m

a constant speed. s
* The direction of the velocity is constantly changing, but the magnitude r radius m
(speed) stays the same.

v  velocity

* We call the acceleration of the object the centripetal acceleration which T period S
is covc?red in another s.ectlon.‘ . | | . f  frequency Hz = cycles
e An object can be in uniform circular motion without completing a full circle. q
W angular velocity %
A car in uniform circular motion The direction of the the velcocity is constantly changing but
the magnitude (speed) stays the same
20 m/s .
— V
t t
| 20 m/s ’ 4
¢ p t; —>
A vl v
20 m/s | -,
Yy, T eees—> .t v
v 20 m/s 4

e Sometimes an object in uniform circular motion will repeat several revolutions over and over. In those cases we
can describe the motion using period and frequency.

e Period (T) is the amount of time it takes to complete one circle or revolution. The unit of period is seconds (s).

e Frequency (f) is the inverse of the period (1/T) and is the number of circles traveled per second. The unit of
frequency is Hertz (Hz) which is cycles/second or 1/s (the numerator has no unit, it's just “something” per second
like circles/second, revolutions/second, etc).

the period is Frequency
the time to 1
........ complete f = 7.
one circle
f: frequency (Hz, cycles/s)
T : period (s)

an object travels one circumference in one period, so
the velocity is related to the period and frequency

=E v=2nrf
T



Centripetal Acceleration

Variables SI Unit
e To understand centripetal acceleration and its related motion, it will . , m
. : . a. centripetal acceleration 2
help to review velocity and acceleration vectors. s
e Acceleration is the change in velocity divided by a period of time. a  acceleration %
» Acceleration and velocity are both vector quantities which have a m
magnitude (value) and a direction, so the acceleration can change the v velocity 3
magnitude of the velocity (the speed) or the direction of the velocity. r radius m
* Remember that vectors can be added or subtracted using the
tip-to-tail method. t time S
The vector representing the change in velocity is the final velocity vector The acceleration vector points
minus the initial velocity vector, which can be found using the tip-to-tail in the same direction as the
method in one of two ways change in velocity vector
. : Vi~ V; = AV
initial final
velocit velocit Av
y y AV
change in a= At

velocity

e Let's look at two examples below of an object moving in a straight line. The velocity vectors at two timepoints are
shown. What is the direction of the acceleration vector that would cause that change in the velocity vector?

If @ is parallel to v and points in the same direction, the magnitude (speed) of v increases
and the direction of v doesn’t change

[, AV a
i a is in the same
>—> o directi N
> Irection as Av

If ais parallel to v and points in the opposite direction, the magnitude (speed) of v decreases
and the direction of v doesn’t change

L
V, v i R
‘_»..<_ ...... ; > a8  aisinthe same
10m/s @& 6 m/s > l

- direction as Av
Vs Av




* Now let’s look at an object following a curved circular path where the magnitude of the velocity vector (speed)
doesn’t change. Remember, acceleration can change the direction of the velocity vector, not just the magnitude.
What is the direction of the acceleration vector that would cause this change in the velocity vector?

If @ is not parallel to v, it causes V to change direction and follow a curved path

we can place & at the position
halfway between the two times

a is in the same

\AV \a direction as Av

If @ is always perpendicular to v, the direction of v changes and the object follows a circular path.
The magnitude of v doesn't change because no component of a points in the same direction as v

uniform circular motion:

> v
—_
— -V
A_) ac - -..
v a. a. 4

- -
a. ® a

10 m/s . 3 Ry

the acceleration a is referred to
as the centripetal acceleration a,

C

C -
aC

é
. a c
- . v /
a. always points / KQ/
towards the center NG .. V
of the circular path v

- -
a_and v are
perpendicular

v always points tangent
to the circular path

e If the acceleration vector is continuously perpendicular to the velocity vector, the velocity will change direction
and end up following a circular path without changing speed. This is uniform circular motion.



e We call the acceleration which results in circular motion the centripetal acceleration. “Centripetal” means acting
towards the center which is the direction of the centripetal acceleration.

e Conceptually, it's important to note that there is nothing special about a centripetal acceleration and this is not
some new “type” of acceleration. If an object is moving along a circular path there must be an acceleration that
is perpendicular to its velocity and points towards the center of the circle.

e In a physical scenario, the cause of a centripetal acceleration is a centripetal force which is any net force that acts
towards the center of the circular path. This could be the tension force of a rope, the normal force of a circular
track, or any other type of force. Centripetal force is covered in another section.

e The magnitude of the centripetal acceleration is given by the equation below. The greater the speed of the object
and the smaller the radius of the circle, the greater the centripetal acceleration that is required to keep the object
moving in a circle at that speed.

Centripetal acceleration

v2

a. = — (towards center of circle)

v : tangential speed (m/s)
r : radius of circular path (m)

Centripetal acceleration
(other variables substituted for speed)

v2

2 2 2m \? e
a.= — =wr=2af)r=(—|r
r T

w : angular speed (rad/s) 1
f:frequency (Hz =rev/s) f = —
T : period (s) T

e Even if an object only travels along a segment of a circular path (instead of a full circle) we still consider the object
to be in uniform circular motion and the acceleration is still centripetal acceleration.

the car is in uniform circular
motion and has a centripetal
acceleration as long as the
path is part of a circle and
the speed is constant

'— not in uniform circular motion



Calculating centripetal acceleration using different variables for speed

A car is driving around a
circle at a constant speed

@
10 m/s?
¢ 40 m
%

0' &

v2 _ (20 m/s)?

a.= — = 10 m/s?
r 40 m
v 20m/s
= — = = 0.5 rad/s
r 40 m
a. = w?r = 10 m/s?
27r 27(40 m)
T=—= = 12.57 s

v 20 m/s

27 \?
a.=|—)r=10m/s?
T

= 0.0796 Hz

(1
T 12.57 s

a. = (2nf )% = 10 m/s?

An object is tied to a rope
and swings around in a circle

v2 6 m/s)?
a. = =( ) = 18 m/s?
r 2 m
v 6m/s
w=-= = 3 rad/s
r 2m
a. = w?r = 18 m/s?
C 2rn(2m)
T=—-= =21s
v 6 m/s
27 \2
a.=|—)r=18m/s?
T
1
f=—= = 0.48 Hz
T 2.1s
a. = (2nf)%r = 18 m/s?



Centripetal Force

* Remember that if an object is traveling in circular motion then there
must be a centripetal acceleration (an acceleration vector that points
towards the center of the circular path). According to Newton’s 2nd
law of motion (l_fnet = ma) there must be a net force acting on the
object in the direction of that acceleration.

¢ A centripetal force is what we call that net force acting in the radial
direction (towards the center of the circle) which is causing a
centripetal acceleration, which results in the circular motion.

Centripetal force

2

— \V4 .

FC = mT (towards center of circle) 5c =
- -
Fc = Fnet

-

—_
F. = ma_

a centripetal force causes

Variables S| Unit

F. centripetal force
a. centripetal acceleration
v velocity

r radius

3 w|34vl3 Z2

Centripetal acceleration

v? .
- (towards center of circle)

a centripetal acceleration d
(&
we call this net force in the radial we call this acceleration in the radial
direction the “centripetal force” F, direction the “centripetal acceleration” a.

e Centripetal force refers to the net force acting in the radial direction (towards the center of the circle) which is

causing the object to move in circular motion.

A ball attached to a rope swings in uniform circular motion in space (assuming no gravity). The tension
force on the ball from the rope is acting as the centripetal force, keeping the ball in circular motion.

|4

F. is the same at each point
T is the same at each point



A ball is attached to a rope and swings in uniform circular motion. The circle is horizontal, parallel to the

ground, but gravity causes the ball to pull the rope down at an angle. The horizontal component of the

tension force, which always points towards the center of the circle, is acting as the centripetal force (not
the entire tension force).

top view side view
F. is the same at each point
T is the same at each point

A ball is attached to a rope and swings in a vertical circle. At each point there is a tension force and a
gravitational force acting on the ball. Because the ball is in circular motion, the net force acting on the
ball in the radial direction at any time is equal to the centripetal force.

®@ R.=r
F, v
¢ "t T+ Fy=m—
r
F. is the same at each point
Fy is the same at each point
T changes around the circle
" M. FRe=F
|4
T—F=m—
r




e A common confusion when working with circular motion is the concept of “centrifugal force”.

» Centrifugal force is a “fictitious force” which is a force that does not actually exist. When the circular motion of
an object is viewed in the rotating reference frame (in which the object appears to be stationary) it may appear
that a force is pushing or pulling the object away from the center of the circle, which we call a centrifugal force.
This imaginary force only arises because of the rotating reference frame.

* The only real force acting on the object is an inwards centripetal force, not an outwards centrifugal force.

e According to Newton'’s 1st law of motion an object will maintain its velocity (continue moving in a straight line at
a constant speed) unless acted on by a net force. In circular motion we call that net force the centripetal force. If
that centripetal force suddenly disappeared the object would travel in a straight line tangent to the circle.

Newton’s 1st law of motion: an object will remain at rest
or maintain its velocity (continue moving in a straight line where the bal

at a constant speed) unless acted on by a net force. due to Newton’s 1st law, not
due to a “centrifugal” force

|ll

wants” to be

If the centripetal force

A ball moves in circular suddenly disappeared

motion due to a centripetal the ball would movein |v the centripetal
force (tension) a straight line tangent + force keeps the ball ‘
s b e 2 moving in a circle 2
v
Fci

Vv

—> [ ) o t1

vi FC
oo .*_‘_" o N I SPUPUR DR



ORBITAL MOTION

Orbital Motion

e Orbital motion is when an object follows a circular or elliptical path (an “orbit”) around another object, where the
only force acting on the object is gravity.

e Technically the two objects are both in orbit around a common point called a “barycenter” but we’ll focus on a
simplified version for now, where one of the objects has much more mass than the other and the barycenter is
approximately at the center of the larger object.

Satellites and the International The moon is in orbit around The earth is in orbit around
Space Station are in orbit the earth at a distance of the sun at a distance of
around the earth about about 384,400 km about 149,000,000 km

200-2000 km above the surface

e An object in orbital motion around a planet is actually in projectile motion or free fall.

» The only force acting on the object is the gravitational force from the planet which always points towards the
center of the planet. It may seem like some force is required to keep the object moving, but we know from
Newton'’s 1st law of motion that an object in motion will continue moving on its own unless a net force is applied
to stop it from moving.

* We're only going to focus on the continuous orbital motion itself, not the cause of the initial velocity that started
the orbital motion or changes to the orbital motion.



In projectile motion (or free fall) the only force acting on the object is the gravitational force
(ignoring air resistance)

v > a faster initial speed means

‘ the ball travels farther

TREMtERIIL el I

r LT T the gravitational force
el T . points towards the

' ' center of the earth

9

J "3.:."-?;:-._-:.._._. As the speed and the range increase to a
"= s larger scale, the curvature of the earth
" ' becomes relevant and the ground begins
B to “fall away” below the path of the ball.

If the initial speed is fast enough (~ 7,900 m/s)
the ball will never hit the ground, the projectile
motion completely circles the earth and the ball

ends up where it started. At this velocity the

\_/ ball is in orbital motion around the earth.

Once the ball is in orbit its speed is constant
and the only force acting on it is the
gravitational force (assuming no air resistance).
The gravitational force is perpendicular to the
velocity and changes its direction, but no force
is required for the ball to keep moving.
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e Since an object in orbital motion is in projectile motion or free fall, and the only force acting on it is gravity, the
object has no apparent weight and it experiences “weightlessness”.

e Gravity is still acting on an object in orbital motion. For example, the International Space Station (ISS) is in orbit
around the earth at an altitude of about 400 km. At that distance from the earth, the acceleration due to gravity g
is still about 8.7 m/s2 or 89% of the acceleration due to gravity at the surface of the earth.

e An astronaut in the ISS orbiting the earth will feel like they're falling, because they are. It's the same thing as
being in an elevator that is in free fall where you appear to be weightless. The difference is that an object in
orbital motion is also moving sideways very fast, and the direction of the gravitational force keeps rotating.

Your apparent weight is the normal force supporting you from below, which is equal to the actual weight if
the net force and acceleration are zero

scale measures apparent
TF weight of the person
(normal force on person)

N
Ib

— — ng — —

person: F, — Fy = m(0 m/s?) Fg = /84 N <«— weight
m = 80 kg F, = Fy F, = 784 N <— apparent weight
Fg=mg=784N F,= 784 N

When you're in free fall and the only force acting on you is the gravitational force, you have no apparent
weight and you experience “weightlessness”, even if you have some velocity. This is the case for an
object in orbital motion.

not in free fall

elevator and person in free fall

F. = 0N

elevator and person in free fall,
in orbit around the earth

o1 _C
Z

o

apparent weight:

apparent weight:

F,=784 N F,= 0N . .
weight: weight: app:re_nt (\;vel\llght: E v_ve|7ggt4 N
Fg=784N Fg=784N n— g



Circular Orbits

Constants Unit Name Variables SI Unit
3
G 6.67x10" kgn-152 gravitational constant M  planet mass kg
m  object mass kg
» The path of an object in orbit around a planet can be a circular orbit or an .
elliptical orbit. The same laws which are covered in the elliptical orbit R planet radius m
section also apply to circular orbits. r  orbital radius m
* An object in a circular orbit is in uniform circular motion around the m
planet. Remember that an object in circular motion must have a centripetal v orbital speed 3
force acting on it which always points towards the center of the circle. ) .
: : ; . e T  orbital period S
e For circular orbits, the centripetal force is the gravitational force and the
centripetal acceleration is the gravitational acceleration at that distance Fg gravitational force N
from the center of the planet. This means we can equate some concepts
from uniform circular motion and Newton'’s law of universal gravitation. F. centripetal force N
A small mass m in a circular The centripetal force for a circular orbit is the

orbit around a large mass M

gravitational force acting on the small mass so

we can combine circular motion and gravitation

F.=F,

mv? GMm

......
0000000

» Using the equation above for the orbital velocity we can derive an equation Variables
for the kinetic energy K of an object in a circular orbit.
. . - o E total energy
» The gravitational potential energy U, of the object in orbit is just the
gravitational potential energy of the two-mass system, regardless of the K  kinetic enerrgy
motion of either mass (so this is not specific to orbital motion).
* The total energy of an object in a circular orbit is the sum of kinetic energy Ug potential energy

and the potential energy.

