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Lesson 5:  Parametric Curves & Surfaces 
 

 

 

 

 

 

 

In this lesson, we’ll be discussing some important geometric constructs that come 

up in vector calculus, namely, various kinds of curves and surfaces. 

 

We’ll also discuss how these curves and surfaces are describes parametrically 

and how this, on the other hand, can be used to calculate various different things. 

 

In the next lesson, we’ll be taking a closer look at different mathematical 

procedures that use the concepts discussed here, such as line integrals and 

surface integrals. 

 

 

Lesson Contents 

 

 What Are Curves & Surfaces? 

 Describing Curves Parametrically 

o Finding The Tangent Vector To a Curve 

o Computing The Arc Length of a Curve 

 

 Describing Surfaces Parametrically 

o Example: Parameterizing a Cone 

o Finding The Normal Vector To a Surface 

o Example: Normal Vector To a Cone 

o Computing Surface Area of a Parametric Surface 

o Example: Surface Area of a Cone 



 
 

Page 2 of 33 
 

 Closed Curves & Closed Surfaces 

 Lesson Summary 

 

 

 

What Are Curves & Surfaces? 

 

To begin discussing the notions of curves and surfaces and everything associated 

with these, we need to establish some notation and some conventions I’m going 

to be using. 

 

So far, we’re familiar with the notion of a curve in two dimensions, such as in the 

xy-plane. This is simply a collection of specific points that forms some kind of a 

curve-like shape: 

 

 
 

 

You can think of this as a function with an input (in this case, x) that outputs a 

point for each input. 

 

Similarly, we can have a curve in three dimensions, which you can think of as a 

function (I’ll denote this as γ(t)) that takes an input (the curve parameter t, which 

we’ll discuss later) and outputs, in this case, three values corresponding to the 

point (x,y,z) on the curve: 
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A surface in 3D, on the other hand is, well, what you might expect; a surface in 

3D: 

 

 
 

The distinction between a curve and a surface is that a surface is parameterized by two parameters 

(u,v) and a curve with only one (t). So, while a curve only describes one point for each value of t, a 

surface can describe multiple points for one value of u, for example. In other words, a single point 

on the surface requires two distinct parameters. 
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In this lesson, we’re going to discuss everything you need about curves and 

surfaces to then be able to do, for example, surface and line integrals of vector 

fields in the upcoming lessons (and ultimately, to be able to understand Stokes’ 

and divergence theorems). 

 

 

 

Describing Curves Parametrically 

 

To describe a curve γ, we need a parameterization for the curve. To get such a 

thing, we choose some suitable curve parameter, t. We’ll then denote the 

parameterized curve as γ(t), though this is just notation and nothing too 

important. 

 

You can kind of visualize the curve parameter t by imagining that you place a 

“coordinate axis” or tickmarks that describe points along the curve: 

 

 
 

This form of parameterization of “tickmarks” along the curve is called the arc length 

parameterization, however, it’s worth noting that we can choose other types of parameterizations 

as well (such as an angle relative to some axis). So, this is just one way to visualize a parametric 

curve. 
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Now, we’re not necessarily interested in the values of this curve parameter t, 

rather the whole point of this parameter is to be able to express points on the 

curve (x,y,z) in terms of this parameter. 

 

To do this, we simply write the points (x,y,z) along the curve as functions of this 

parameter, so x(t), y(t), z(t). 

 

A neat little way to express these points is by imagining a little position vector 

that points from the origin to a point (x(t),y(t),z(t)) on the curve: 

 

 
 

 

The components of this position vector are then simply the points on the curve 

expressed through the curve parameter t, so we can write it as: 

 

�⃗� (𝑡) = 𝑥(𝑡) �̂� + 𝑦(𝑡) �̂� + 𝑧(𝑡) �̂� 
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Let’s look at a little example to better understand how this really works in 

practice. We can imagine a curve as having the following parameterization: 

 

𝑥(𝑡) = cos 𝑡 

 

𝑦(𝑡) = sin 𝑡 

 

𝑧(𝑡) = 𝑡 

 

These give the coordinates of any point on the curve. The position vector of any 

point on this curve is therefore: 

 

�⃗� (𝑡) = cos 𝑡  �̂� + sin 𝑡  �̂� + 𝑡 �̂� 

 
This particular curve happens to describe a spiral-like curve that essentially does 

circles in the xy-plane and at the same time, increases linearly in the z-direction: 
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So, that’s essentially all there is to describing curves parametrically. Next, we’ll 

look at what to actually do with these parametric curves and how we can use 

them in practice. 

