Amplitude Problems

Basic Concept Problems (non-USCG exams)

AMP B1. Using the Amplitude Table in Bowditch, you have determined that the calculated amplitude of the sun is 10 degrees. It is August $15^{\text {th }}$ and you are in the northern hemisphere. What is the calculated bearing of sunrise and sunset?

Answer: Sunrise - $\mathbf{0 8 0}{ }^{\circ}$ T, Sunset $-\mathbf{2 8 0}{ }^{\circ}$ T.
AMP B2. Using the Amplitude Table in Bowditch, you have determined that the calculated amplitude of the sun is 3 degrees. It is October $23^{\text {rd }}$ and you are in the northern hemisphere. What is the calculated bearing of sunrise and sunset?

Answer: Sunrise - 093° T, Sunset 267° T.
AMP B3. Using the Amplitude Table in Bowditch, you have determined that the calculated amplitude of the sun is 20 degrees. It is August $15^{\text {th }}$ and you are in the southern hemisphere. What is the calculated bearing of sunrise and sunset?

Answer: Sunrise -070° T, Sunset -290° T.
AMP B4. Your latitude is 10 N . The declination of the sun is 12 degrees. What is the amplitude of the sun?

Answer: 12.2 degrees.

Amplitudes of the Sun (Celestial Horizon)

AMP B5. On 10 August your vessel's 0426 zone time DR position is latitude $52^{\circ} 07^{\prime} \mathrm{N}$, longitude $142^{\circ} 16^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The Sun's lower limb is about 20 minutes of arc above the visible horizon and bears 074.5° per standard compass. Variation in the area is $12^{\circ} \mathrm{W}$. The chronometer reads 07 h 24 m 19 s and is $2 \mathrm{~m} \mathrm{34s}$ fast. Which of the following is the deviation of the standard compass?
a) 0.0°
b) $1.3^{\circ} \mathrm{W}$
c) $1.3^{\circ} \mathrm{E}-$ correct
d) $2.3^{\circ} \mathrm{W}$

AMP B6. On 10 February in DR position latitude $25^{\circ} 32.0^{\prime} \mathrm{N}$, longitude $135^{\circ} 15.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $109^{\circ} \mathrm{psc}$. The chronometer reads $09 \mathrm{~h} 43 \mathrm{~m} \mathrm{25s}$ and is 3 m 20 s fast. Variation in the area is $4.5^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?
a) $1.6^{\circ} \mathrm{E}-$ correct
b) $2.9^{\circ} \mathrm{W}$
c) $10.5^{\circ} \mathrm{E}$
d) $30.5^{\circ} \mathrm{W}$

AMP B7. On 11 January, your vessel's 0655 zone time DR position is latitude $24^{\circ} 30^{\prime} \mathrm{N}$, longitude $122^{\circ} 02^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 101° per standard compass. Variation in the area is $11.6^{\circ} \mathrm{E}$. The chronometer reads 02 h 52 m 48 s and is $2 \mathrm{~m} \mathrm{12s}$ slow. What is the deviation of the standard compass?
a) $1.4^{\circ} \mathrm{E}-$ correct
b) $1.4^{\circ} \mathrm{W}$
c) $4.6^{\circ} \mathrm{E}$
d) $4.6^{\circ} \mathrm{W}$

AMP B8. On 17 April your vessel's position is latitude $21^{\circ} 00^{\prime} \mathrm{S}$, longitude $78^{\circ} 30^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 082.7° per standard magnetic compass. Variation in the area is $2.0^{\circ} \mathrm{W}$. The chronometer reads 10 h 59 m 24 s and is 01 m 24 s fast. What is the deviation on the compass?
a) $2.0^{\circ} \mathrm{W}$ - correct
b) $3.0^{\circ} \mathrm{W}$
c) $2.5^{\circ} \mathrm{E}$
d) $3.0^{\circ} \mathrm{E}$

Amplitudes of the Sun (Visible Horizon)