Kinetic energy of object Gravitational potential Total energy of object
in a circular orbit energy of two-mass system in a circular orbit
GMm GMm GMm
K=1mvi= —— u,= -—= E=K+U,= - —"
2 2r r 2r

r r2
, GM 21r
vV = — = —
r |4
Orbital speed Orbital period

/GM / re
— —_— T=2 —_—
v r & GM

S| Unit
J

J
J



Elliptical Orbits

e Most real orbits are elliptical orbits which means the path is an ellipse instead of a perfect circle. A circular orbit
is a special case of an elliptical orbit where the eccentricity is zero and the two focal points are at the center. The

laws governing elliptical orbits also apply to circular orbits.

* In the early 1600’s Johannes Kepler described the orbits of the planets around the sun. Kepler’s laws of

planetary motion are given below.

e Law 1: The orbit of a planet is an ellipse with the sun at one of the two foci.
* An ellipse has two foci or focal points. If one of the masses (the sun) is much larger than the other (a planet) then
the center of the larger mass aligns with one focus of the ellipse according to Kepler’s 1st law.

A small mass m is in an elliptical orbit around a large mass M

the large mass
respresents the sun
which is located at one

focus of the ellipse

the shape of the

orbit is an ellipse\j-,

the small mass
represents a planet
like the earth

the other focus is
in empty space



e Law 2: A line connecting the planet and the sun sweeps out equal areas during equal intervals of time.

» Imagine a line connecting the two masses which follows the orbital motion. During any 1 second interval (or
maybe 1 month on a planetary scale) that imaginary line will sweep out or cover the same amount of area,
regardless of where the planet is in the orbit. This law relates to the orbital speed and the orbital period.

* The planet (small mass) will move faster when it's closer to the sun (large mass), and slower when it's farther
away from the sun. From Newton’s law of gravitation, the gravitational force between the two masses is stronger
when they are closer together. Also, because the path is elliptical and not circular, the gravitational force on the
small mass is not perpendicular to its velocity (except at the left and right ends of the orbit shown). This means
the gravitational force will have a component that's parallel to the velocity and it will cause the small mass to
accelerate and its speed will change throughout the orbit.

A line connecting the two masses sweeps out equal areas in equal intervals of time

the speed increases
v as it gets closer to

+— the large mass

the speed is the slowest
at the farthest point
from the large mass

the speed is the fastest
at the closest point to
the large mass

I Vmax

\4

.-*" the line sweeps out an
a line connecting/-/.'.. ....... area of space during

the two masses m an interval of time




e Law 3: The square of a planet’s orbital period is proportional to the cube of the semi-major axis of its orbit.
e Unlike a circle which has a single radius, an ellipse has a semi-major axis and a semi-minor axis which are the
longer “radius” and the shorter “radius” (the longest and shortest distances from the center to the perimeter).

* The equation for the period of an elliptical orbit is similar to the period of a circular orbit, but the semi-major axis
is used instead of the radius.

The square of the orbital period is proportional

i© e Gube @i e semiHmEer s Orbital period for elliptical orbit

/ 33
R, T=2n
.* semi-minor -
axis  p G(M + m)
. T?= <—4n2>a3 Orbital period for elliptical orbi
a : GM rbital period tor elliptical orbit

semi-major (assuming M is much larger than m)

axis .g'm 3
T=2n | —

°
° o o ®
° o o ®
"""""""

e Kepler's laws describe the elliptical orbit of a small mass around a large mass. In reality, both masses orbit the
shared center of mass of the system (called the barycenter) in elliptical orbits. That center of mass is located
at one focus of each elliptical orbit.

e When one mass is much larger than the other (as in the case of the sun and the earth) the system’s center of mass
is within the larger mass and is very close its center. So it's a fair approximation that a focus of the elliptical orbit
of the smaller mass is located at the center of the larger mass, instead of at the system’s center of mass.

* As the two masses become more similar in size, the system'’s center of mass moves towards the middle of the two
masses. If the masses are equal, the center of mass is directly between them and they appear to orbit each other.

Both masses are in elliptical orbits with the system’s center of mass at one focus

M is much larger than m M is larger than m M is the same as m
e @ .
@ e M
Mi & -
'.‘.'. =Y
system’s : . = &
center of mass - system's COMisat :
- onefocusineach : @
elliptical orbit -
... .... ' ....
pd m= mY



TYPES OF ENERGY

Kinetic Energy and Rotational Kinetic Energy

o Kinetic energy is the energy of an object or system due to its motion. There are two types: translational kinetic
energy and rotational kinetic energy. Both of these are types of mechanical energy.

» Kinetic energy is a scalar quantity (not a vector quantity) so it's always positive, it does not have a direction and
it does not depend on the direction of the object’s or system’s velocity.

» Translational kinetic energy or linear kinetic energy (often just referred to as Variables S| Unit
kinetic energy) is the energy of an object or system due to its linear motion

and depends on its mass and linear speed. K kinetic energy J

et v m mass kg
inetic energy l j =
K = 1 5 ° |4 spee ry
- amyv
2

gy | 30 m/s

2 kg l3 m/s 0.5 kg § ) —

24 m/s 1500 kg

K = 5(2 kg)(3 m/s)? K = 5(0.5 kg)(24 m/s)? K = %(1500 kg)(30 m/s)?
K=9J K=144J K= 675,000 J
* Rotational kinetic energy is the energy of an object or system Variables S| Unit
due to its rotational motion and depends on its rotational inertia . o
and angular speed. K., rotational kinetic energy J
Rotational | rotational inertia kg -m?
kinetic energy W  angular speed %
1
Kot = E’wz 03‘”
w = 3.5 rad/s
I = 0.001 kg -m? w = 60 rad/s w = 100 rad/s

r\

| = 0.001 kg-m?

e m——

ot = 5(0.001)(3.5)? Krot = (0.001)(60)2 Keot = %(0.4)(100)?
rot — 0.006 J Krot = 1.8 J rot — 2:000 J

oooooo

A
I
A
I



Gravitational Potential Energy

Constants Unit Name

» Gravitational potential energy is the energy of a 3

system of two masses due to the gravitational force G 6.67x107"

pulling them together. The two masses are usually

an object and the earth. This is a type of mechanical energy. . .
e [t's important to remember that gravitational potential Variables SI Unit

energy is a property of a system of two masses. A single Uy gravitational potential energy J
object can’t have gravitational potential energy on its own,

kg -s? gravitational constant

although it is very common to say that it does. When you see M planet mass kg
“the potential energy of the ball”, replace that with “the m  object mass kg
potential energy of the ball-earth system”.
¢ There are usually two equations that are used to calculate r  distance between centers m
gravitational potential energy. One is used for planet-sized height m
distances and one is used for changes in height near the y g
. m
surface of a planet. These are actually the same equation, the g gravitational acceleration 2

second one is derived from the first using approximations.
e The Sl unit of gravitational potential energy is a joule (J),
the same as all types of energy.

e The gravitational potential energy of a two-mass system is derived from the gravitational force given by Newton'’s
law of universal gravitation which is shown below. Note that when the two masses are an infinite distance apart
the gravitational force between them approaches zero.

GMm
Fg=7 Fg=0atr=oo

e The gravitational potential energy of a two-mass system exists because of the gravitational force between them.
If the gravitational force is zero when the objects are an infinite distance apart, the gravitational potential
energy is also zero when the objects are an infinite distance apart.

» The gravitational force between the two masses is attractive and each mass “wants” to move towards the other,
so energy must be added to the system (work must be done on the system) in order to move them apart
and increase the distance r between them.

e For those two reasons,

An increase in r must increase Uy (which changes from a bigger negative value to a smaller negative value, a
positive increase) and Uy, must be zero when r = 0.

Gravitational potential energy
of a two-mass system

U, = - GMm
r

U, =0atr=o r

g



The change in the gravitational potential energy of a two-mass
system is positive as the distance between the masses increases

masses are moved farther apart,
energy is added to the system
(work is done on the system)

graph of gravitational potential
energy U, vs distance r

| |

: : +U,

: : GMm A

I Wy, = —

| | 92 r2

E E Ug =0 > r
E E ng- =0 t/' = o0
, \ Ug, — Uy = +AU9T 9= P TT

| | U 1'

] ) 9

: ‘ : GMm \Ug is always

E : Eug'l = = re v negative

: | | : - Ug

Example: Gravitational potential energy of the earth-moon system

M = 5.97 x 10%* kg
m = 7.35 x 10%? kg |

N

r=3.84x10% m

U GMm (6.67 x107'")(5.97 x 10%* kg)(7.35 x 10?* kg)

q - = -7.62x10%° J
r (3.84 x10° m)




» What if we're working with an object at a relatively small height above the ground and we want to know the
gravitational potential energy of the object-earth system?

e The equation given above still represents the gravitational potential energy of the object-earth system, but we're
going to get very large (negative) values for the potential energy. We'll also find that it's more useful to focus on
the change or the difference in the potential energy between two heights.

* Below is an example of the gravitational potential energy of a ball-earth system at two different heights, then
how we can simplify the equation for relatively small changes in height near the surface of the earth.

Calculating the change in gravitational potential energy of the ball-earth system between
two different heights, using the original equation for gravitational potential energy

U,: gravitational potential energy of ball-earth system

U — GMm  GM.m _ (6.67x10"")(5.97 x 10** kg)(1 kg)
m‘”‘g\ 92 = r (r.+Ay) (6.37x10° m + 10 m)
@ — U, =-62511,519
A
AU, = Uy, — Uy = (62,511,519 J) — (-62,511,617 J) = 98 J
Ay =10 m
~ GMm _ GM.m _ (6.67 x10"")(5.97 x 10** kg)(1 kg)
92 = ro r. (6.37 x 10° m)

= -62,511,617 J

re=6.37%x10" m radius of the earth
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We can simplify the equation for the change in gravitational potential energy using some
approximations when working with relatively small changes in height above the surface of the earth

M. : mass of the earth

AU = ng - Ug1

r. : radius of the earth °
m : object mass - GM_m - GM_m
. . ’ . . (— AU — —_—
Ay : object’s change in height g (r, + Ay) r
e e
GM_.m GM.m
AUg = -
re (ro + Ay)
T 1 1
simplity AUg =GM,m| — —
re (ro+ Ay)
(ro + Ay) re
if the object’s change in height is AU, = GM.m -
much less than the radius of the earth, re(re + Ay) re(re + Ay)
the radius plus the change in height is A
approximately equal to the radius —p AUg = GM,m y
Ay << r, re(re + Ay)
(re + Ay) = r A
e .y e \/' AUg — GMem _'Zy
re
if we assume the acceleration GM
due to gravity is constant for AU = e mAy
this change in height 9 rg
GM,

Fe



Calculating the change in gravitational potential energy of the ball-earth system between two
different heights, using the simplified equation for the change in gravitational potential energy

Change in gravitational Gravitational potential energy
potential energy of an of an object-earth system
object-earth system *relative to a reference point
AU, = mgAy U,=mgy U;=0aty=0

\ /

these mean the same thing, they're just two different ways
to represent changes in the gravitational potential energy

y (m)
A gravitational potential energy
12 4 v m = 1 kg relative to the ground

10l @<+ Uy =mgy=(1kg)(9.8 m/s?)(10m) = 98 e
A

8+ Ay = 10 m
61 AU, =U

9
or (:

i = m —_ 2 —
to be at the ground, AUQ gAy = (1 kg)(9.8 m/s?)(10 m) = 98 J

this is where U, = 0 21
as a reference

- Uy =(98J)—-(0J)=98J

g2

we can choose y =0

"ol @ <«—Us=mgy=(1kg)9.8m/s?)Om)=0J

214
44 U,: gravitational potential energy of ball-earth system

\ 4
-y (m)

e Above we use the simplified equation for the change in gravitational potential energy for the ball-earth system.
The change in height is small relative to the radius of the earth, and the acceleration due to gravity is constant.
We get the same value for the change in potential energy as before: 98 J. This is the change in the potential
energy of the system regardless of which equation we use.

e Instead of calculating the change in potential energy we can establish a reference point where y = 0 and
U, = 0. Then we can calculate the potential energy when the object is at different heights relative to that
reference point.

e Remember that this value is not the actual, absolute gravitational potential energy of the sytem, this is just a
different way to represent changes in the gravitational potential energy, which will be helpful when using
the conservation of energy and work.

e Also, notice that the change in potential energy only depends on the change in height, it does not depend on
the path that the object takes between the two heights.



Example: A 5 kg ball rolls down a ramp with multiple sections and reaches the ground. What is the ball’s
gravitational potential energy (technically the energy of the ball-earth system) at points A, B and C if:

the reference point (y = 0) is at the ground

Uga = mgy = (5 kg)(9.8 m/s2)(6 m) = 294 J
A Ugs = mgy = (5 kg)(9.8 m/s?)(2m) = 98 J
= mgy = (5 kg)(2.8 m/s2)(Om) =0J

the reference point (y = 0) is at the height of point B
UgA = mgy = (5 kg)(9.8 m/s2)(4 m) = 196 J

A Uge = mgy = (5 kg)(9.8 m/s2)(0m) = 0 J
Uy = mgy = (5 kg)(9.8 m/s2)(-2 m) = -98 J

the reference point (y = 0) is at the height of point A

Uga = mgy = (5 kg)(9.8 m/s2)(Om) =0J
A U = mgy = (5 kg)(9.8 m/s?)(-4 m) = -196 J
1 = mgy = (5 kg)(9.8 m/s2)(-6 m) = -294 J
U,=0at 9

9 a 0 - A._ _____________________________
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Other Types of Energy

e Kinetic energy, gravitational potential energy and spring potential energy are all types of mechanical energy.
e There are other types of energy that are categorized as non-mechanical energy such as thermal energy, sound
energy, light energy, chemical energy and electrical energy.