 

 

Finding The Tangent Vector To a Curve 

 

An important concept associated with curves is the tangent vector of a curve. 

The tangent vector is calculated by differentiating the position vector with 

respect to its parameter t: 

 

𝑑 �⃗� (𝑡)

𝑑𝑡
=

𝑑𝑥(𝑡)

𝑑𝑡
�̂� +

𝑑𝑦(𝑡)

𝑑𝑡
�̂� +

𝑑𝑧(𝑡)

𝑑𝑡
�̂� 

 

Now, this is called a tangent vector because it lies tangentially to the curve at 

each point (this is because the derivative generally describes tangents to curves, 

like you may have seen in single-variable calculus with the “slope of a tangent 

line”). 

 

In other words, the tangent vector always points in the direction that the curve is 

going in: 
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The magnitude of this tangent vector describes the rate of change of the 

coordinates along the curve with respect to the curve parameter. In practice, this 

can be calculated just like the magnitude of any vector: 

 

|
𝑑 �⃗� 

𝑑𝑡
| = √(

𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

 

 

 

So, to recap, the tangent vector to a curve is a vector that points in the 

direction of the curve at each point and its magnitude describes how fast 

the coordinates are changing along the curve. 

 

As an example, let’s consider again the spiral curve from before, which was 

described by the position vector: 

 

�⃗� (𝑡) = cos 𝑡 �̂� + sin 𝑡 �̂� + 𝑡 �̂� 

 

 

The tangent vector to this curve is: 

 

𝑑 �⃗� 

𝑑𝑡
= − sin 𝑡 �̂� + cos 𝑡 �̂� + �̂� 
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We can also take the magnitude of the rate of change, which describes how fast 

the coordinates are changing along the curve, which gives us: 

 

|
𝑑 �⃗� 

𝑑𝑡
| = √sin2𝑡 + cos2𝑡 + 1 = √2 

 
Here, i’ve used the fact that sin2t+cos2t=1. 

 

 

So, for this curve, we get a tangent vector with a constant magnitude. 

 

This essentially means that as we move along the curve, the coordinates increase 

with a constant rate of change. 

 

A nice way to think of this is by imagining that this curve describes the trajectory 

of a particle, in which case the particle would move with a constant speed. 

 



 
 

Page 10 of 33 
 

In fact, a charged particle in a constant magnetic field will move exactly along 

such a curve described above and its speed will remain constant because 

physically, a magnetic field doesn’t do any work. 

 

 

 

Computing The Arc Length of a Curve 

 

An important application of the tangent vector explained above is for computing 

the arc length of a curve. Essentially, the arc length (Δs) is the length of a “piece” 

of the curve: 
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To calculate the total arc length, we can imagine that we “split” this arc into 

multiple little pieces with length ds: 

 

 
 

 

The length ds of each little piece can then be calculated as the rate of change 

(magnitude of the tangent vector), dr/dt, at that point multiplied by the change 

in the curve parameter, dt. You can think of this as distance=velocity*time, i.e. 

dx=(dx/dt)*dt. 

 

Now, this works if we imagine that the piece ds is small enough (infinitesimal, to 

be exact) so that the rate of change is basically constant along that little ds. 

 

Anyway, the length of each piece ds is then: 

 

𝑑𝑠 = |
𝑑 �⃗� 

𝑑𝑡
| 𝑑𝑡 
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Then, the total arc length, Δs, of the segment we’re interested in is obtained by 

integrating all of these ds-pieces: 

 

𝛥𝑠 = ∫ 𝑑𝑠
𝑏

𝑎

= ∫ |
𝑑 �⃗� (𝑡)

𝑑𝑡
|

𝑏

𝑎

𝑑𝑡 

 
Here, a and b are the start and end points of the arc segment we’re integrating over. 

 

 

As an example, let’s calculate the arc length of the spiral curve we had earlier. I’ll 

choose the start and end points as 0 and 2π. 

