### Polygons and Geometrical Constructions



### **Angle Properties of Triangles**

- 1. In the triangle,  $\angle a$ ,  $\angle b$  and  $\angle c$  are interior angles while  $\angle d$  is an exterior angle.
- 2. The sum of interior angles of a triangle is 180°, i.e.  $\angle a + \angle b + \angle c = 180^{\circ} (\angle \text{ sum of } \triangle)$



3. If one side of a triangle is produced or extended, then the exterior angle formed is equal to the sum of its interior opposite angles,

i.e.  $\angle d = \angle a + \angle b$  (ext.  $\angle$  of  $\triangle$ )

#### Classification of Triangles

| Name                     | Definition                             | Figure      | Remarks                                                                                                                                                   |
|--------------------------|----------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equilateral<br>triangle  | A triangle with 3 equal sides          | $\triangle$ | All angles are equal to $60^{\circ}$ . ( $\angle$ s of equilateral $\triangle$ )                                                                          |
| Isosceles<br>triangle    | A triangle with at least 2 equal sides | $\bigwedge$ | The base angles of an isosceles triangle are equal. (base $\angle$ s of isos. $\triangle$ )                                                               |
| Scalene<br>triangle      | A triangle with no equal sides         |             | All the angles in a scalene triangle are different.                                                                                                       |
| Right-angled<br>triangle | A triangle with 1 right angle          |             | There are many kinds of right-angled triangle which are scalene but there is only 1 right-angled triangle that is isosceles with angles 45°, 45° and 90°. |
| Obtuse-angled triangle   | A triangle with 1 obtuse angle         | 6           | There are many kinds of obtuse-angled triangles which are either isosceles or scalene                                                                     |
| Acute-angled triangle    | A triangle with all 3 acute angles     |             | There are many kinds of acute-angled triangles which are either isosceles or scalene                                                                      |

## Angle Properties of Quadrilaterals

A quadrilateral is a closed 4-sided plane figure.

Sum of interior angles of a quadrilateral is 360°,

i.e.  $\angle a + \angle b + \angle c + \angle d = 360^{\circ}$ 



# Geometrical Properties of Special Quadrilaterals

| etrical Propert                | Sides                                                                  | Angles                                                            | Diagonal                                                            | Family of Quadrilaterals |
|--------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| Quadrilateral                  |                                                                        | 100                                                               |                                                                     | Trapezium                |
| Trapezium  Pa                  | 1 pair of parallel sides.                                              | $\angle a + \angle b = 180^{\circ}$<br>(int. $\angle$ s)          |                                                                     |                          |
| b                              |                                                                        |                                                                   |                                                                     | Parallelogram            |
| arallelogram                   | 1. 2 pairs of parallel sides.                                          | 1. $\angle a + \angle b = 180^{\circ}$<br>(int. $\angle s$ )      | other at $E$ ,                                                      | Paranciogram             |
| A E C                          | 2. Opposite sides are equal.                                           | 2. Opposite angles are equal, i.e.  ∠a = ∠c  (opp.  ∠s of //gram) | i.e. $AE = EC$<br>and $BE = ED$                                     | Kite                     |
| ite A                          | <ol> <li>2 pairs of equal adjacent sides</li> <li>Both ΔABD</li> </ol> | $\angle ABD = \angle ADB$<br>and<br>$\angle BDC = \angle DBC$ .   | 1. Diagonals AC<br>and BD cut each<br>other at right<br>angles at E | Kitc                     |
| $B \leftarrow E \rightarrow D$ | and $\triangle BCD$ are isosceles.                                     |                                                                   | 2. The longer diagonal AC bisects the shorter diagonal BD           |                          |

| Rhombus            | 1. 2 pairs of parallel sides  2. All four sides are equal in length. | its one                                                                                                                                           | each other at right angle at E, i.e. $AE = EC$ $BE = ED$ .  2. Diagonals bise the interior angles, i.e.                                                                                                              | et Parallelog Or Kite                 |
|--------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Rectangle  A  E  C | 2. Opposite sides are equal.                                         | The four corner angles at the vertices are right angles, i.e. $\angle ABC = \angle BCD = 90^{\circ}$ and $\angle BAD = \angle ADC = 90^{\circ}$ . | <ul> <li>∠ACB = ∠ACE</li> <li>1. Diagonals AC and BD are equal in length.</li> <li>2. Diagonals AC and BD bisect each other at E, i.e. AE = EC and BE = ED.</li> </ul>                                               | Parallelogra                          |
| A $E$ $D$          | parallel sides. ang ver ang are equal in length. ang                 | gles at the tices are right gles, i.e. $BC = \angle BCD$ 20° and $AD = \angle ADC$ °.                                                             | <ol> <li>Diagonals AC and BD are equal in length.</li> <li>Diagonals AC and BD bisect each other at right angles at E, i.e. AE = EC and BE = ED.</li> <li>Diagonals bisect the interior angles, e. ∠ACB =</li> </ol> | Parallelogram<br>or Rectangle<br>Kite |

#### **Polygons**

8. A polygon is a closed plane figure with three or more sides. A polygon with all sides equal and all angles equal is known as a regular polygon.

### Angle Properties of Polygons



- In a polygon, the sum of an interior angle and its corresponding exterior angle is  $180^{\circ}$ , i.e.  $\angle x + \angle y = 180^{\circ}$ .
- The sum of exterior angles of an *n*-sided polygon is 360°.

  In the case of a *n*-sided regular polygon, each exterior angle,  $\angle x = \frac{360^{\circ}}{n}$ .
- 11. The sum of interior angles of an *n*-sided polygon is  $(n-2) \times 180^{\circ}$  or  $(2n-4) \times 90^{\circ}$ . In the case of a *n*-sided regular polygon, each interior angle,  $\angle y = \frac{(n-2) \times 180^{\circ}}{n}$  or  $\frac{(2n-4) \times 90^{\circ}}{n}$ .
- 12. Some of the common polygons and their sum of interior angles are shown in the table below.

| No. of sides (n) | Name of Polygon | Sum of interior angles $= (n-2) \times 180^{\circ}$ |
|------------------|-----------------|-----------------------------------------------------|
| 3                | Triangle        | $(3-2) \times 180^{\circ} = 180^{\circ}$            |
| 4                | Quadrilateral   | $(4-2) \times 180^\circ = 360^\circ$                |
| 5                | Pentagon        | $(5-2) \times 180^\circ = 540^\circ$                |
| 6                | Hexagon         | $(6-2) \times 180^{\circ} = 720^{\circ}$            |
| 7                | Heptagon        | $(7-2) \times 180^\circ = 900^\circ$                |
| 8                | Octagon         | $(8-2) \times 180^{\circ} = 1080^{\circ}$           |
| 9                | Nonagon         | $(9-2) \times 180^{\circ} = 1260^{\circ}$           |
| 10               | Decagon         | $(10 - 2) \times 180^{\circ} = 1440^{\circ}$        |