Mechanical energy Non-mechanical energy
* K - Kinetic energy ® Eitorm - Thermal energy
e U, - Gravitational potential energy ® E_ .4 - Sound energy
e U, - Spring (elastic) potential energy ® Ejight - Light energy
® E.m - Chemical energy

e E .. - Electrical energy

» Thermal energy is the energy of an object or system due to the vibrations of the atoms in the material.

e The thermal energy of an object is really the total kinetic energy of all of its atoms, and an object’s temperature
is the average kinetic energy of all of its atoms.

e The atoms in an object with a higher temperaure are vibrating (translating and rotating) more than the atoms in
an object with a lower temperature.

* When there is kinetic friction between two objects, some of the kinetic energy of the moving object is converted
into the increased thermal energy of both objects, raising their temperatures.

E

therm

the thermal energy and
®, temperature of the block
is due to the vibrational
kinetic energy of its atoms

* Sound energy is the energy of sound waves traveling through the air or another medium.

e Sound energy is a combination of pressure energy (a form of potential energy) and the kinetic energy of the
molecules as they move or vibrate.

* During a collision of two objects, some of the kinetic energy is converted into sound energy, creating the sound
that you hear from the collision.

E

sound

E

sound

some of the kinetic energy
v

< during is a collision is
transformed into sound energy




o Light energy is the energy of light waves, which is just a form of electromagnetic wave energy.

* The electrical energy in the filament of a lightbulb is converted into light energy (and thermal energy) which is
the light emitted from the bulb.

» The light energy from the sun can be converted into electrical energy using solar panels.

E..
light Ejight

ST

energy is converted
between electrical energy
and light energy in a light
bulb and a solar panel

* Chemical energy is the energy stored in the chemical bonds in a material.

» Energy is required to form chemical bonds, and chemical energy is released and converted into other forms when
those chemical bonds are broken or change in some way during a chemical reaction.

* The chemical energy in the food we eat is converted into other forms of energy that we can use.

» The chemical energy in a battery is converted into electrical energy, which can be converted into other types of
energy like light, sound, heat or mechanical energy.

E

chem
. o o Echem
® ¢ 0o O | ) I
. : : ot
chemical energy e 6.0 0o + uring chemical reactions
< stored in o o ® ¢ o the energy is converted
chemical bonds ® _ 0. .0 0.0 into light, thermal, electrical
o ©¢ : @ or other forms of energy a
o_©O @
[ o O Echem

e Electrical energy is the energy due to the movement of electrons.
* The chemical energy in a battery is converted into electrical energy when connected to a circuit, which can be
converted into other types of energy like light, heat, sound or mechanical energy.

'- S 0o ¢ the chemical energy in a battery is

T : - lEelec converted into electrical energy,
: - which is converted into light and

+ TR : thermal energy in the lightbulb



ENERGY, WORK & POWER

The Law of Conservation of Energy
Variables S| Unit

» The law of conservation of energy: the total amount of
E energy J

energy in the universe or an isolated system is conserved
(it's constant and doesn’t change over time).

e There are many different types of energy (kinetic energy,
gravitational potential energy, etc.) and energy can be
converted or transformed between those different types,
but it cannot be created or destroyed.

kinetic energy

K J
U, gravitational potential energy J
Usp spring potential energy J

e Energy can be converted or transformed from one type of energy to any other type of energy. In the real world
there are some conversions which are more common and less likely to happen in the reverse direction.

Gravitational potential energy is Chemical energy in a fan battery is converted into electrical energy,
converted into kinetic energy as which is converted into rotational kinetic energy, translational
a ball falls towards the earth kinetic energy, sound energy, light energy and thermal energy
Ug_> K Echem_> Eelec_> Krot + K + Esound + Elight + Etherm
v
S

Q)



e A system can be thought of as a selected group of objects which is separated from its environment by a chosen
boundary line. There are no predefined or existing systems, a system is just what we choose it to be based on
the objects that we're studying or the problem we’re solving.

* Once a boundary line is drawn and a system is chosen, everything in the universe (energy, forces, objects) are
considered either inside the system (internal) or outside the system (external) at any one moment in time. Energy
and objects may move into or out of the system depending on the situation.

e Objects do not have to be in contact with each other to both be in the system. Mutliple separate boundary lines
may be drawn to define the system so that only specific objects are included.

ball-block-spring-earth system: ball-earth system: block-spring-earth system:

------------- - ~

ball is an

external object
—¥

the earthisan_gy------
internal objec

system may be

SyStem boundary multlple ObjeCtS System may be System may have
one object multiple boundaries
block-spring system: block system: block-earth system:

\ \

[ [
| ' " |
e | '
. external objects .

are part of the E

environment

[P ——

a \
n ;
)
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* Energy and objects may move into or out of a system across the system boundary line.

* An isolated system is defined as a system where energy does not enter or leave the system. This is just a
definition. If energy does enter or leave the system, it is not an isolated system.

» According to the law of conservation of energy, the total amount of energy within an isolated system is
conserved over time. Energy within the system can be converted back and forth between different types, but
the total amount of energy stays the same in an isolated system.

Conservation of energy

(universe and isolated systems) Isolated system: no energy moves into or out of the

system, no work is done on or by the system, and
AE. .. = 0 , Eiotali = Eiotal f no net external forces are acting on the system

If no energy enters or leaves a system (to or from the environment) that system is an “isolated system”
isolated system environment

Etotal =K+ Ug + Usp + Etherm + Elight Etotal =K+ Ug + Usp + Etherm + Elight

| |
| |

I I

I I

: + Esound + Echem + Eelec + .. E + Esound + Echem + Eelec + ..

|

| |

: AEtotal =0 : AEtotal =0

| I

| I

! CK«» U, Usp<—>Etherm<> : CK«» U, Usp<—>Etherm<>
I I

E Elight «> Esound «> Echem «> Eelec E Elight «> Esound «> Echem «> Eelec

* The universe is considered an isolated system because there is nothing “outside” the universe and no external
environment for energy to be transferred to or from.

e If you add up the total amount of each type of energy in the universe at one moment in time, that total will be the
same at a different moment in time. The amounts of each type of energy may change, but the total amount of
energy stays the same.

The total amount of energy in the universe stays the same over time

the universe at time t; the universe at time t;

Etotali = K+ Ug + Usp
+ Etherm + Elight +E
+ E

Etotalf = K+ Ug + Usp
+ Etherm + Elight +E
+ E

sound sound

+ E o + ... + E o + ...

chem chem

L’ Etotali = Etotalf 4_)



The total amount of energy in an isolated system stays the same over time

In the isolated system below, the block, the spring and the earth are all internal objects. The gravitational force
between the block and the earth is an internal force which converts energy within the system. The spring force
between the block and the spring is also an internal force which converts energy within the sytem. The
gravitational force and the spring force are NOT external forces and do NOT do work on the system.

force
i v=20

block-spring-earth system block-spring-earth system block-spring-earth system

at time t, at time t, at time t;
T T T TT T TTE T T T T T | T T T TT T s T E T T T T T | ST T TTerTEm T T T |
: Etotal1 Ug1 + K1 + Usp1 : : Etota|2 = UgZ + K2 + Usp2 : : Etota|3 = Ug3 + K3 + Usp3 :
| | | | | |
| | | | | K —-»> U |
E v=20 E E Ug_> K E E * E
: | B o™ Uer :
| | | | | |
! internal” FQ Lo Lo !
: force ' i lv Lo internal~ | Fep !
| | | | | |
| | | | | |
) P — P )
[ [ (I !
[ [ (I !
[ (I (I !
| | | | | |
| | | | | |
| |

g

Uy =10J Ug,=5J
K1=OJ K2=5J
Usp1 =0J USpZ =0J
Etota|1 =10J > Etota|2 =10J
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Example: A 2 kg cart is 4 m above the ground with a speed of 3 m/s. It rolls down a ramp and contacts a
spring with a spring constant of 50 N/m. The cart compresses the spring and momentarily comes to a
stop. At that moment, how much is the spring compressed? Assume there is negligible friction.

m = 2 kg
~ —p v,=3m/s
vi = 0 m/s

WU k= 50 N/m

we can choose 1 -
y = 0 at the ground

|_> Ax.l:

*We're assuming that the cart-spring-earth system is an isolated system so the total energy in
the system is conserved over time. The final total energy is equal to the initial total energy:

there is kinetic energy, E.otali = Eiotal £
gravitational potential energy
and spring potential energy K. + Ugi + U, = K + Ugf + Uy,
involved in this scenario
1 1 1 1
Emvi2 + mgy; + EkAxiz = Emvf2 + mgy; + EkAxf2
. 1 2 1 2 1 2
K=Z>mv 7 (2 kg)(3 m/s) 7(2kg)(0 m/s)
U, = mgy + (2 kg)(9.8 m/s?)(4 m) + (2 kg)(9.8 m/s2)(0 m)
Ujp = 5kAX?  + 2(50 N/m)(0 m)? + (50 N/m)Ax?

\ 87.4 = 25Ax? 4/

1.87 m = AXf



Work

* The law of conservation of energy says the total amount of energy within
an isolated system stays the same over time. But if the system is not isolated
energy can move into or out of the sytem, so the energy within the system is
not conserved (but the total amount of energy in the universe is conserved).

e Work is the transfer of energy into or out of a system. This happens when
external forces are applied over some displacement.

® The Sl unit of work is a joule (J), the unit of energy. 1J =1 N-m.

Work

AE =W

system

Variables Sl Unit
W  work J=N-m
E energy J
F force N
d displacement m

e If energy is transferred into the system (from the environment) we say work is done “on” the system. The total
amount of energy inside the system increases. The total amount of energy in the environment decreases.

o If energy is transferred out of the system (to the environment) we say work is done “by” the system. The total
amount of energy inside the system decreases. The total amount of energy in the environment increases.

work done on the system by the
environment is positive and increases

the energy in the system
system (not isolated) 9y y

Etotal = K+ Ug + Usp + Etherm + Elight
+ Esound + Echem + Eelec + ...
AEtotal =W W '

chem elec

work done by the system on the
environment is negative and
decreases the energy in the system

environment

Etotal = K+ Ug + Usp + Etherm + Elight
+ Esound + E

+ E .. T .-

chem

AEtotal = -W

(KHUQHUSPHEtherms E (’K“’Ug“’usp“’Etherm‘j
|
Elight e Esound — E — E : Elight = Esound — E — E

|

chem elec

Work done on the system is positive Work done by the system is negative
and increases the system’s energy and decreases the system’s energy

system (not isolated) environment system (not isolated) environment
l_ ------------------- | l_ ------------------- |
: Etotal =10J : Etotal = ...J : Etotal =10J : Etotal = ...J
| S S, V) | S S, V)

system (not isolated) environment system (not isolated) environment
oot T TT T T T T | ;oo Tt T TT T T T T T |
: Etotal =14 J : Etotal =..—-4J : Etotal =2J : Etotal =..+8J
' I ' I
| |
| |



* The result of work is a change in the amount of energy within a system. But work is done on or by a system due
to external forces when the system moves, and work can also be calculated as the displacement of the system
multiplied by the component of the external force that is parallel to that displacement.

Work system system
C | o \
W=Fd | | ' |
: | —>F —> F,
F, : component of force parallel to d . ) . )
*F is an external force >
d : displacement of the system d

Only the force component parallel to the displacement does work on the
system, and the sign of the work (positive or negative) depends on if the force
component and displacement are in the same direction or opposite directions

system system
:— ----- i Fh=T :— ----- i F, and d are in the same
! ! —>» T ! : —_—p T direction, work is positive
| |

------ ' e W =F,d=Fd

>
d
A
/l y

system 0 system

—————— -=p! —————- .
! i F = Tcos(6) ! ! 5, an<.1| d arein .the sa'rr.me
! : ! : direction, work is positive
| |

...... ! s W = F,d = Tcos(0)d

>
d
v v
> —>
F = f system system
! :- """ i :- ----- ! F, and d are in opposite
fi <+t ! fi <+t ! directions, work is negative
| |
Sy W = F,d = - f d
>




* Internal forces are any forces acting between objects within a system (internal objects). Internal forces can
convert energy between different types within the system, but they do not change the total energy in the system.

» External forces are any forces acting between an object outside of a system (external object) and an object inside
the system (internal object).

* Work is done on or by a system due to external forces. Internal forces do not do work on a system, they only
only convert energy between different types within a system.