 

Now, since in our position vector for the curve, the parameter t is contained in 

both the trigonometric terms (cos(t) and sin(t)) describing circular “motion” and 

also in the linear term, we can imagine that it characterizes both a “height” and 

an “angle” (see the picture below). 
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Anyway, doing the actual arc length calculation, we get: 

 

𝛥𝑠 = ∫ |
𝑑 �⃗� 

𝑑𝑡
|

2𝜋

0

𝑑𝑡 = ∫ √2
2𝜋

0

𝑑𝑡 = 2𝜋√2 

 
Reminder; the magnitude of the tangent vector is √2 (from earlier). 

 

 

Now, just to recap, the steps to parameterize a curve and calculate its arc length 

is as follows: 

 

1. Choose a suitable parameterization that expressed the coordinates of 

each point along the curve as functions of the curve parameter t. So, 

x=x(t), y=y(t) and z=z(t). 

2. Write down the position vector as a function of the curve parameter t 

by using the coordinate expressions from step #1. 

3. Calculate the tangent vector to the curve by differentiating the 

position vector. 

4. Calculate the arc length by integrating the magnitude of the tangent 

vector. 

 

 

 

Describing Surfaces Parametrically 

 

In a similar manner as we described curves parametrically, we can also do the 

same for a surface. The only difference here is that we need two parameters to 

describe a point on the surface. I’ll call these surface parameters u and v. 

 

But why two parameters? Well, a surface is basically a “piece of area” and areas 

always require two dimensions to describe them. 
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You could visualize the situation by imagining that there is a “coordinate grid” 

placed on the surface. Then, there are basically two independent directions you 

can move in, so you need two parameters to know which point on the surface 

you move to. 

 

 
 
Visualization of the two surface parameters. Note that when we parameterize a surface, we aren’t 

literally placing a “coordinate system” on the surface, but rather, the parameterization is mostly a 

mathematical tool that often does not have a neat intuitive meaning. 

 

 

Using the surface parameters, we can describe any point (x,y,z) ON the surface by 

writing down the coordinates as functions of the curve parameters in some 

suitable way (generally, there are more than one “correct” way to choose the 

parameterization): 

 

𝑥 = 𝑥(𝑢, 𝑣),  𝑦 = 𝑦(𝑢, 𝑣),  𝑧 = 𝑧(𝑢, 𝑣) 

 

 

Then, similarly to what we did for a curve, we can form a position vector that 

points from the origin to a point (x,y,z) on the surface. This position vector will 

then be a function of the surface parameters u and v: 
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�⃗� (𝑢, 𝑣) = 𝑥(𝑢, 𝑣) �̂� + 𝑦(𝑢, 𝑣) �̂� + 𝑧(𝑢, 𝑣) �̂� 

 

 

 
 

 

 

 
 

 

  

As a sidenote, you may see a pattern with these parameterizations; we're 

taking a geometry that essentially requires three variables to describe (the 

coordinates x, y and z) and reducing it to require less variables (in the case 

of a curve, only one variable, the curve parameter t and for a surface, two 

variables u and v), but still describing the exact same thing. Therefore, in 

many ways, this process of parameterization makes everything simpler 

and it also allows us to directly calculate properties of the geometry we're 

describing. 
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Example: Parameterizing a Cone 

 

Let’s do a little example of parameterizing a cone (with total height h and radius 

of the “bottom circle” R) that is centered at the origin of the xy-plane: 

 

 
 

 

So, we want to find the position vector by finding a parameterization, u and v, for 

each of the coordinates x, y and z. First of all, if we look the the cone from above, 

it forms a circle of radius r in the xy-plane: 
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We can parameterize a circle using the polar coordinate relations x=r cosθ and 

y=r sinθ. Now, to keep consistent with our u,v-notation, I’ll simply relabel r to u 

and θ to v. So, we then have the parameterization for x and y: 

 

𝑥(𝑢, 𝑣) = 𝑢 cos 𝑣 

 

𝑦(𝑢, 𝑣) = 𝑢 sin 𝑣 

 

Now, to find the parameterization of z, we can draw a little picture here: 

 

 
 

 

So, at any point on the surface of the cone, the “height” of that point is z. We can 

find z by looking at the angle α, which based on the picture, can be calculated as 

