

The diagram shows the part of the curve $y=3 x \sin 2 x$ for which $0 \leqslant x \leqslant \frac{1}{2} \pi$.
The maximum point on the curve is denoted by P.
(a) Show that the x-coordinate of P satisfies the equation $\tan 2 x+2 x=0$.
(b) Use the Newton-Raphson method, with a suitable initial value, to find the x-coordinate of P, giving your answer correct to 4 decimal places. Show the result of each iteration.
(c) The trapezium rule, with four strips of equal width, is used to find an approximation to $\int_{0}^{\frac{1}{2} \pi} 3 x \sin 2 x \mathrm{~d} x$.

Show that the result can be expressed as $k \pi^{2}(\sqrt{2}+1)$, where k is a rational number to be determined.
(d) (i) Evaluate $\int_{0}^{\frac{1}{2} \pi} 3 x \sin 2 x d x$.
(ii) Hence determine whether using the trapezium rule with four strips of equal width gives an under- or over-estimate for the area of the region enclosed by the curve $y=3 x \sin 2 x$ and the x-axis for $0 \leqslant x \leqslant \frac{1}{2} \pi$.
(iii) Explain briefly why it is not easy to tell from the diagram alone whether the trapezium rule with four strips of equal width gives an under- or over-estimate for the area of the region in this case.

5 In this question you must show detailed reasoning.

(a) Prove that $(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}$.
(b) Hence solve, for $0<\theta<2 \pi, 3(\cot \theta+\operatorname{cosec} \theta)^{2}=2 \sec \theta$.