If the earth is included in the system, the If the earth is not included in the system, the
gravitational force between the ball and the earth gravitational force acting on the ball is an external
is an internal force which converts gravitational force which does work on the ball system,
potential energy into kinetic energy within the changing its kinetic energy. The ball system does
system but it does not do work on the ball. not have gravitational potential energy because

the earth is not included in the system.

ball-earth system (isolated) ball system (not isolated)
2 0
E Esystem =K + Ug : Esystem =K
0 |
| ! (-=-
Eyi=10m ?F v, =0 E y;i=10m :\ E v, =0
' ' T-
| g ! F
! Ay "~ internal E Ay IR external
E force ! . force
4 ? ¢vf= 8.9 m/s ! Y A 4 ¢vf= 8.9 m/s
: F - .
: | ]
'y | y
|
0 |
E L’X TFQ E be TFQ
AEsystem =0 AEsystem =W
Esystemi = Esystemf AK = Flld
Ki + Uy = K¢ + Ug AK = (-mg)(6 m — 10 m)
Ki — Ki = —(Ug — Ugy) AK = mg(4 m)
AK = -AU, the change in the kinetic energy
AK = —(mg(6m — 10 m)) of the ball system is equal to the
AK = mg(4 m) work done on the system

the change in the kinetic energy of the ball-earth
system is equal to the negative of the change in
gravitational potential energy



Power
Variables S| Unit

P power W =%

* Power is the rate of energy converted or transferred over time.
e The Sl unit for power is a watt (W) which should not be confused with the variable

for work (W). 1 watt is equal to 1 joule/second (J/s). E energy J
» There are several equations used to calculate power. In each case, “power” means
an amount of energy per unit of time. W work J
L F force N
If energy is being converted from one type of energy to another, the
power is the change in one type of energy divided by the period of time v velocity m
S
V; :
Power ¢ ' Example:
AE At [y o _ AK _ -4y,

At At At

If energy is transferred into or out of a system through work, the power is the amount of work done divided by
the period of time, which is also equal to the parallel force component multiplied by the velocity of the system

Power at ot
w _’V -
P=—=Fv
: system system
o | T !
F, : component of force parallel to v E E_> F, E E—> Fi
) |

*F is an external force
v : velocity of the system

- eas o o a» o> - eas o o a» o>




MOMENTUM & IMPULSE

Momentum
Variables SI Unit
* The linear momentum of an object or system is its mass times its velocity. The kg-m
" " : . P momentum —_—
word “momentum” by itself usually refers to linear momentum. s
e Momentum is a vector so it has a magnitude and a direction. m mass kg
e The momentum vector is in the same direction as the velocity vector. m
e Linear momentum may seem similar to linear kinetic energy but momentum is a v velocity 3

vector while kinetic energy is a scalar quantity, and the equations are different.

momentum

velocity

Momentum Momentum vector components

—)_ - — —
p = mv Py = My, py = my,

p = 15kg-m/s
— >
v=3m/s
5kg —»
p = (3 kg)(6 m/s) =18 kg-m/s
p = (5 kg)(3 m/s) v, = (6 m/s)cos(30°) p, = (18 kg-m/s)cos(30°)

p = 15kg-m/s v, = (6 m/s)sin(30°) py, = (18 kg-m/s)sin(30°)



* The angular momentum of an object or system is its rotational inertia Variables S| Unit

times its angular velocity. [ kg-m?
e Angular momentum is a vector so it has a magnitude and a direction. angular momentum
* The angular momentum vector is in the same direction as the angular |  rotational inertia kg .m?
velocity, either clockwise (CW) or counterclockwise (CCW). rad
e Angular momentum may seem similar to rotational kinetic energy but W angular velocity —
angular momentum is a vector while rotational kinetic energy is a scalar,
and the equations are different.
L
A N counterclockwise direction is positive
Angular momentum . lockwi e .
angular momentum is clockwise direction is negative
L= Ilw in the same direction
as the angular velocity C 3
\)
w CW  CCW
w = 3.5 rad/s
—_— . 2 —_
| = 0.001 kg-m w = 60 rad/s w = 100 rad/s

r\

| = 0.001 kg-m?

oooooo

——————————————————————————
L = (0.001)(3.5) L = (0.001)(60) L = (0.4)(100)
L = 0.0035 kg-m?/s L = 0.06 kg-m?/s L = 40 kg-m?/s



Impulse

Variables Sl Unit
o Impulse is the change in momentum of an object or system, which is caused i kg-m
: : . J impulse =N-s
by an external force applied over a period of time. s
e When a force is applied to an object or system, Newton’s 2nd law of motion P  momentum kg-m
2 R : .. s
(F,.t = ma) says that force causes an acceleration. Acceleration is a change
in velocity over time, so that force changes the object’s or system’s velocity, F force N
which means it also changes the momentum (which depends on the velocity). t  time S

e Impulse is a vector so it has a magnitude and a direction. The impulse has
the same direction as the applied force.

Impulse
= = Pi Ap = ps — pi Ps
J = Ap = F, At 72 Av = v; — v,

If we assume m is constant:

Vi
F..q : average force over time
O+ Q-
>

F,.gAt = mAv At

Example: A constant force is applied to a block sliding on a frictionless surface.
The force is in the same direction as the initial velocity and momentum so the
impulse from the force increases the block’s momentum and velocity.

p; = 2kg-m/s p; = 20 kg-m/s Ap = 18 kg-m/s
—> —>
v.=1m/s v, = 10 m/s
—> —
2kg —» F=6N 2kg —» F= 6N Fag = 6 N
' At = 3s '

—force is applied for 3 s
J = Ap = F, At
J = ps — p; = FgAt
J=(2kg)(10 m/s) — (2 kg)(1 m/s) = (6 N)(3 s)

J=18kg-m/s = 18 N-s or kg-m/s



Example: A block slides on a frictionless surface and bounces off a wall, which applies a force to the
block for a short period of time. The force is in the opposite direction as the initial velocity and
momentum so the impulse from the force decreases and reverses the block’s momentum and velocity.

y
t *Assuming right is the positive direction
X

pi = 15 kg-m/s force on the block from ps = -15 kg-m/s
. the wall is applied for 0.5 s {

v; = 5m/s \‘ vi = -5 m/s
i At =0.5s |

3 kg Fovg = -60 N ¢— 3 kg 3 kg
the initial momentum is positive the impulse is negative because the final momentum is negative
because it points to the right the force points to the left because it points to the left

J=Ap = F, At

avg
J= Ps — Pi = Fangt
J = (3 kg)(-5 m/s) — (3 kg)(5 m/s) = (-60 N)(0.5 s)
= -30 kg-m/s = -30 N-s or kg-m/s

» The force applied to the object or system can vary in magnitude over time. This is often the case in the real world.

* F,,4 is the average magnitude of the force over the period of time that it's acting on the object.

e If we have a graph of the force applied vs time, the impulse is the area under the curve (the area between the
graphed line and the horizontal axis). In calculus, that would be the integral of the force over time. But if we know

the value of the average force or if the graph is a rectangle or a triangle, we can find the area using geometry.

The area under the curve of the force vs time graph is equal to the area under the curve
of the average force during that same interval, and the areas are equal to the impulse

F (N) F (N)

impulse is the area under

A the force vs time graph 4
Foox = 1ON-|-------p~--7/----- Frox = TON-}-------p<--------
«— Torce varies
over time
Fog=4N-----f----\------ Fig = 4 N-|-- ---
. — 1 (s) . L5 t(s)
J At ] ! At '
J=A these two areas J=A=F,,At

are the same



* The concept of impulse also applies to rotational dynamics, although Variables S| Unit
there’s no word for “rotational impulse”.

e When a torque is applied to an object or system, that torque causes an
angular acceleration so the torque changes the object’s angular velocity L  angular momentum kg-m*
and its angular momentum (which depends on the angular velocity). =

T  torque N-m

| rotational inertia kg -m?

rad

W angular velocity S

Rotational impulse L; AL =L;— L, L
A
AL = 7,4 At
T,y : @verage torque over time 7T3V9
~—v
If we assume [ is constant: W Aw = w; —
At = lAw >

At



CONSERVATION OF MOMENTUM

Law of Conservation of Momentum

e When a scenario involves multiple objects we can consider them as a system.

o If there is no external force acting on the system we call it an isolated sytem.

* The law of conservation of momentum: the total momentum within an isolated
system is conserved (it's constant over time) regardless of the internal
interactions between the objects in the system. The momentum of each object is
not conserved, only the total momentum of the system.

* This does not mean that the total momentum within a system is zero (although it
can be), it means the change in momentum is zero between two times.

o If there is a net external force on the system, the system is not isolated and an

impulse is exerted on the objects in the system, changing the total momentum.

Law of conservation of momentum
(universe and isolated systems)

- - -
Aptotal =0 1 Ptotali = Ptotal f

Apx total — 0 1 Pxitotal = Pxf total
Apytotal 0 1 pyi total = pyftotal

Isolated system: there is no net
external force acting on the system

P R

Variables SI Unit
P momentum kng
m mass kg
v  velocity %
J impulse kg;m
F force N
t time S
isolated system isolated system
initial time equal final time

-

Piotali = P1i T P2



Momentum is a vector so momentum is conserved in the x and y directions

initial time: final time:

- = 4
Ptotali = Ptrotal f
the initial x momentum X momentum components: the final x momentum
components for each object Pxi total = Pxf total components for each object

~~ Pixi T Paxi T P3xi = Pixf T Paxf T Paxf d
M1V, T MaVo + M3V3 i = MV + MyVy e + M3Vay

the initial y momentum y momentum components: the final y momentum
components for each object Pyi total = Pyf total components for each object

> P1yi T Payi T P3yi = Payi T Poys T Pays «
M4V T MV, + M3V3y; = MV + MyVy e + M3aVay



* When two objects inside a system interact, the forces they exert on each other (internal forces) are a pair of
forces which are equal in magnitude and opposite in direction (Newton’s 3rd law of motion).

e If the force acting on one object has the same magnitude and is exerted for the same duration as the force
on the other object, the impulse exerted on each object is the same but in opposite directions. This means the net
impulse on the pair of objects is zero, so the total change in momentum is zero.

initial time:

Piotali = P1i T P2

the impulse exerted on
\ each object is the same
(but in opposite directions)

J1 = _F20n1Ai—j
J2= F1on2At

Jtotal = J1 + J2 =0 — Aptotal =0

the total change in
momentum of the two
objects is zero

Piotal f = P1f T Po2s

* The law of conservation of angular momentum: the total angular Variables S| Unit
momentum of an isolated system is conserved (it's constant over time) kg-m?
regardless of the interactions within the system. L angular momentum s

e For rotation, an isolated system means there is no net external torque I  moment of inertia kg -m?
acting on the system. d

e Angular momentum is a vector which has the same direction as the W  angular velocity %

angular velocity (either clockwise or counterclockwise).

Law of conservation of angular momentum

] d isolated isolated system isolated system
(universe and isolated systems) o] Hime final time
AL 0 L L LT T T T 5---=y--equalmo--mmo oo O
—_— o — A —
total r “totali e Liotali = Lai + Ly Liotars = Las + Lo
. L L,
Isolated system: there is no net 2 —A
external torque acting on the system

0

cw CcCCw R it PP - o= - -

r

e



Types of Collisions & Events

e There are several types of “events” which can be studied using the law of
conservation of momentum such as collisions and explosions.

o If the system is defined so that all of the relevant objects are included within
the system and there are no external forces acting on the system, then the
total momentum in the system is conserved and we can use that law to
analyze the individual objects before and after the event.

e For an elastic collision the total kinetic energy of the system is also conserved.

Elastic collision Inelastic collision Perfectly inelastic
(perfectly elastic) (partially elastic) collision

momentum momentum momentum
is conserved is conserved is conserved
— = — = - =
ptotal i = ptotalf ptotal i = ptotalf ptotal i ptotalf
kinetic energy kinetic energy kinetic energy
is conserved is NOT conserved is NOT conserved

Ktotal i — Ktotalf Ktotal i * Ktotalf Ktotal i * Ktotalf

Variables

P momentum

K kinetic energy

Explosion

momentum
is conserved

- =
Ptotali = Protal f

kinetic energy
is NOT conserved

Ktotali # Ktotalf

Sl Unit
kg:-m
s

J




Elastic collision (perfectly elastic collision)

» An elastic collision (a perfectly elastic collision) is when two or more objects collide with each other and then
move away from each other (or in the same direction at different speeds).
» The total kinetic energy of the system is conserved in a perfectly elastic collision.

initial time: final time:

—>

- o
Ptotal i = Ptotal £

P1i T P2i = P1f T Pas
mqVjy; + ms,Vy; mq Vs + Moy Vo t— (equation 1)

system of two equations

Kiotali = Kiotal £ can be used to solve for
K1i + K2i = K1f + Kzf unknown variables
%m1 V«?i + %mzvgi - %m1 V«?f + %mzvgf +— (equation 2)

By combining the two equations above (conservation of momentum and conservation of kinetic
energy) using substitution and some algebra, we get an equation that we can use when two
objects collide elastically and we don’t know either of the final velocities. This can then be used
with the conservation of momentum as a simpler set of two equations to solve.

m1 V1i + m2V2i — m1 V1f + m2V2.|: <+— (equation 1)
MoV + MyVy = Myvyg + MyVy
1 o 1 Vii T Vif = Vo T Vg <— (equation 3)

Tovz+etmvz=1m 2+ 10,2
27 T g9 T2V 2i T 9 T YAt T o 112V 2o if both final velocities are unknown

(elastic collision only)

Inelastic collision (partially elastic collision)

e An inelastic collision (a partially elastic collision) is when two or more objects collide with each other and then
move away from each other (or in the same direction at different speeds).
» The total kinetic energy of the system is not conserved in an inelastic collision. Some of the initial kinetic

energy is converted into thermal energy, sound energy, light energy or energy that deforms the objects.

initial time: final time:

—>

- =
Ptotali = Protal f

P1i T P2i = P1f + P2
mqvy + MyVy = MV + MyVvyg



Perfectly inelastic collision

o A perfectly inelastic collision is when two or more objects collide with each other and stick together, so the
objects move together with the same final velocity after the collision and can be treated as a single object.

» The total kinetic energy of the system is not conserved in a perfectly inelastic collision. Some or all of the initial
kinetic energy is converted into thermal energy, sound energy, light energy or energy that deforms the objects.

initial time: final time:

—>

Ptotali = Protal f
P1i T P2i = P1+2)f
M vy + myvy = (Mg + mMy) v

the two objects stick together
and move as one object

Explosion

e An explosion is when one object breaks apart into smaller pieces or a group of objects start together and then
move away from each other. The object or group of objects may have some velocity before the explosion.