(using basic trigonometry): 

 

tan 𝛼 =
𝑧

𝑟
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However, the angle α is constant since it’s the angle between the cone and the x-

axis. Therefore, we can also obtain the angle by looking at the “full” cone: 

 

 
 

 

The angle here is the exact same angle α as in the last picture (can you see why?), 

so we can also calculate it as: 

 

tan 𝛼 =
ℎ

𝑅
 

 

 

We can then relate this and the expression for tanα from earlier to get: 

 

tan 𝛼 =
𝑧

𝑟
=

ℎ

𝑅
  ⇒   𝑧 =

ℎ

𝑅
𝑟 
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Again, to keep consistent with our notation, we’ll set r=u. Therefore, our 

parameterization for the cone is: 

 

𝑥(𝑢, 𝑣) = 𝑢 cos 𝑣 

 

𝑦(𝑢, 𝑣) = 𝑢 sin 𝑣 

 

𝑧(𝑢, 𝑣) =
ℎ

𝑅
𝑢 

 

 

Using these, the position vector of any point on the surface of the cone can then 

be written as: 

 

�⃗� (𝑢, 𝑣) = 𝑢 cos 𝑣 �̂� + 𝑢 sin 𝑣 �̂� +
ℎ

𝑅
𝑢 �̂� 

 

 

That’s the full parameterization of the cone! Note, however, that the limits of 

these parameters are 0≤u≤R (u represents the radius of the “bottom circle”) and 

0≤v≤2π (v represents the angle around the circle). We will use these limits when 

we get to integrating the surface area of this cone. 

 

 

 

Finding The Normal Vector To a Surface 

 

A normal vector to a surface is a vector that is perpendicular to the surface at 

any point on the surface. I’ll represent the normal vector of a surface by �⃗�  (and if 

it’s a unit normal vector, I’ll put a hat on top of it). 
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Now, we want to find normal vectors to surfaces, because it turns out that this is 

how we can calculate the surface area of any parametric surface. In addition, 

we can also use these normal vectors later when we get to flux integrals, for 

example. 

 

In practice, the normal vector of a surface parameterized by u and v can be 

computed by: 

 

�⃗⃗� =
𝜕 �⃗� (𝑢, 𝑣)

𝜕𝑢
×

𝜕 �⃗� (𝑢, 𝑣)

𝜕𝑣
 

 
If you want to make this a unit normal vector, simply divide this expression by the magnitude of 

the vector �⃗� . 

 

 

Let’s think about why this gives us a normal vector. 
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First of all, the partial derivatives of 𝑟  with respect to u and v give us vectors that 

point in the directions of u and v, respectively (for example, differentiating 𝑟  with 

respect to u results in a vector that points in the direction of u). 

 

Together, these partial derivative vectors, at each point on the surface, form a 

parallelogram of some sorts (see the picture below). 

 

Then, taking the cross product of these two partial derivative vectors gives us a 

vector that is perpendicular to both of them. Or in other words, perpendicular 

to the parallelogram formed by the partial derivative vectors and therefore, also 

perpendicular to the surface itself. 

 

 
 

 

So, to put it simply, you get a normal vector by taking the partial derivatives of 

the position vector both with respect to u and v and then take the cross product 

of those vectors (to be precise, this gives you a vector field with vectors 

perpendicular to the surface at each point).  
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Example: Normal Vector To a Cone 

 

Let’s calculate the normal vector to the cone we parameterized in the last 

example. As a reminder, the u,v-parameterized position vector we found for the 

cone was: 

 

�⃗� (𝑢, 𝑣) = 𝑢 cos 𝑣 �̂� + 𝑢 sin 𝑣 �̂� +
ℎ

𝑅
𝑢 �̂� 

 
Reminder; here h is the total height of the cone and R is the radius of the “bottom area” of the cone. 

