Java Programming AP Edition
U2C5 Loops

WHILE LOOP
ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Motivation

Suppose that you need to print a string (e.g., "Welcome
to Java!") a hundred times. It would be tedious to have

to write the following statement a hundred times:

System.out.printin("Welcome to Java!“);

So, how do you solve this problem?

Motivation

/| System.out.printIn("Welcome to Java!");
System.out.println("Welcome to Javal");
System.out.println("Welcome to Javal");
System.out.printin("Welcome to Java!");
System.out.printIn("Welcome to Javal");
100 times < System.out.printin("Welcome to Java!");

System.out.printin("Welcome to Java!");
System.out.println("Welcome to Java!");
\ System.out.println("Welcome to Java!");

Solution to it: while-loop

int count = 0;

while (count < 100) {
System.out.println ("Welcome to Java");
count++;

while loop

Flow Diagram of a while loop

44 While(condition) |

The syntax for the while loop is:

while (loop-continuation-condition) {

// loop body J. 1
Chﬁtc-k false continue]
Statement(s); contine

)]

Ezecute Repeated continue on to rest
Code of program

\

Comparison of if-statement and while-loop

int x =0; // if-statement
if (x<10){
System.out.printin(“Welcome to Java.”);
}
int x =0; // while-loop

while (x < 10) {
System.out.printin(“Welcome to Java.”);
X++;

e e —
P

LOOP Structures Supported By Java

Loops: Loop Breaks: (later in other lecture)

) for-loop (later lecture) - {} /* empty braces as pass function */
J while-loop] Continue /* skip the rest of iteration */

. do-while-loop] Break /* skip the rest of loop */

) for-each-loop (chapter 7/8) J Return /* skip the rest of function */
. System.exit(0); /* skip the rest of program */

while

e Zero or more iteration

e \When total iterations
unknown

Test
boolean
expression

false

true

Execute
code_block

do while
« At least one iteration

« When total iterations
unknown

Execute
code block

Test
boolean
expression

true

false

for

e Any number of iteration

e \When total iterations
known

Initialize variable(s)

Test
boolean
expression

false

Update
true variable(s)

Execute
code block

Trace while-loop
BN initializecount

int count = 0;
while (count <2) {
System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

int count = 0; ,

while (count <2) { -

System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

int count = 0;

while (count <2) {
System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

] Increase count by 1
mt count = 0; count is 1 now

while (count <2) {

System.out.println("Welcome to Java!'$

count++;

;

Trace while-loop

(count < 2) 1s still true since count

int count = 0; is 1
while (count <2) { —
System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

Print Welcome to Java

int count = 0;

while (count <2) {
System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

] Increase count by 1
mt count = 0; count is 2 now

while (count <2) {

System.out.println("Welcome to Java!'4

count++;

;

Trace while-loop

(count < 2) 1s false since count 1s 2

int count = 0; now
while (count <2) { —
System.out.println("Welcome to Java!");

count++;

;

Trace while-loop

‘ The loop exits. Execute the next
It count = 0; statement after the loop.

while (count <2) {

System.out.println("Welcome to Java!");

count++;

;

do ... while loop

The do-while loop is a variation of the while loop.

Its Syntax iS: Flow Diagram of do .. while LOOP
do {
// IOOp bOdy; execute repeated code

statement(s); _
} while (loop-continuation-condition); = @

Difference between do-while-loop and
while-loop

The difference between a while loop and a do-while-loop is
the order in which the loop-continuation-condition is
evaluated and the loop body executed. You can write a loop
using either the while-loop or the do-while loop. Sometimes
one is a more convenient choice than the other.

Menu.java (later lecture)