» The total kinetic energy of the system is not conserved in an explosion. Since kinetic energy is a scalar quantity
and not a vector quantity it does not depend on direction and all of the kinetic energies will be positive. We can
imagine an event where the initial kinetic energy is zero but there are final kinetic energies after the explosion.

initial time: final time:

—>

— =
Ptotali = Ptrotal f

Pi+2)i = P1f T P2
mqvqys + myvy

the pieces or group start
together as one object



SIMPLE HARMONIC MOTION

Simple Harmonic Motion

Variables Sl Unit
* We know that a net force acting on an object causes the object to .
, : o T  period S
accelerate (Newton's laws of motion). In many cases that motion is in one
direction, but there are cases where the direction of the net force f  frequency Hz = cycles
. . . S
alternates back and forth repeatedly which causes the object to oscillate.
» Periodic motion is any motion that repeats in equal intervals of time. This A amplitude m
is a bro?d categ.ory whloch could include things like a person on a swing, a X,y position m
person in a rocking chair, a heartbeat or pulse, waves crashing on the
shore, the tides alternating between high and low, and any example of v velocity %
uniform circular motion like wheels rotating or planets orbiting the sun. lorat m
» Simple harmonic motion specifically refers to the periodic motion of an @ | acceleration s

object that occurs due to a restoring force which is proportional to the

distance of the object from its equilibrium position. The most common

examples are a mass attached to a spring and a simple pendulum.
e The period is the duration of one oscillation or cycle, how long it takes the object to return to its original position.
* The frequency is the number of oscillations or cycles per second, which is the inverse of the period.

Objects in simple harmonic motion (and other periodic motion)
repeat their motion with the same period and frequency

Frequency
1
f=—
T :
f: frequency (Hz, cycles/s) T=2¢g §
T : period (s) £ = 0.5 Hz E

f = 0.25 Hz



e The equilibrium position of a simple harmonic motion is the position where the net force on the object is zero
and the acceleration is zero. If the object is placed in the equilibrium position and released it will not move. For
a horizontal mass-spring system this is the position where the spring is at its original length and the spring force
is zero. For a vertical mass-spring system this is the stretched length where the upwards spring force is equal to
the downwards gravitational force. For a pendulum this is lowest position where the pendulum is vertical.

e The amplitude of a simple harmonic motion is the distance between the equilibrium position and one end of the
oscillation. The distance between both ends of the oscillation is twice the amplitude.

o If we graph the position of the object over time the graph is sinusoidal (it's a sine wave, with some phase shift).

e For any motion, the value of the velocity graph is the slope of the postion graph at any point in time, and the
value of the acceleration graph is the slope of the velocity graph at any point in time. This results in all three
graphs being sinusoidal as seen below.

e We can describe the position, velocity and acceleration over time using the wave equations below which depend
on the amplitude, frequency and time.

Graphs of the position, velocity and acceleration of a mass-spring system for one oscillation (one period)

t (s):

-- 2 A amplitude E
sp
------- equilibrium position - - -. F..=0
_____________ -A Fy
Position Lyt y(t) = Acos(2nft)
(m) ' S
’ 1 Yonax = A
v
Velocity v(t) = - v, sin(2nft)
v (m/s)
Viax = 21nfA
-V
a

max T

Acceleration a(t) = -an.cos(2n ft)

a (m/s?

Amax — (an)zA

=~ dmax




Mass-Spring Systems
Variables Sl Unit

e One example of simple harmonic motion is a mass attached to T o d <
perio

a spring oscillating horizontally or vertically.

e For a horizontal mass-spring system the spring force acts as f  frequency Hz = CY<;|eS
the restoring force.

 For a vertical mass-spring system a combination of the spring A amplitude m
force and the gravitational force act as the restoring force. m | mass kg

* We're going to assume there are no friction or drag forces so
the system does not lose any energy and continues oscillating k  spring constant %
forever. This is called the “undamped” case. . .

» The period of a mass-spring oscillation depends on the mass Usp  spring potential energy J
of the object and the spring constant (we assume the spring is K  kinetic energy J

massless). Notice that it does not depend on the amplitude.

Period of a Frequency of a Maximum velocity of a
mass-spring oscillation mass-spring oscillation mass-spring oscillation
m 1 k k
Tsp—Zn ? fSp_Z_ﬂt ; Viax = A ;



e For a horizontal mass-spring system the equilibrium position is at the unstretched spring position where the
displacement is zero and the spring force is zero.

» The restoring force is always the spring force acting on the mass which alternates directions when the spring
switches between being stretched or compressed. The spring force is at its maximum magnitude when the object
is at the maximum displacement from the equilibrium position.

e The velocity of the mass is at its maximum magnitude at the equilibrium position and zero at the maximum
displacement when the object is momentarily at rest while it reverses direction.

e The acceleration of the mass depends on the spring force and is at its maximum magnitude at the maximum
displacement and zero at the equilibrium position.

» The spring potential energy depends on the displacement and is at its maximum value at the maximum
displacement and zero at the equilibrium position.

» The kinetic energy depends on the velocity of the mass and is at its maxium value at the equilibrium position and
zero at the maximum displacement.

Horizontal mass-spring system (assuming no friction)

Spring force Spring potential energy Kinetic energy

equilibrium _ _1 5 1 ,
-A position A FSP = kAx Usp ) kAXx K = 2 mv
. < } >
spring F,=0
C(m\siant P X v a FSP Usp K
k —>F,
N m x=-A v=0 a,. Fip max Usp max K=0
Ax +—
Fo =0
m X=eq Vmqax a=0 F,=0 U,=0 K.
Ax =0
F €
~ LR QQQQQF—m x=A v=0 an Fpmax Upmx K=0
——-» AX
Fpo =0
SIS m X=eq Vmx a=0 Fp=0 Uy,=0 Kp.
Ax =0
—>F,,
Wm x=-A v=0 dmax Fspmax Uspmax K=20

AxX <—



e The addition of a gravitational force and gravitational potential energy makes a vertical mass-spring system
slightly more complex than a horizontal mass-spring system, but the motion behaves the same way.

e For a vertical mass-spring system the equilibrium position is where the upwards spring force and the downwards
gravitational force are equal in magnitude so the net force on the mass is zero. The spring is already stretched
some initial displacement due to the gravitational force on the mass. Therefore the actual spring force is not
based on the object’s displacement from the equilbrium position but from the displacement from the original
unstretched length of the spring. We're going to assume the spring is always stretched some amount.

e The restoring force is a combination of the spring force (always upwards) and the gravitational force (always
downwards). When the spring is at the equilbrium position the two forces are equal and the net force is zero.
When the mass is above the equilibrium position the spring force is decreased and the net force is downwards.
When the mass is below the equilibrium position the spring force is increased and the net force is upwards.

e The postion, velocity, acceleration, net force and kinetic energy are at their maximum and zero values at the same
points in the motion as a horizontal mass-spring system.

e The spring potential energy is at its maximum at the lowest position and its minimum at the highest position.

e The gravitational potential energy is at its maximum at the highest position and its minimum at the lowest position.

m

Vertical mass-spring system

kg

FS

’ F F
A m

sp Fsp sp
equilibrium ; A ‘
position Fioi m Foet i Fret
Fnet =0 - A F9 m -é t Fg
F F
g v g
Fg
y y=A y=-eq y=-A y=-eq y=A
=0 Vmax v=20 max =0
a 9 max a=0 9 max a=0 9 max
Fsp Fsp min Fsp max Fsp min
FQ FQ Fg FQ FQ FQ
Usp Usp min Usp max Usp min
Ug Ug max Ug min Ug max
K K=0 K. K=0 K. K=0



Pendulums

Variables SI Unit
e Another example of simple harmonic motion is a simple pendulum T .
which is a mass hanging from a rope (or other long object) which period S
swings back and forth. f  frequency Hz = Cy‘;les
e The restoring force for a pendulum is the component of the
gravitational force which acts tangentially to the circular path 6 angle rad
of the mass. L length m
» We're going to look at a simple pendulum which includes a few —
assumptions: the rope is massless and the maximum angle of g  grav. acceleration 2
the pendulum (the amplitude) is small (<~10°). This means .
that the restoring force will be approximately proportional to Ug grav. potential energy J
the displacement from the equilibrium position. K kinetic energy J

e The period of a pendulum depends on the length of the pendulum
and the acceleration due to gravity. Note that it does not depend
on the mass or the amplitude.

e The equilibrium position for a pendulum is when the mass it at the lowest height.

e The velocity of the mass is at its maximum magnitude at the equilibrium position and zero at the maximum
displacement when the mass is momentarily at rest while it reverses direction.

e The acceleration of the mass is at its maximum at the maximum displacement and zero at the equilibrium position.

e The gravitational potential energy is at its maximum when the mass it at the maximum displacement (which is the
point of maximum height) and is at its minimum at the equilibrium position (lowest height).

e The kinetic energy depends on the velocity of the mass and is at its maximum at the equilibrium position and zero
at the maximum displacement.

Period of a
pendulum oscillation

Frequency of a
pendulum oscillation

Maximum velocity of a
pendulum oscillation

L 1 g Vmax = emax ‘ gL

6 - emax 0 = 6max 0 = - emax

y Y max Y min Ymax Y min Ymax

v v=20 Vnax v = Vax v =

a 9Amax a=0 9max a=0 9 max
Ug Ug max Ug min Ug max Ug min Ug max

K K=20 K. ax K=20 K. ax K=20



WAVES

Waves
Variables SI Unit
e There are many different types of waves which behave in different ways, but
- I A wavelength m
they all share similar characteristics.
 All waves carry or transport energy, and some waves also carry matter. T period S
» Transverse waves are waves where the physical material moves veles
perpendicular to the direction of the wave. If the wave is traveling to the f  frequency Hz = ys
right, the particles in the medium move up and down. Examples include A amplitude m, ...
water waves and waves traveling in a string.
e Longitudinal waves are waves where the physical material moves parallel v  velocity %
to the direction of the wave. The particles in the medium do not travel with
the wave, they just oscillate back forth within a small distance. Examples
include sound waves and longitudinal waves traveling in a spring.
Transverse wave Longitudinal wave

wave (energy) is
traveling to the right
|4

wave (energy) is
traveling to the right

$ OGO

particles (matter)

: particles (matter)
oscillate up and down

oscillate left and right



A crest is the upper amplitude of a visual wave or graph of a wave. This is also an antinode.

e A trough is the lower amplitude of a visual wave or graph of a wave. This is also an antinode.

* A node is a point where the wave is at the center or equilibrium position.

* The wavelength is the length of a section that repeats and is easiest to measure as the distance between crests,
the distance between troughs, or 3 nodes across.

* The period is the amount of time it takes the wave to travel one wavelength.

e The wave speed is the speed that the wave (energy) travels and is equal to the wavelength divided by the period.

crest
A (m), T (s) / node
| | trough

A / Wave speed
v A
A v=Af=—
T

-A

' » x (m)

one wavelength

A A A )\4/\>)\

[VAVANEVASAVATAS

e [f a wave is traveling on a string, the wave speed depends on the tension in Variables S| Unit

the string and the linear mass density of the string (the mass per unit length). ] . kg
M linear density -
wave speed —> Viying m | mass kg
>

L length m

m
T, string tension N
l i \ \ \ \ \ \ \ : m
L | \ \ \ \ \ —» x (m) v  velocity =

0 1 2 3 4 5 6

Speed of a wave

Linear density In a string

m L
H T Vstring — i



SOUND

Sound Waves

* Sound waves are longitudinal pressure waves where regions of high and low air pressure move as a wave.

¢ A volume of air consists of empty space and gas molecules (oxygen, nitrogren and more) which are constantly
moving around. When the air is in a normal equilibrium state (no sound waves or other disturbances are present)
the gas molecules are moving around but they are evenly spaced and the air pressure is the same everywhere.

e If the gas molecules get closer to each other there are more gas molecules per volume of space and the pressure
in that region is higher. If the gas molecules get farther from each other there are less gas molecules per volume
of space and the pressure in that region is lower.

e If something causes a disturbance such as a moving object or a speaker playing music, the gas molecules directly
next to the moving surface will also move, either towards or away from the neighboring gas molecules. This
creates a region of high or low pressure. Soon after, the gas molecules (and their neighbors) will move from a high
pressure region towards a low pressure region to reach equilibrium pressure again. However, this causes a “chain
reaction” of moving gas molecules, and the result is that the region of high and low pressure moves in one
direction away from the source of the disturbance. This is a sound wave.

e A physical sound wave is a moving region (or many regions in a row) of high and low pressure, but sound waves
(and other longitudinal waves) are often represented as a visual sinusoidal wave where the vertical axis represents
the air pressure. This may look like a transverse wave but it's just a representation of air pressure at each position.

( g HEEE-1

/\— > Vsound wave
pressure; V >




A sound wave is a moving region of high pressure and low pressure
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Repeating sound waves can be represented as lines called “wave fronts”,
where the lines represent high pressure regions (positive amplitudes) and
the empty gaps represent low pressure regions (negative amplitudes)
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speaker as a
point source
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lines represent high pressure j \ empty gaps represent low
or positive amplitudes pressure or negative amplitudes



e The speed that a sound wave moves through a medium depends Constants Unit Name
on several things. For a sound wave moving in a gas, the speed J
of sound depends on the temperature, the molar mass of the gas R 8.3145 mol -K
and the adiabatic index (also known as the heat capacity ratio) of

ideal gas constant

the gas which is a number between 1 and 2 for most gases. Variables S| Unit

v  velocity m

S

Speed of sound in a gas y adiabatic index
Vsound
— / yRT T temperature K
\"4 —_ ——
sound M M  molar mass %
e As a circular sound wave moves away from a point source, the Constants Unit Name

intensity or volume of the sound decreases.
e The sound intensity level is relationship between the sound
intensity and the human threshold of hearing, and describes

l, 1x1072 %2 threshold of hearing

sound intensity in a way that’s more relevant to the way humans Variables S| Unit
perceive sound. Sound intensity level is measured in decibels (dB). ;
I  sound intensity —
P power J
Sound intensity Sound intensity level S
P I r distance from source m
| 1= == = (10 dB)log | 7-
A1r? B = Jlog1o lo B sound intensity level dB



Doppler Effect

* When a sound source and an observer are moving relative to each

of the observer which changes the wavelength and frequency.
e |f the source and the observer are moving towards each other the

away from each other the observed frequency is lower.

sound waves will hit
both observers with the

Ssame source frequency

Moving source, stationary observers

0

f

S

f, =
1+ (v./v)

Observed frequency,

Variables Sl Unit
-V f. source frequency Hz
other, the frequency that the observer hears is different than the true
frequency of the sound source. The sound waves become compressed f, observed frequency Hz
(closer together) or decompressed (farther apart) from the perspective m
V. source speed <
v, ob d UL
observed frequency is higher. If the source and the observer are moving o ODserverspee S
vV  speed of sound %
Stationary source, stationary observers
(no doppler effect)
sound waves will hit
both observers with the
/ same source frequency
o o
o L
observer observer
fo = f, fo = f,
Stationary source, moving observers
VS
—>
4—
o
o
f £ 1 1
— —_ + —
o 1 — (Vs/ V) V s o s
Observed frequency, Observed frequency, Observed frequency,
approaching sound source receding observer approaching observer

receding sound source



Sound Wave Interference

Variables Sl Unit
e When multiple sound waves overlap (interfere), their values at every o
o o . d in-line path length m
position are added together, resulting in a new wave. At every point:
- If the values of each wave have the same sign (positive or negative) r radial path length m
the result is constructive interference and the waves “build” on
each other, creating a larger wave. A wavelength m

- If the values of each wave have opposite signs, the result is
destructive interference and the waves “subtract” from each other,
creating a smaller wave (or no wave if they completely cancel out).

m  number of wavelengths

In-line sound wave interference

source source source source
1 2 1 2
Ad - Ad °
 —— observer I 1 observer
individual individual
waves waves

' combined combined
\/\/\/\/ wave \'/\' wave

Ad=mA m=20,1,2,... Ad=<m+%>)\ m=20,1, 2, ...