 

 

We’ll begin by calculating the partial derivatives of this position vector, both with 

respect to u and v: 

 

𝜕 �⃗� 

𝜕𝑢
= cos 𝑣 �̂� + sin 𝑣 �̂� +

ℎ

𝑅
 �̂� 

 

𝜕 �⃗� 

𝜕𝑣
= −𝑢 sin 𝑣 �̂� + 𝑢 cos 𝑣 �̂� + 0 �̂� 

 

 

Now, let’s take the cross product of these two vectors. We’ll do each component 

separately. First, for the x-component of the cross product, we have: 

 

(
𝜕 �⃗� 

𝜕𝑢
×

𝜕 �⃗� 

𝜕𝑣
)

𝑥

= sin 𝑣 ⋅ 0 −
ℎ

𝑅
⋅ 𝑢 cos 𝑣 = −

ℎ

𝑅
𝑢 cos 𝑣 
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Then, for the y-component, we get: 

 

(
𝜕 �⃗� 

𝜕𝑢
×

𝜕 �⃗� 

𝜕𝑣
)

𝑦

=
ℎ

𝑅
⋅ (−𝑢 sin 𝑣) − cos 𝑣 ⋅ 0 = −

ℎ

𝑅
𝑢 sin 𝑣 

 

 

And last, the z-component: 

 

(
𝜕 �⃗� 

𝜕𝑢
×

𝜕 �⃗� 

𝜕𝑣
)

𝑧

= cos 𝑣 ⋅ 𝑢 cos 𝑣 − sin 𝑣 ⋅ (−𝑢 sin 𝑣) 

= 𝑢 cos2𝑣  + 𝑢 sin2𝑣 = 𝑢 

 

 

We can then form the full cross product vector from these components: 

 

𝜕 �⃗� 

𝜕𝑢
×

𝜕 �⃗� 

𝜕𝑣
= −

ℎ

𝑅
𝑢 cos 𝑣 �̂� −

ℎ

𝑅
𝑢 sin 𝑣 �̂� + 𝑢 �̂� 

 

 

This is then also our normal vector (i.e. the vector field that is perpendicular to 

the surface at every point): 

 

�⃗⃗� = −
ℎ

𝑅
𝑢 cos 𝑣 �̂� −

ℎ

𝑅
𝑢 sin 𝑣 �̂� + 𝑢 �̂� 

 

 

Now, the next question is; what do we actually do with this normal vector? Well, 

one important application is for calculating the surface area of any parametric 

surface, so let’s look at this next.  



 
 

Page 24 of 33 
 

Computing Surface Area of a Parametric Surface 

 

To calculate the surface area of a parametric surface, we can use similar logic as 

we did for the normal vector. 

 

In fact, let’s do the exact same calculation but with a small twist; instead of the 

partial derivative vectors, we can look at the (small) changes in the position 

vector in each of the u- and v-directions separately: 

 

 
 
Here, dv 𝑟  and du 𝑟  are the changes in the vector 𝑟  in the directions of u and v. The only difference 

here to the calculation we did before is that dv 𝑟  and du 𝑟  give us vectors that are infinitesimally 

“short”. Therefore, also the normal vector, d�⃗� , resulting from these is going to be “infinitesimally 

short”. 
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We can calculate the normal vector d�⃗�  again as a cross product: 

 

𝑑 �⃗⃗� = 𝑑𝑢 �⃗� × 𝑑𝑣 �⃗�  

 

 

Now, let’s remind ourselves how to calculate the total differential (i.e. change) of 

a function f(x,y): 

 

 
 

 

Based on this, the changes in 𝑟  in both the u- and v-directions, du 𝑟  and dv 𝑟 , are: 

 

𝑑𝑢 �⃗� =
𝜕 �⃗� 

𝜕𝑢
𝑑𝑢 

 

𝑑𝑣 �⃗� =
𝜕 �⃗� 

𝜕𝑣
𝑑𝑣 
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Using these, the cross product vector becomes: 

 

𝑑 �⃗⃗� = 𝑑𝑢 �⃗� × 𝑑𝑣 �⃗� =
𝜕 �⃗� 

𝜕𝑢
𝑑𝑢 ×

𝜕 �⃗� 

𝜕𝑣
𝑑𝑣 

 

 

We can write this expression in the following form: 

 

𝑑 �⃗⃗� =
𝜕 �⃗� 

𝜕𝑢
𝑑𝑢 ×

𝜕 �⃗� 

𝜕𝑣
𝑑𝑣 = (

𝜕 �⃗� 

𝜕𝑢
×

𝜕 �⃗� 

𝜕𝑣
) 𝑑𝑢𝑑𝑣 = �⃗⃗� 𝑑𝑢𝑑𝑣 

 
Here, I’ve simply used the definition of the normal vector, which is the thing inside of these 

parentheses. 