AMP B9. On 10 June you vessel's 0519 zone time DR position is latitude $27^{\circ} 07.0^{\prime} \mathrm{N}$, longitude $92^{\circ} 10.0^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 063.6° per standard magnetic compass. The variation in the area is $4.8^{\circ} \mathrm{E}$. The chronometer reads 11 h 17 m 32 s and is 1 m 18 s slow. What is the deviation of the compass?
a) $5.6^{\circ} \mathrm{E}$
b) $4.8^{\circ} \mathrm{E}$
c) $4.2^{\circ} \mathrm{W}$
d) $4.8^{\circ} \mathrm{W}$ - correct

AMP B10. On 16 April in DR position latitude $28^{\circ} 07.0^{\prime} \mathrm{N}$, longitude $81^{\circ} 47.0^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $073.5^{\circ} \mathrm{psc}$. The chronometer reads $10 \mathrm{~h} 53 \mathrm{~m} \mathrm{41s}$ and is $2 \mathrm{~m} \mathrm{23s}$ slow. Variation in the area is $11^{\circ} \mathrm{E}$. What is the deviation of the magnetic compass?
a) $4.5^{\circ} \mathrm{E}$
b) $4.9^{\circ} \mathrm{W}$
c) $6.1^{\circ} \mathrm{E}$
d) $6.5^{\circ} \mathrm{W}$ - correct

AMP B11. On 5 September in DR position latitude $23^{\circ} 17.0^{\prime} \mathrm{S}$, longitude $154^{\circ} 35.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears 275° per standard magnetic compass. The chronometer reads 7 h 49 m 26 s and is 1 m 52 s fast. Variation in the area is $3^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?
a) $2.1^{\circ} \mathrm{E}$
b) $2.4^{\circ} \mathrm{W}$
c) $5.1^{\circ} \mathrm{E}$ - correct
d) $5.4^{\circ} \mathrm{W}$

AMP B12. On 20 June your vessel's 1955 ZT DR position is latitude $52^{\circ} 38.9^{\prime} \mathrm{N}$, longitude 3° 42.7' E, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 311° per gyrocompass. Variation in the area is $6^{\circ} \mathrm{W}$. At the time of the observation, the helmsman noted that she was heading 352° per gyrocompass and 358° per steering compass. What is the gyro error and deviation for that heading?
a) $1.3^{\circ} \mathrm{W}$ gyro error, $1.3^{\circ} \mathrm{E}$ deviation
b) 0.0° gyro error, 0.0° deviation
c) $1.3^{\circ} \mathrm{W}$ gyro error, $1.3^{\circ} \mathrm{W}$ deviation
d) $1.3^{\circ} \mathrm{E}$ gyro error, $1.3^{\circ} \mathrm{E}$ deviation - correct

Amplitudes of the Moon

AMP B13. At 1502 ZT on 4 August, in DR position latitude $11^{\circ} 21.6 \mathrm{~S}$, longitude $088^{\circ} 14.3^{\prime} \mathrm{E}$, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon and bears $289^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{W}$. What is the deviation?
a) $1.1^{\circ} \mathrm{E}$
b) $1.1^{\circ} \mathrm{W}-$ correct
c) $1.9^{\circ} \mathrm{E}$
d) $1.9^{\circ} \mathrm{W}$

AMP B14. At 1318 ZT on 10 September, in DR position latitude $24^{\circ} 05.8^{\prime} \mathrm{N}$, longitude 058° 08.3^{\prime} E, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon and bears 254° psc. Variation is $2^{\circ} \mathrm{W}$. What is the deviation?
a) $8.0^{\circ} \mathrm{W}$
b) $8.0^{\circ} \mathrm{E}$
c) $4.0^{\circ} \mathrm{W}$ - correct
d) $4.0^{\circ} \mathrm{E}$