Constructive interference
Destructive interference

Radial (spherical) sound wave interference

source source
1 2

Ar=mA m=20,1, 2, ...

Constructive interference (point C)

Ar=<m+%>)\ m=20,1, 2, ...

Destructive interference (point D)

Ar =|ry —r,



* When two sound waves with different frequencies interfere, the combined sound
wave (the superposition of the two waves) will alternate between constructive and
destructive interference.

e The frequency of this oscillation between high amplitude and zero amplitude is
called the beat frequency.

e A listener will hear the sounds of wave 1 and wave 2 at the same time but the
amplitude (volume or intensity) of the sound will oscillate at the beat frequency.

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVARRS S
ANANNANNNANANNNNNNNN wave2 f,

C/\/\0isoooos0%/\/\/\/\moooosow\/\ wave 1+ wave 2

NVM\/\N\/\/\M/\/\/\ superposition

Variables S| Unit

f

frequency Hz

Beat frequency

fbeat = |f1 - f2|



STANDING WAVES

Standing Waves

Variables S| Unit
* When two waves overlap or interfere (they occupy the same space in the A | h
medium), their values at every position are added together, resulting in a new wavelengt m
wave. At every point: | N . f frequency Hz
- If the values of each wave have the same sign (positive or negative) the result
is constructive interference and the waves “build” on each other, creating a L length m
larger wave. s
S : : locity —
- If the values of each wave have opposite signs, the result is destructive v ve S

interference and the waves “subtract” from each other, creating a smaller

: m mode
wave (or no wave if they completely cancel out).

Constructive wave interference Destructive wave interference
individual \/W individual ><><><><><
waves \/W waves

combined combined
wave wave

e When a wave is traveling in a medium (like air or a string) and it's reflected at one end, it travels back in the
opposite direction. A wave may be reflected at both ends (of a tube or a string), moving back and forth.

e [f multiple reflecting waves overlap we get standing waves.

» A standing wave is just the superposition of two waves reflecting back and forth, which results in the amplitudes
of the waves appearing to switch between positive and negative but the wave doesn’t travel anywhere.

e A node is a point on a standing wave that does not move (zero amplitude).

e An antinode is a point on a standing wave that moves the maximum amount (maximum amplitude).

* The wavelength of a standing wave, like any other wave, is the length of a section that repeats: the distance
between two crests, the distance between two troughs, or the distance of 3 nodes across.

* A mode is the wave shape or the fractions of a wavelength that fit into the length of the medium. As the
wavelength changes and more wavelengths fit into the length of the medium, new wave shapes are formed.

antinode
\ node node antinode

node node Py <

f antinode7

antinode



Both ends are either nodes or antinodes One end is a node, one end is an antinode

String
(fixed at both ends)
3
m =2 r\/
3
m =3 N\
a
Tube Tube Tube
(closed at both ends) (open at both ends) (open/closed ends)

m=1 —

3
I
N

3
I
w

Wavelengths Wavelengths
2L 4L
A,=— m=1,223,.. A,=— m=1,3,5,..
m m
Frequencies Frequencies
\'4 \'4 |4 |4
L ) e tam(L) metas.
A, 2L A, 4L
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FLUIDS & DENSITY

States of Matter

e Everything is made up of atoms (each one is a type of element on the periodic table of elements) which are made
up of even smaller particles (protons, neutrons, electrons and more fundamental particles).

e Atoms are often bonded together in groups called molecules.

e In this section of the course we're going to focus on the interactions between the simplest particles of a
substance that can be arranged in different ways. If a substance is made up of molecules, like water, the
interacting particles will be the molecules. If a substance is only made of atoms which don’t combine into
molecules, like helium gas, the interacting particles will be the atoms.

Atom Molecule Particles

H
(oxygen, O) (water, H,0) if a substance is made of molecules,

electrons the particles are molecules

oxygen atom

if a substance is only made of atoms,
protons hydrogen atoms the particles are atoms

___—

neutrons

e There are 4 states of matter (4 forms that matter can exist in): solid, liquid, gas and plasma. The difference
between these states is the arrangement and interaction of the particles (atoms or molecules) that make up the
substance, which depends on the kinetic energy of the particles (the temperature of the substance). Plasma is a
little more complicated and won’t be covered in this course.

e When matter is in a solid state the particles are tightly packed and strongly bonded together in an organized
rigid structure. The substance is at a lower temperature than the other states of matter. The particles can vibrate
and move slightly but they are constrained by the atomic or intermolecular bonds. Solids can be stretched or
compressed slightly with enough force (see the section on springs and elasticity of materials) but the bonds keep
the particles in the same structure.

e When matter is in a liquid state the particles are free to move around and the substance can flow because the
motion (kinetic energy) of the particles prevents them from bonding together like they do in a solid. The particles
are only slightly farther apart than they are in a solid but they have no organized structure. The substance is at a
higher temperature than it is in its solid state and a lower temperature than it is in its gas state. Liquids have no
fixed shape and will flow to take the shape of their container. Like a solid, a liquid is nearly incompressible.

e When matter is in a gas state the particles are even more free to move than in the liquid state and the substance
can flow like a liquid. The substance is at a higher temperature than it is in its liquid state. The particles are
moving very fast (they have a higher kinetic energy) and are much farther apart than in the solid or liquid state.
Like a liquid, a gas has no fixed shape and takes the shape of its container. However, because the particles are
far apart a gas is very compressible and its volume will easily change when a force is applied to it.



Lower temperature Higher temperature
(particles have less kinetic energy) (particles have more kinetic energy)

Solid Liquid Gas

water
molecules

water
molecules

In the solid state, the molecules In the liquid state, the molecules are  In the gas state, the molecules are
are bonded closely together in free to move around and the liquid much farther apart, move much
an organized rigid structure takes the shape of its container faster and fill their container

e Any substance can exist as a solid, liquid or gas depending on its temperature (the average kinetic energy of its
particles). For example, water (H,0) is a solid (ice) at temperatures below 0°C/32°F, a liquid at temperatures
between 0°C/32°F and 100°C/212°F, and a gas (steam/water vapor) at temperatures above 100°C/212°F (these
are the temperatures at normal atmospheric pressure).

» Heating a solid will turn it into a liquid (known as melting), heating a liquid will turn it into a gas (known as boiling),
cooling a gas will turn it into a liquid (known as condensing) and cooling a liquid will turn it into a solid (known as
freezing).

e [t's also possible for matter to transition directly between a solid and a gas (known as sublimation and deposition).
Dry ice (often used to keep items cold during shipping) is frozen carbon dioxide which is usually a gas at room
temperature. The “smoke” or “fog” produced by dry ice is the carbon dioxide transitioning from a solid to a gas.



Fluids

e A fluid is a substance (a liquid or gas) that can flow and has no fixed shape (it takes the shape of its container).

e Liquids and gasses are both fluids because their particles (atoms or molecules) can move freely relative to each
other and there are no strong bonds between particles (although there are still some forces between particles).

* By contrast, a solid is not a fluid because its particles are strongly bonded together in an organized rigid structure.
A solid has a fixed shape which can stretch a small amount when a force is applied to it, but it will not flow.

» A gas is compressible (it will change volume when compressed) but a liquid is considered to be nearly
incompressible (it will barely change volume when compressed).

* The technical definition of a fluid is a material with zero shear modulus which will continue to deform when a
shear force is applied to it. A fluid will flow continously rather than stretch to a fixed shape like a solid. (This is
not required knowledge for this course).

Fluids
Solid Liquid Gas

metal
water oil —

rod\ \‘ \ Q/95‘5\>

p—

Solids have a fixed shape Fluids have no fixed shape, they take the shape of their container
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Solids are nearly incompressible Liquids are nearly incompressible Gasses are very compressible
to t,, ty, ts... to t, t, t3
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Solids deform slightly when Fluids continue to deform or “flow” when a shear force is applied

a shear force is applied (not required knowledge for this course)



e When working with gasses, we're going to treat them as compressible and we will not be learning about the flow
of gasses (the fact that they are compressible makes things more complicated).
* When working with liquids, we're going to treat them as “ideal fluids” (gasses cannot be considered ideal fluids).
¢ An ideal fluid:
1. Is completely incompressible: it's volume and density do not change when a force is applied to it, regardless
of the pressure of the fluid. The particles in an ideal fluid do not get closer or farther apart.
2. Has no viscosity: it does not resist flow and there is no friction between the fluid particles or between the
particles and the container. (Viscosity is covered in another section).

Ideal fluids
1. Completely incompressible 2. No viscosity
fluid volume and density do not no resistance to flow, no friction
change when a force is applied between fluid particles or between
fluid and other surfaces
lF
. - v > |
v >
"4 |4 v >
v >
>

AV



Volume
Variables S| Unit

* The volume of a substance (solid, liquid or gas) is the amount of three-dimensional
V  volume m?3

space that substance occupies.

e The volume of a solid is just the volume of its shape (rectangular prisms, cylinders and
spheres are common). The volume of a solid does not change (solids are nearly incompressible).

e The volume of a liquid depends on the shape of its container and the height of the liquid in the container. The
volume of a given amount (mass) of liquid does not change regardless of the shape of the container or the
pressure applied to it (liquids are nearly incompressible).

A gas will expand to fill the volume of its container. The volume of a gas can change when the shape or size of the
container changes or when pressure is applied to it (gasses are compressible).

Solid Liquid Gas
The volume of a solid is just A liquid will flow to take the shape of its A gas will expand to fill the
the volume of its 3D shape. container. The volume of a given amount volume of its container. The
The volume of a solid does of a liquid does not change regardless of volume (and density) of a gas
not change regardless of the container shape or the pressure will change when the container
the forces applied to it. applied to it. changes shape or size.
v )
| | -
V1 e
# , ‘ "4 1 1 v,
X AN | X A
V=2L =2000cm3 V=1L =1,000cm3 V, =1L = 1,000 cm?3

V, =0.5L = 500 cm?3

* The Sl unit of volume is cubic meters (m3) but there are many different units of volume that we might use, so we
often have to convert between different volume units.

Volume of different shapes: Volume conversions:
Rectangular prism Cylinder Sphzre C:ne 1m3 =1x10° cm?
V = wdh V = nr’h V=znr V=zrrh 1 ecm3 = 1,000 mm3

r T Tm3 =1,000L

h _— A h Tem3 =1mL

h (e 1L = 1,000 cm3




Density

Values Unit Name Variables S| Unit
e Density is a property of a

substance (solid, liquid or gas) Pwater 1000 kg/m?3 density of water* p density kg/m3

that describes how much mass it

has per unit of volume. -
e We represent density with the *:ﬁ,f go%tm and 4°C V  volume m?

greek letter p (rho, pronounced “row”)

and the Sl unit of density is kg/m3.

Pice 9216 kg/m3 density of ice** m mass kg

2 em water m=89

Density
p:m A 2cm‘|r V=8cm3
v / — =89 _ 1 g/ems = 1000 kg/ms
2 cm p_8cm3_ 9 - 9

e The density of a substance is determined by the distance between the particles (atoms or molecules) and the
mass of the atoms or molecules (the atomic mass of the elements).

e In general, a substance is more dense in the solid state than in the liquid state, and more dense in the liquid state

than in the gas state. However, water is an exception to this trend and ice (solid water) is less dense than liquid
water which causes ice to float in water instead of sink.

Lower density

Higher density

helium (gas) wood (solid) water (liquid) glass (solid) lead (solid)
p = 0.2 kg/m3 p = 200 kg/m3 p = 1000 kg/m3 p = 2,500 kg/m? p = 11,300 kg/m?3

The amount of space between the particles, and the mass of the particles, affects the density of the material



* When two substances are in contact with each other the substance or object with a lower density will float
above the substance with a greater density.

e This is caused by the buoyant forces acting on the substances or objects (covered in another section).

e For example, oil will float on top of water because oil is less dense than water, and lead will sink in water because
lead is more dense that water. This is true regardless of the shape of the substances or objects (assuming that the
object is solid and no air or other substance is contained within it, which would change its average density).

e This is the reason that a helium balloon floats while a balloon filled with regular air does not (helium is less dense
than regular air), and is why a hot air balloon floats (hotter air is less dense than colder air).