 

 

Now, here comes the key part; the magnitude of a cross product always gives 

you the area of the parallelogram formed by the vectors you’re taking the 

cross product of. 

 

So, in this case, if we take the magnitude of this d �⃗� -vector, we’ll get the little tiny 

(infinitesimally tiny, in fact) area spanned by the vectors du 𝑟  and dv 𝑟 : 
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So, the magnitude of the vector d�⃗�  gives us the area of the parallelogram, which 

we’ll call dA (since it’s a very very tiny piece of area): 

 

𝑑𝐴 = |𝑑 �⃗⃗� | = |�⃗⃗� |𝑑𝑢𝑑𝑣 

 
Then, the surface area of this full surface is found simply by adding up all of these 

little dA’s at each point on the surface! 

 

More mathematically speaking, the surface area of the full surface is obtained by 

integrating this dA over the surface S (whatever the surface S happens to be): 

 

𝐴 = ∫∫𝑑
𝑆

𝐴 = ∫∫|�⃗⃗� |
𝑆

𝑑𝑢𝑑𝑣 

 
Note that this becomes a double integral, since we’re integrating over both u and v.  
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So, to put it simply, the steps to to calculate the surface area of a surface are: 

 

1. Find a suitable u,v-parameterization of the surface. In other words, 

write your coordinates x, y and z a functions of u and v and form the 

position vector using these. 

2. Calculate the normal vector to the surface. This is done by 

differentiating the position vector with respect to both u and v and then 

taking the cross product of these. 

3. Integrate the magnitude of the normal vector over the surface defined 

by the parameters u and v. 

 

 

 

Example: Surface Area of a Cone 

 

In the last example, we found the normal vector to a cone to be: 

 

�⃗⃗� = −
ℎ

𝑅
𝑢 cos 𝑣 �̂� −

ℎ

𝑅
𝑢 sin 𝑣 �̂� + 𝑢 �̂� 

 

 

To get the surface area of the cone, we first take the magnitude of this: 

 

 

|�⃗⃗� | = √
ℎ2

𝑅2
𝑢2cos2𝑣 +

ℎ2

𝑅2
𝑢2sin2𝑣 + 𝑢2 
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Before integrating, let’s simplify this: 

 

|�⃗⃗� | = √
ℎ2

𝑅2
𝑢2(cos2𝑣 + sin2𝑣) + 𝑢2 = √

ℎ2

𝑅2
𝑢2 + 𝑢2 

= √(ℎ2 + 𝑅2)
𝑢2

𝑅2
= √ℎ2 + 𝑅2

𝑢

𝑅
 

 

 

Now, the surface area will be (by integrating this): 

 

𝐴 = ∫∫|�⃗⃗� |
𝑆

𝑑𝑢𝑑𝑣 = ∫∫√ℎ2 + 𝑅2

𝑆

𝑢

𝑅
𝑑𝑢𝑑𝑣 

=
1

𝑅
√ℎ2 + 𝑅2 ∫∫𝑢

𝑆

𝑑𝑢𝑑𝑣 

 
Here, I’ve pulled out all the constants outside the integral. 

 

 

Now, this step may be the trickiest as it highly depends on the specific problem 

we’re trying to solve; we have to define what our surface S actually is. 

 

Luckily for us, this is going to be fairly simple; since u represents the “radius of 

the bottom circle” of the cone, it’s going to go from 0 to R (the “full radius” of the 

cone). 