AMP B15. At 1337 ZT on July 17, in DR position latitude $30^{\circ} 56.8^{\prime}$ S, longitude $039^{\circ} 36.5^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon bearing $263^{\circ} \mathrm{psc}$. The variation is $20^{\circ} \mathrm{W}$. What is the deviation?
a) $2.6^{\circ} \mathrm{E}$
b) $2.6^{\circ} \mathrm{W}$
c) $3.6^{\circ} \mathrm{E}$ - correct
d) $3.6^{\circ} \mathrm{W}$

AMP B16. At 1542 ZT on 23 October, in DR position latitude $37^{\circ} 28.5^{\prime} \mathrm{N}$, longitude $156^{\circ} 17.3^{\prime}$ E, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $282.5^{\circ} \mathrm{psc}$. The variation is 0.0°. What is the deviation?
a) $2.2^{\circ} \mathrm{E}-$ correct
b) $2.2^{\circ} \mathrm{W}$
c) $1.2^{\circ} \mathrm{E}$
d) $1.2^{\circ} \mathrm{W}$

AMP B17. At 1523 ZT on 14 June, in DR position latitude $31^{\circ} 58^{\prime} \mathrm{S}$, longitude $48^{\circ} 42^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $118^{\circ} \mathrm{psc}$. The variation is $10^{\circ} \mathrm{W}$. What is the deviation?
a) $2.5^{\circ} \mathrm{W}$
b) $2.1^{\circ} \mathrm{W}$ - correct
c) $1.7^{\circ} \mathrm{W}$
d) $1.7^{\circ} \mathrm{E}$

Amplitudes of Planets

AMP B18. At 2048 ZT on 13 October, you are in DR position latitude $44^{\circ} 02.8^{\prime} \mathrm{S}$, longitude $146^{\circ} 58.3^{\prime}$ E when you observe an amplitude of Venus. The planet is about one Sun's diameter above the visible horizon and bears $222.2^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{E}$. What is the deviation?
a) 0.0°
b) $1.1^{\circ} \mathrm{E}$
c) $1.0^{\circ} \mathrm{W}-$ correct
d) $1.5^{\circ} \mathrm{W}$

AMP B19. At 2232 ZT on 14 July you are in DR position latitude $33^{\circ} 52 \mathrm{~S}$, longitude $150^{\circ} 03^{\prime}$ W when you observe an amplitude of Jupiter. The planet is about one Sun's diameter above the visible horizon and bears $268.5^{\circ} \mathrm{pgc}$. The variation is $15^{\circ} \mathrm{E}$. What is the gyro error?
a) $1.0^{\circ} \mathrm{E}-$ correct
b) $0.5^{\circ} \mathrm{E}$
c) 0.0°
d) $0.5^{\circ} \mathrm{W}$

AMP B20. At 2234 ZT on 14 July you are in DR position latitude $34^{\circ} 03^{\prime} \mathrm{N}$, longitude $150^{\circ} 16^{\prime}$ W, when you observe an amplitude of Saturn. The planet is about one Sun's diameter above the visible horizon and bears $272.1^{\circ} \mathrm{pgc}$. The variation is $14^{\circ} \mathrm{E}$. What is the gyro error?
a) $0.5^{\circ} \mathrm{W}$
b) $0.5^{\circ} \mathrm{E}$
c) $1.5^{\circ} \mathrm{W}$ - correct
d) $2.5^{\circ} \mathrm{E}$

AMP B21. At 2237 ZT on 14 July, you are in DR position latitude $33^{\circ} 57^{\prime} \mathrm{N}$, longitude $150^{\circ} 32^{\prime}$ W when you observe an amplitude of Saturn. The planet is about one Sun's diameter above the visible horizon and bears $258.6^{\circ} \mathrm{psc}$. The variation is $14^{\circ} \mathrm{E}$. What is the deviation?
a) $2.0^{\circ} \mathrm{W}$ - correct
b) $1.0^{\circ} \mathrm{W}$
c) 0.0°
d) $1.0^{\circ} \mathrm{E}$