Density
Material P (kg/m3)
hot air ‘ Helium (gas, 27°C) 0.2
balloon Water (gas, 107°C) 0.6
styrofoam 3 \ Air (gas, 80°C) 1.0
wood ol /) Air (gas, 20°C) 1.2
\/,/ balloon Styrofoam (solid) 30
a with helium Wood (solid) 200
<_/ Water (solid, ice) 916
- Qil (liquid) 920
air balloon with Water (liquid) 1,000
regular air Glass (solid) 2,500
! Iron (solid) 7,200
Lead (solid) 11,300

lead

*QGasses at 1 atm



Viscosity

* Viscosity is a property of a fluid which describes its resistance to flow or the friction between particles.

e Fluids with lower viscosities may be referred to as “thin” and flow very quickly and easily (like water).

e Fluids with higher viscosities may be referred to as “thick” and flow very slowly (like honey or oil).

e Viscosity is an important property when studying fluid dynamics (how fluids flow) but we will not be covering it
in more depth in this course.

water faster, less resistance to flow,
less friction with surfaces

v A
Lower viscosity l r

e “Thin”
e Low friction/resistance
e Flows quickly

< << <K<

>
>
>
>
>

honey
slower, more resistance to flow,

more friction with surfaces

|4
Higher viscosity * +

e “Thick” z < r
e High friction/resistance o’ I |
* Flows slowly v >

v—p |



PRESSURE

Pressure

Variables
* Pressure is an amount of force exerted per unit of area.

e We can describe the pressure exerted on a surface by a fluid or on a fluid by a P pressure
surface, and how the pressure relates to the total force and the surface area. F force

» The particles of a fluid (liquid or gas) are constantly moving around in random
directions, and the pressure of a fluid is caused by the many collisions between A area

fluid particles and between the fluid particles and the surfaces of its container.
» Because of these particle collisions the pressure of a fluid acts in every direction.

S| Unit

N
Pa =—;
m

N

m2

* Pressure is a scalar quantity (not a vector quantity) but the force from a pressure is a vector and always acts

perpendicular to the surface that is in contact with the fluid.

The pressure within a fluid and the pressure exerted on a surface is caused by the many fluid particle collisions

Qo Q@
@ | @ “ ©
o ol o
) e @ i g\
¢ o e "\
0\1\9 — ,I \0 P
= /9, o L, L, L, Pressure
0o o .|lo 9o o . o Vi VI VIV
o/ 2 ARTEDT /ﬁlh¢¢ p= F
) - —
fluid particles ) ¢ X A7 + F A
fluid particles move 0 '0 F is the net force acting
randomly, colliding with on a surface of area A
other fluid particles and due to fluid pressure P
the container walls ¢ Foarticle
each time a particle collides
with a wall it exerts a force
on the surface
Examples of a force exerted on a surface by a fluid, or on a fluid by a surface
¢ F=100N
r=01m |
P=40000Pa| | -
&’ v P =3,183 Pa
o
:4
4 m
V F = 480,000 N
o F 40000 pa - AB0.000N P= Ll 4 3183Pa= N
= — —> , a= !
A (Amx3m) A n(0.1 m)



e In addition to describing the pressure acting on a surface, we can also describe the pressure at specific points
within a fluid. In this case we are describing what the force per unit of area would be on a surface at that point.

P = 103,421 Pa = 15 psi

s

e«— P = 138 Pa = 0.02 psi —»>e
oe«— P = 276 Pa = 0.04 psi —»>e \ 4

a

e+—P =414 Pa = 0.06 psi —»>e

P = 220,632 Pa = 32 psi

e The Sl unit of pressure is a Pascal (Pa) which is equal to 1 N/m2 and named for physicist and mathematician
Blaise Pascal who made important contributions to the study of fluids.
* There are many different units for pressure, some common units and conversion are listed below.

Pressure unit conversions:
1 bar = 100,000 Pa <«— Pa: Pascal (1 N/m?2)
atm: standard atmosphere — 1 atm = 101,325 Pa
psi: pounds/inch2 —» 1 psi = 6,894.757 Pa
1 torr = 1 mmHg = 1/760 atm = 133.322 Pa
inHg: inches of mercury — 1 inHg = 25.4 mmHg = 3,386.38 Pa
inH,O: inches of water —» 1 inH,O0 = 2.54 cmH,0 = 249.082 Pa



Vacuums, Absolute Pressure and Gauge Pressure

Values Unit Name Variables SI Unit
P, 101,325 Pa standard atmospheric pressure P.,. absolute pressure Pa
, P,..ce gauge pressure Pa
» An absolute vacuum, also called a perfect vacuum, is when a space gaug
or container is completely empty. There are no fluid particles (liquid or P, reference pressure Pa

gas) moving around so the space has zero absolute pressure because
there is nothing that would create pressure.

e An absolute vacuum (zero absolute pressure) is more of a theoretical zero reference point. It's nearly impossible to
create a perfect vacuum in a container, which requires removing every single gas particle using a “vacuum” pump.
Outer space is nearly a perfect vacuum, but there are still some gas particles floating around.

A container filled with Outer space is nearly a perfect A perfect vacuum would
gas has pressure due to vacuum but there are still some have no fluid particles and
the gas particles gas particles floating around zero absolute pressure
°. o
o | @ ® 4 R
v o . f
4 g g . .
¢ Lo / no liquid or

@ e @ icl
RN P - Rl
/, /j \ \

e 0 o
%/ ° S ey
as particles —
Pabs;éo 9> P Pabszo Pabs=0

* Atmospheric pressure (P,,,, ) is often used as the reference pressure (P, ) when working with gauge pressures.

e Atmospheric pressure is the air pressure of the earth’s atmosphere, and we usually use a value of 1 atm (equal to
101,325 Pa or 760 mmHg) which is the approximate average air pressure at sea level.

* The atmospheric pressure at sea level is due to the weight of the atmosphere above us, and atmospheric pressure
decreases as you move upwards (see the following section on fluid pressure and depth).

e Anywhere that a liquid surface is exposed to atmospheric pressure, the pressure at the liquid’s surface is equal to

atmospheric pressure (1 atm). This fact can be used when analyzing the pressure in a fluid at different points.

Standard atmospheric pressure is 1 atm (101,325 Pa) Any liquid surface that is exposed
at sea level and decreases with altitude to the atmosphere will be at
atmospheric pressure (1 atm)
P.., = 0 atm
P...~ O Pa P=P,,=1atm
P.., = 0.5 atm 'V/
P..n = 50,663 Pa i
°
P, ~< 1 atm
‘ P. =~ 101,325 Pa




e When working with pressure it's important to specify between absolute pressure and a gauge pressure.

e Absolute pressure (P, ) is measured relative to zero absolute pressure (a perfect vacuum). Absolute pressure
might be referred to as the “true pressure” or the “total pressure” at a point in a fluid.

e Gauge pressure (P, ) is measured relative to a reference pressure (F, ). The reference pressure is often the
absolute pressure of the surrounding environment, such as atmospheric pressure (P, = 1 atm = 101,325 Pa).

* The absolute pressure is equal to the gauge pressure plus the reference pressure. Put another way, the gauge

atm
pressure is equal to the absolute pressure minus the reference pressure.

Pabs=Pgauge+P0 +—> Pgauge=Pabs_P0

P, is usually P, (1 atm)

tm

Absolute vs gauge pressure & The reference pressure is usually atmospheric pressure
which has an absolute pressure of 1 atm:
Pgauge
|
ceceesdeeeeeeoaceces Py (P Pyps = 2.2 atm
P
gauge P = 1.2 atm
> + gauge P, = 1atm
abs 2 P.us < Po /Pgauge = 0 atm
°
p gauge vacuum
s absolute vacuum ohPabs = UL Bl
Pyauge = 0.01 atm
---------------- Pabs =0 \_ /

e The word “vacuum” is sometimes used to describe a gauge vacuum, which is a pressure that is lower than the
atmospheric pressure or reference pressure (see the diagram above). So it's important to be clear about the
difference between “absolute/perfect vacuum” and “gauge vacuum”.

An absolute vacuum is when the A gauge vacuum is when the absolute pressure is
absolute pressure is zero and there less than atmospheric pressure and the gauge
are no fluid particles in the container. pressure is negative. There are still fluid particles

present so this is not an absolute vacuum.

piston is raised, gas
‘ f volume increases and
| pressure decreases

»
eP..,=1atm -
\ e P,.=1atm
* E
no gas particles o o \
(v (V gas particles
P.ps = 0 P, = 2 atm P, = 0.8 atm
Pabs < Patm
Pyauge is Negative




Pressure and Fluid Depth

Values Unit Name Variables S| Unit
Pwater 1,000 % density of water (4°C) P  fluid density %
Pmerc 13,600 % density of mercury (0°C) h  depth below surface m

g 9.8 % gravitational acceleration

» The pressure in a fluid increases with depth due to the weight of the fluid above that point pushing downwards.
This is true for any fluid (liquid or gas).

e This is why the water pressure is greater at the bottom of a pool or at deeper points in the ocean, and why air
pressure is lower at the top of a mountain or in a airplane (the atmosphere is like a pool of air).

Gauge pressure at depth Absolute pressure at
below surface depth below surface
Pgauge=pgh Pabs=pgh+PO
~_
Pabs= Pgauge+ PO
Omy ® <Py = pgh = (1000 km/m3)(9.8 m/s2)(0 m) = 0 Pa
1 m C 3
2m+t o «1— Pyuge = pgh = (1000 km/m3)(9.8 m/s?)(2 m) = 19,600 Pa
3 m C 3
4mt ¢ «1— P uge = pgh = (1000 km/m3)(9.8 m/s?)(4 m) = 39,200 Pa
VYV h
water
h is depth below the surface
of the fluid, down is positive
Pressure difference
between two depths
PRy AP = pgAh
1 mre T® P1
2mt nE Ah=4m-1m=3m
3m+ AP = pgAh = (1000 km/m3)(9.8 m/s2)(3 m) = 29,400 Pa
4mi YeP,
VYV h




e The gauge pressure at a certain depth in a fluid is equal to the weight of the fluid above that point. We can derive
the gauge pressure equation above by finding the weight force of a column of fluid on a specific surface area.

e The variable h is used in the equation because the pressure depends on the height of the column of fluid above a
point, and the height of the column is the same as the depth below the surface.

density and
mass of fluid
weight of _m volume of
fluid column TV fluid column
w = mg pV = m V = th
N
/1 /1
——
F_w _(mg) (pVlg plxyh)g
P=—=— = — = = pgh
h A A (xy) Xy Xy

BRI T T T TN
O el

[
—

3
|
|
B 1 -~

1/ 90 Iy A= Xy
Pv_"__ area of column
X bottom

* The pressure in a fluid is the same everywhere in the fluid at the same depth because the pressure only
depends on the fluid density and the depth below the surface (assuming the fluid is not moving).
* The pressure does not depend on the shape of the container in any way.

~chi------ 0 - ------41- ®-----~ *------ ®----- .- ---- every P, is the same pressure
h P P P, P,
v. “hs--- 8- - - - - - - ®------ ®------- ®----- - ---- every P, is the same pressure
P2 PZ P2 PZ P2 PZ



e If we want to determine the absolute pressure in a fluid at a specific point we can use the equation above and the
fact that any liquid surface exposed to the atmosphere will be at atmospheric pressure.

* This applies to containers with a single fluid and containers with multiple fluids like water, oil or mercury.

e Some common applications of these principles are U-tubes, manometers (pressure gauges) and barometers
(devices used to measure true atmospheric pressure which fluctuates with the weather).

e By measuring the difference in the height of a fluid at two points we can measure things like the air pressure in a
balloon or the true atmospheric pressure.

The difference in water height is caused by the difference between
the balloon air pressure and the atmospheric air pressure

° water pressure at surface is
—— equal to air pressure above
surface (atmospheric pressure)

bs = 101,325 Pa (1 atm)

water pressure at surface is
equal to air pressure above
surface (balloon pressure)

R--30- - Bl P

Ah
P,.. = 103,421 Pa (1.02 atm) el . N
water/
AP = pgAh
(103,421 Pa — 101,325 Pa) = (1000 kg/m3)(9.8 m/s2)Ah
0.21 m = Ah

The height of the column of mercury in a barometer is determined by the atmospheric pressure,
at 1 atm of atmospheric pressure the column will be 760 mm tall (1 atm = 760 mmHg)

mercury pressure at surface is
equal to air pressure above
surface (near perfect vacuum)

P.,. = 0 Pa (0 atm) L:

mercury pressure at surface is
Ah o equal to air pressure above
surface (atmospheric pressure)

° P, = 101,325 Pa (1 atm)
ﬂvz\ mercury

AP = pgAh
(101,325 Pa — 0 Pa) = (13,600 kg/m3)(9.8 m/s2)Ah
0.76 m = Ah



Confined Fluids and Pascal's Principle

o If we have a container that is completely filled with a single fluid and the container is enclosed on all sides (not
exposed to the atmosphere) the fluid is confined. If the fluid is a liquid, there cannot be any gas (air) in the
container, so that the liquid is in contact with all walls of the container.

* Pascal’s principle says that if we apply a change in pressure to any point in a confined fluid (at rest), the pressure

at every point in the fluid will change by the same amount. We could say that the pressure change is “distributed”
throughout the fluid in all directions.

original pressures at the pressure at every point in the fluid
different points in the fluid increases by the same amount when a
pressure is applied by the piston

no piston force iF
confined fluid P..
t
/ \ [ piston
s P1 o P1+Ppiston
S P, '<_P2+Ppiston
'<_P3 '<_P3+Ppiston

e This principle is commonly applied to connected cylinders and pistons, which allows us to transmit forces in
different directions often using a mechanical advantage (the output force is greater than the input force). These
are often referred to as hydraulic systems (when using a liquid) and pneumatic systems (when using a gas).