 

On the other hand, v represents the angle around the “bottom circle”, so it will 

run from 0 to 2π (one full revolution). 
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Therefore, our surface S is defined by the limits: 

 

0 ≤ 𝑢 ≤ 𝑅,  0 ≤ 𝑣 ≤ 2𝜋 

 

 

The surface integral over S is then: 

 

𝐴 =
1

𝑅
√ℎ2 + 𝑅2 ∫∫𝑢

𝑆

𝑑𝑢𝑑𝑣 =
1

𝑅
√ℎ2 + 𝑅2 ∫ ∫ 𝑢

𝑅

0

2𝜋

0

𝑑𝑢𝑑𝑣 

 

 

This is quite a simple double integral to do. First, let’s integrate with respect to u: 

 

𝐴 =
1

𝑅
√ℎ2 + 𝑅2 ∫ ∫ 𝑢

𝑅

0

2𝜋

0

𝑑𝑢𝑑𝑣 =
1

𝑅
√ℎ2 + 𝑅2 ∫ (

𝑢2

2
)|

0

𝑅2𝜋

0

𝑑𝑣 

=
1

𝑅
√ℎ2 + 𝑅2 ∫

𝑅2

2

2𝜋

0

𝑑𝑣 

 

 

Then, pulling out this R2/2, cancelling out one of the R’s and integrating over v, 

we get: 

 

𝐴 =
1

𝑅
√ℎ2 + 𝑅2 ∫

𝑅2

2

2𝜋

0

𝑑𝑣 =
𝑅

2
√ℎ2 + 𝑅2 ∫ 𝑑

2𝜋

0

𝑣 

=
𝑅

2
√ℎ2 + 𝑅2 ⋅ 𝑣|0

2𝜋 =
𝑅

2
√ℎ2 + 𝑅2 ⋅ 2𝜋 
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So, the full surface area of the cone is: 

 

𝐴 = 𝜋𝑅√ℎ2 + 𝑅2 

 

 

Note that sometimes you’ll see the surface area of a cone written as: 

 

𝐴 = 𝜋𝑅 (𝑅 + √ℎ2 + 𝑅2) 

 

 

The difference here is that our formula doesn’t account for the area of the 

“bottom circle”, πR2. If you want the total area of the full cone, you have to add to 

our formula this factor of πR2: 

 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝜋𝑅2 + 𝜋𝑅√ℎ2 + 𝑅2 = 𝜋𝑅 (𝑅 + √ℎ2 + 𝑅2) 

 

 

 

 

Closed Curves & Closed Surfaces 

 

Some particularly important special cases of curves are closed curves. Simply 

put, these are curves where the start and end points of the curve can be 

identified as the same point (this then generally makes some sort of closed 

curve). 

 

Earlier, we used the spiral-like curve as an example; this is an “open” curve, but a 

circle would be an example of a closed curve: 
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Now, the important thing about closed curves is that a closed curve always 

encloses some sort of area or a surface with the boundary of that surface being 

the curve itself. 

 

This is particularly important for Stokes’ theorem later on, since it relates an 

integral over a surface to an integral over the boundary of that surface, which of 

course, has to be a closed curve. 

 

Similarly, we can think of a closed surface as being a surface that encloses some 

kind of volume. An example of this would be a sphere. In fact, also the cone we 

looked at earlier is a closed surface if the bottom circle is also taken into account. 

 

We can also think of a closed surface as the boundary to the volume that it is 

enclosing. This is important when we get to the divergence theorem. 
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Now, here’s some notation I will be using in the later lessons (though we will 

come back to these in bit more detail later on): 

 

 Surfaces will be denoted by S and their boundaries (the closed curve 

enclosing that surface) by ∂S. This is a standard piece of notation used in 

many textbooks. 

 Volumes will be denoted by V and their boundaries (the closed surface 

enclosing that volume) by ∂V. 

 Integrals over closed curves and surfaces will be denoted by an 

integral symbol with a circle. So, the integral over some closed curve 

would be denoted by ∮ (instead of the usual ∫-symbol) and the integral 

over a closed surface would be ∯ (instead of ∬). 

 

 

 

Lesson Summary 

 

Here are the key points you should take away from this lesson: 

 

 A curve in 3D space can be described parametrically by a single curve 

parameter (usually denoted t). 

 Similarly, a surface in 3D space can be described parametrically by two 

surface parameters (usually denoted u and v). 

 For a parametric curve, we can calculate its tangent vector at each 

point along the curve as well as the arc length of the curve from the 

magnitude of this tangent vector. 

 For a parametric surface, we can calculate its normal vector at each 

point on the surface, as well as the surface area from the magnitude 

of this normal vector. 

 Parametric curves and surfaces can be both open and closed. A closed 

curve is the boundary of some surface it encloses, while a closed surface 

is the boundary of some volume it encloses. 


