Polygons and Geometrical Constructions ### **Angle Properties of Triangles** - 1. In the triangle, $\angle a$, $\angle b$ and $\angle c$ are interior angles while $\angle d$ is an exterior angle. - 2. The sum of interior angles of a triangle is 180°, i.e. $\angle a + \angle b + \angle c = 180^{\circ} (\angle \text{ sum of } \triangle)$ 3. If one side of a triangle is produced or extended, then the exterior angle formed is equal to the sum of its interior opposite angles, i.e. $\angle d = \angle a + \angle b$ (ext. \angle of \triangle) #### Classification of Triangles | Name | Definition | Figure | Remarks | |--------------------------|--|-------------|---| | Equilateral
triangle | A triangle with 3 equal sides | \triangle | All angles are equal to 60° . (\angle s of equilateral \triangle) | | Isosceles
triangle | A triangle with at least 2 equal sides | \bigwedge | The base angles of an isosceles triangle are equal. (base \angle s of isos. \triangle) | | Scalene
triangle | A triangle with no equal sides | | All the angles in a scalene triangle are different. | | Right-angled
triangle | A triangle with 1 right angle | | There are many kinds of right-angled triangle which are scalene but there is only 1 right-angled triangle that is isosceles with angles 45°, 45° and 90°. | | Obtuse-angled triangle | A triangle with 1 obtuse angle | 6 | There are many kinds of obtuse-angled triangles which are either isosceles or scalene | | Acute-angled triangle | A triangle with all 3 acute angles | | There are many kinds of acute-angled triangles which are either isosceles or scalene | ## Angle Properties of Quadrilaterals A quadrilateral is a closed 4-sided plane figure. Sum of interior angles of a quadrilateral is 360°, i.e. $\angle a + \angle b + \angle c + \angle d = 360^{\circ}$ # Geometrical Properties of Special Quadrilaterals | etrical Propert | Sides | Angles | Diagonal | Family of Quadrilaterals | |--------------------------------|--|---|---|--------------------------| | Quadrilateral | | 100 | | Trapezium | | Trapezium Pa | 1 pair of parallel sides. | $\angle a + \angle b = 180^{\circ}$
(int. \angle s) | | | | b | | | | Parallelogram | | arallelogram | 1. 2 pairs of parallel sides. | 1. $\angle a + \angle b = 180^{\circ}$
(int. $\angle s$) | other at E , | Paranciogram | | A E C | 2. Opposite sides are equal. | 2. Opposite angles are equal, i.e. ∠a = ∠c (opp. ∠s of //gram) | i.e. $AE = EC$
and $BE = ED$ | Kite | | ite A | 2 pairs of equal adjacent sides Both ΔABD | $\angle ABD = \angle ADB$
and
$\angle BDC = \angle DBC$. | 1. Diagonals AC
and BD cut each
other at right
angles at E | Kitc | | $B \leftarrow E \rightarrow D$ | and $\triangle BCD$ are isosceles. | | 2. The longer diagonal AC bisects the shorter diagonal BD | | | Rhombus | 1. 2 pairs of parallel sides 2. All four sides are equal in length. | its one | each other at right angle at E, i.e. $AE = EC$ $BE = ED$. 2. Diagonals bise the interior angles, i.e. | et Parallelog Or Kite | |--------------------|--|---|--|---------------------------------------| | Rectangle A E C | 2. Opposite sides are equal. | The four corner angles at the vertices are right angles, i.e. $\angle ABC = \angle BCD = 90^{\circ}$ and $\angle BAD = \angle ADC = 90^{\circ}$. | ∠ACB = ∠ACE 1. Diagonals AC and BD are equal in length. 2. Diagonals AC and BD bisect each other at E, i.e. AE = EC and BE = ED. | Parallelogra | | A E D | parallel sides. ang ver ang are equal in length. ang | gles at the tices are right gles, i.e. $BC = \angle BCD$ 20° and $AD = \angle ADC$ °. | Diagonals AC and BD are equal in length. Diagonals AC and BD bisect each other at right angles at E, i.e. AE = EC and BE = ED. Diagonals bisect the interior angles, e. ∠ACB = | Parallelogram
or Rectangle
Kite | #### **Polygons** 8. A polygon is a closed plane figure with three or more sides. A polygon with all sides equal and all angles equal is known as a regular polygon. ### Angle Properties of Polygons - In a polygon, the sum of an interior angle and its corresponding exterior angle is 180° , i.e. $\angle x + \angle y = 180^{\circ}$. - The sum of exterior angles of an *n*-sided polygon is 360°. In the case of a *n*-sided regular polygon, each exterior angle, $\angle x = \frac{360^{\circ}}{n}$. - 11. The sum of interior angles of an *n*-sided polygon is $(n-2) \times 180^{\circ}$ or $(2n-4) \times 90^{\circ}$. In the case of a *n*-sided regular polygon, each interior angle, $\angle y = \frac{(n-2) \times 180^{\circ}}{n}$ or $\frac{(2n-4) \times 90^{\circ}}{n}$. - 12. Some of the common polygons and their sum of interior angles are shown in the table below. | No. of sides (n) | Name of Polygon | Sum of interior angles $= (n-2) \times 180^{\circ}$ | |------------------|-----------------|---| | 3 | Triangle | $(3-2) \times 180^{\circ} = 180^{\circ}$ | | 4 | Quadrilateral | $(4-2) \times 180^\circ = 360^\circ$ | | 5 | Pentagon | $(5-2) \times 180^\circ = 540^\circ$ | | 6 | Hexagon | $(6-2) \times 180^{\circ} = 720^{\circ}$ | | 7 | Heptagon | $(7-2) \times 180^\circ = 900^\circ$ | | 8 | Octagon | $(8-2) \times 180^{\circ} = 1080^{\circ}$ | | 9 | Nonagon | $(9-2) \times 180^{\circ} = 1260^{\circ}$ | | 10 | Decagon | $(10 - 2) \times 180^{\circ} = 1440^{\circ}$ |