¢ In this course we are going to assume the fluid in a piston system is an ideal fluid (an incompressible liquid).

e The change in pressure applied by one piston is transmitted to the other piston so the change in pressures on
each piston are equal. The change in the force on each piston is dependent on the surface area of each piston.

e [t's important to note that the pressure in the fluid still increases with depth, so if the pistons are at different
heights then the pressure on each piston is not the same - the change in pressure on each piston is the same.

a small force applied to a small area results

in a large force applied to a large area F the pressure on each piston is the same
v 2 (technically the change in pressure is the same
’:1 ‘J P, = P, but we often just say the pressure is the same)
¢ A <A, P, = P,
I F, < F, ‘
Fq F)
< A _— P, = — P, = —
o P.] —’A'] 2 — o P2 A1 A2
\\the pressure on each F >
piston is the same 1= 2
\_ / A, A,

Vi y A,

\ C AVVRNE

ideal fluid the shape of the fluid container doesn’t
(incompressible) matter, only the areas of each piston




BUOYANT FORCE

Buoyant Force

Values Unit Name Variables S| Unit
k
Pwater 1,000 ?93 density of water (4°C) Fg buoyant force N
Pice 9216 % density of ice (0°C) W  weight force N
g 9.8 % gravitational acceleration m | mass kg
k
P  density —93
e A buoyant force is an upwards force exerted on an object by a fluid due to m
the fluid pressures around the object. V' volume m3
 This is what causes objects to float in a liquid like a boat in water, or to float in )
A area m

a gas like a hot air balloon in the atmosphere.

e Even if an object sinks to the bottom of a fluid, there is always an upwards
buoyant force acting on the object.

e Archimedes’ principle says that the upwards buoyant force acting on an object by a fluid is equal to the weight
of the fluid that the object is displacing. The mass of the fluid displaced is equal to the volume of the fluid
displaced multiplied by the density of the fluid, giving us the equation below for buoyant force.

e The volume of fluid displaced by an object is the amount of fluid that has to move out of the way when the object
is placed in the fluid. If an object is completely submerged in a fluid then the volume of the fluid displaced is
equal to the volume of the object. If an object is only partially submerged in a fluid (part of the object is above the
fluid) then the volume of the fluid displaced is equal to the submerged volume of the object (the amount of the
object that is “underwater” in the fluid).

Archimedes’ principle: the upwards buoyant force on an object
is equal to the weight of the fluid displaced by the object

buoyant force on

object from fluid Buoyant force on
Fg object from fluid
T volume and mass of
fluid displaced by object Fg = psVig
Vi mg
................ >

Fg = w; = (mgg) = (psVi) g

P+ le my T

: : = — — my; = p{V
density of fluid weight of fluid P+ V, f= PfVs

displaced by object



* A buoyant force is the net force caused by all of the fluid pressure forces acting on an object in all directions.

e As we learned in a previous section, the pressure in a fluid increases with depth due to the weight of the fluid
above that point. Because of this, the upwards force exerted by the fluid on the bottom of the object is greater
than the downwards force exerted by the fluid on the top of the object. All of the horizontal forces exerted on
the object cancel out because they have equal magnitudes and act in opposite directions.

e The resulting net pressure force (the buoyant force) is upwards. This is true even if the density of the object is
greater than the density of the fluid, or if the object sinks instead of floats. There is always an upwards force
exerted by the fluid on the object because of the difference in pressure between the top and bottom of the object.

* As we see in the buoyant force equation, the force depends on the density of the fluid and not on the density of
the object. The buoyant force is caused by the fluid pressure which depends on the fluid density. The buoyant
force is completely independent of the mass of the object (the mass of the object will determine its weight force
when we study the overall free body diagram for the object).

4 )
Fluid pressure forces acting on a submerged object, the front and back forces are not shown
(only the fluid forces are shown, not the weight of the object)
fluid pressure the fluid exerts a force on the net force on the object
increases with depth each surface of the object from the fluid pressure
due to the fluid pressure forces is upwards, this is
£ the buoyant force
Ptop tlop
| | | |
v v Ay
4 < W,
Pleft __: «_Pright Fleft —_— <4— Fright
— 1y —
A A4 A A A
J Az |
AX
2 F
Pbottom Fbottom \
buoyant force, Fg
the fluid pressure is the horizontal forces cancel out,
greater at the bottom of they are equal in magnitude and
the object than the top opposite in direction
[ J

Deriving the equation for buoyant force using the example above:
Fies = Fright - ZFx = Fleft — Fright =0
Féront = Foack — ZFz = Ftont = Foack = 0
Fbot>Ftop_>ZFy=Fbot_Ftop
F

= (PbotAbot) - (PtopAtop) «<— PA=F P= Z

= (pfghbot)Abot - (pfghtop)Atop +«— P = pgh
= pfg(hbot - htop)A — A=A = Atop
= psg(Ay)(AxAz) <—— Ay = hyo, — hyyy, A = AxAz

Fg = ZFy: pigV «—V = AxAyAz



e When we draw a free body diagram of the object we treat the buoyant force as a single force caused by the fluid,
we don’t need to draw the separate fluid pressure forces acting in each direction.

* We always need to include the weight force (gravitational force) acting on the object in the free body diagram.

e Typically those are the only two forces to include if the object is floating in the fluid. However, some scenarios
involve an object being suspended by a string or a spring while in a fluid, or an object resting on surface while in
a fluid. In those cases we need to include a tension force, spring force or normal force.

e [t's important to remember that the buoyant force is the force exerted by the fluid on the object (similar to how
the ground exerts a normal force on an object). The buoyant force is not the overall net force on the object,
we also need to consider the weight force (and maybe other forces) to determine the net force on the object.

Free body diagram and Newton’s 2nd Free body diagram and Newton’s 2nd
law for an object floating in a fluid law for an object floating in a fluid and
suspended by a string

E
B 4 45
m m
L .&- ) y K y
Pt V, t Pt Vs t
X w
X w
object is at rest, object is at rest,
net force is zero net force is zero
R R
2F,b=Fg—w=0 YF,=Fg+T—-w=0
FB = W FB + T - W

psVig = mg piVig + T = mg



e A common buoyant force question is to find the fraction of an object’s volume that is submerged in the fluid if the
object is floating at rest.

» We may also be asked to find the height of the object above or below the fluid surface. If the shape of the object
is the same above and below the surface, like a cylinder or a rectangular prism, then the object’s height is
proportional to its volume, so the fraction of the object’s volume submerged and height submerged are equal.

* We can draw a free body diagram, apply Newton’s 2nd law (2 F = ma) and set the net force to 0 because the
object is floating at rest. The upwards buoyant force will be equal in magnitude to the downwards weight force.
We may be given the density of the object instead of the mass, so we'll need to remember that the object’s mass
is equal to its density multiplied by the total volume of the object.

What fraction of the object’s volume is submerged in the fluid?

Fg
_ _ _ object is at rest,
y ZFY =Fg—w,=0 net force is zero
Ut ™ 0 Fz = w,
e : Via
X m, Vo P:Vig = Mog mass of the object:
e ; PiVig = (PoVolg «— m, = p,V,
:'::::::-:::% Vi _ Po
pf v.|: r’ vo pf
W, the fraction of the object’s

volume that is submerged



FLOW & BERNOULLI'S EQUATION

Fluid Flow

» The previous sections on fluids have described hydrostatics, which is when a fluid is static and not moving.

e This section will focus on hydrodynamics, which is when a fluid is moving or “flowing”. We're going to assume
the fluids we're working with are ideal fluids which we covered in a previous section, but we're going to add one
more definition regarding laminar flow.

e An ideal fluid:

1. Is completely incompressible: it does not change volume or density when a force is applied to it, regardless
of the pressure of the fluid. The particles in an ideal fluid do not get closer or farther apart.

2. Has no viscosity: it does not resist flow and there is no friction between the fluid particles or between the
particles and the container.

3. Moves with laminar flow: all of the fluid flows smoothly in one direction, parallel to the tube (the opposite of
laminar flow would be turbulent flow).

Laminar flow Turbulent flow
The fluid particles move The fluid particles generally move
smoothly in one direction, in one direction but they also
parallel to the tube follow irregular flow patterns

b

we're going to assume all fluid
flow is laminar for this course

e Fluid flow is caused by a difference in pressure between two points in the fluid.
e A fluid will flow from higher pressure to lower pressure.

P, > P,
> V
higher P, . P, lower
pressure 3 pressure
\

fluid flow direction



Flow Rate and Conservation of Mass

Values Unit
g 9.8 %

* The size of the tube (or any container) that a fluid is flowing through can change
from one end to the other, and different tubes will be different sizes. So instead
of only describing the velocity of a fluid, it will be useful to describe the flow rate.

e The flow rate of a fluid is the volume of fluid that passes by a point per unit of

time, and has an S| unit of m3/s.

e The flow rate is equal to the velocity of the fluid passing through some

cross-sectional area multiplied by that area.

A volume of fluid flows through
an area over a period of time

width of fluid
volume volume cross-sectional
of fluid . AX . area
NS,
! \
vV 1
[} ]
—>V : A ,
/ i
\ (]
\__'
velocity  Ax ¢ At
—
[
(]
]
' — v
\

The velocity of the fluid volume is equal to its
displacement divided by the period of time

Y= ﬂ fluid volume:
At V = AAx
"4 "4
V= — <+— AXx = —
AAt A
"4
Av = —
At
Flow rate
"4
— = Av

At

Name Variables S| Unit
gravitational acceleration V  volume m3
v velocity m
S
A area m?2
t time S
P pressure Pa= -
. kg
p density 3
m mass kg
Y  height m



e When studying fluid flow in a tube we assume the tube is completely filled by the fluid. We also assume the fluid
is an ideal fluid so it is incompressible (the density of the fluid does not change, and the volume of fluid cannot be
compressed or expanded).

e We can also apply the law of conservation of mass which states that mass cannot be created or destroyed, it
can only be moved. For fluid flow, this means that the mass of fluid that enters a tube must equal the mass of
fluid that exits a tube during a given period of time.

e Because the fluid fills the tube and is incompressible, this also means that the volume of fluid that enters a tube
must equal the volume of fluid that exits a tube during a given period of time. Put another way, the flow rate
into a tube must equal the flow rate out of a tube (or into/out of any section of a tube).

e We can use this relationship to find the velocity of the fluid at different points in a tube that have different
cross-sectional areas. The fluid will flow slower through larger cross-sectional areas and faster through smaller
cross-sectional areas.

Fluid mass is conserved within a tube, no mass can be added or removed within the tube. The fluid
density is constant (we assume the fluid is incompressible) so the fluid volume is also conserved.

Ain Aout
. mi, = My,
massin M, V. =V m,,, mass out
. I in — VYout
volume in Vi, V,ut Vvolume out
p = constant
/
M, = Mgy
m
fluid density is constant: p = V — V.. =V_,
vin . vout
At At the conservation of flow
flowrate: — = Ay —» A V. = A_,Vout rat? applles to any two
At points in the flow, not
Conservation of flow rate just the in and out points
A1 V1 —_ A2V2 4/
The flow rate is the same at every point in the flow
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Bernoulli's Equation and Conservation of Energy

* The equation we got from the conservation of mass is useful, but it's not enough to describe everything about
fluid flow including pressure and a change in tube height. To do that we need Bernoulli's equation.

» Bernoulli's equation relates the pressure, height and velocity of a fluid at different points and can be derived
from the conservation of mechanical energy of the fluid.

* The equation tells us that the sum of the three terms shown below is constant throughout the fluid, or we can
say the sum of the three terms at one point is equal to the sum of the terms at another point.

e We can use either absolute pressure or gauge pressure in the equation, but we have to use the same type on
each side of the equation.

Bernoulli's equation

P+ pgy + %pv2 = constant w
1 1

P, + pgy: + 5pVi = P, + pgy, + 5pV3

the total mechanical energy is th
same at every point in the flow

Example: What is the speed of the water at point 27?
(pressures are gauge pressures)

— 3 v, =?
Pwater = 1000 kg/m ° _2> _____ -y, = 3m
[ P2= 20 kPa
V1 —_ 0.5 m/S
I R y:=0m

\/ P1 —_ 50 kPa
1 2 __ 1 2
Pi+ pgyr + 3pvi = P2+ pgy, + 5pv2

(50,000 Pa) + (1000 kg/m?)g(0 m) + 2(1000 kg/m*)v = (20,000 Pa) + (1000 kg/m?)g(3 m) + (1000 kg/m?)v3

1.2m/s = v,



e Bernoulli's equation can be derived by applying the law of conservation of energy to the fluid as it moves from
one point to another.

» The total amount of gravitational potential energy and kinetic energy, plus the work done on the fluid due to the
pressure force, is constant throughout the flow. We can divide each energy term by volume to get the terms in
Bernoulli's equation so that the equation includes pressure.

work done by gravitational kinetic
pressure force potential energy energy

l J
v v
Conservation of energy of the fluid: W + U, + K

v oo v

W + mgy + %mv2 constant
Rewrite work term using pressure: W = FAx = —AAX

v

constant

PV
J

PV + mgy + %mv2 = constant
;‘ L \
v v
PV m m
Divide each term by volume: P = — p=— p= V

Bernoulli's equation: P + pgy + %pv2 = constant

Pt

)
“work” “gravitational “kinetic energy”
term  potential energy” term

term



Torricelli's Theorem

o Torricelli’s theorem relates the velocity of a fluid exiting a hole in a container to the depth of the hole below the
surface of the fluid.

e The pressure in the fluid increases with depth so the velocity of the fluid exiting the hole will be faster at a
greater depth.

e This theorem is sometimes combined with kinematics and projectile motion to find things like the distance
traveled by the stream of fluid exiting the hole.

depth of the hole
below fluid surface

velocity of fluid
exiting the hole Torricelli's theorem

—}V/ V=\/29Ay

e This is just a specific application of Bernoulli’s equation. We assume the velocity of the fluid at the top surface is
zero, and that the fluid at the top surface and at the hole are both at the same atmospheric pressure.

1 1
Ptop + pg.ytop + Epvfop = Phole T POYhole T Epvlfziole

| Peop = Phote = Pt

1 1
pgytop + Epvtzop = PGYhole T Epvl'zmole

lvtop =0
1
P9Ytop = PYYhole + Epvﬁole

1
9Yiop = 9Yhole + Evﬁole

1
g(Ytop - yhole) = Evﬁole

Zg(ytop - yhole) = Vl'ziole

ngA.y = Vhole



