

Unit 29: An Introduction to Selected Homologous Series

HKDSE Syllabus					
a. Introduction to selected ho	a. Introduction to selected homologous series				
Students should learn	Students should be able to				
□ homologous series	□ give systematic names, general formulae, condensed formulae and structural				
	formulae for: alkanes, alkenes, haloalkanes, alcohols, aldehydes and ketones,				
	carboxylic acids, esters, unsubstituted amides and primary amines				
□ structural formulae	$\hfill\square$ draw the structures of the compounds based on their systematic names				
and systematic naming	$\hfill\square$ understand the effects of functional groups and the length of carbon chains on				
	physical properties of carbon compounds				
	\Box identify common trivial names of some carbon compounds (e.g. formaldehyde,				
	chloroform, acetone, isopropyl alcohol, acetic acid)				

A. Alkanes and Alkenes

 IUPAC name (suffix - ______)(name of functional group: ________, _____)

CH ₃ CH ₃ CHCH ₂ CH ₃	$CH_3 \\ I \\ CH_3CH - CH = CH_2$
CH CH	CH ₃
CH ₂ CH ₃ CH ₃ CHCH ₂ CH ₃	CH ₃ -C == CHCH ₂ CH ₃

1

Physical properties:

Boiling point (b.p.) and Melting point(m.p.)
 The b.p. of alkanes, alkenes and alkynes are almost the _______ with similar molecular ______.
 As they are polar / non-polar, there are only weak V.D.W.F. (_______ forces) between molecules. Therefore, their m.p. and b.p. are relatively low / high.

Structure	Remarks	b.p. (°C)	m.p. (°C)		
H ₃ C CH ₂ CH ₂ CH ₃		36	-136		
H_3C CH_2 CH_3 H_3C CH_3		28	-160		
$H_{3}C \xrightarrow{CH_{3}} CH_{3}$		10	-20		

Important remarks:

	Factors affecting the boiling point	Factors affecting the melting point
		1.
-	< <	2.
-	<	< <

2. Density

All liquid alkanes are <u>more / less</u> dense than water because the intermolecular forces in Alkanes :

Water : _____

3. Solubility

They are soluble in water / non-polar organic solvents.

True / False

- 1. The solubility of alkane in water also depends on the size of the alkane molecule.
- 2. Viscosity increases with relative molecular mass.
- 3. Straight-chain isomers are less viscous than branched-chain isomers.
 - 14. A portion of the structure of an addition polymer X is shown below:

Which of the following is the systematic name of the monomer of X based on the given structure ?

- A. 1,1-dichloro-2-methylethene
- B. 1,1-dichloropropene
- C. 1,2-dichloropropene

D. 3,3-dichloropropene

2013 DSE

)

)

)

(

B. Haloalkanes

IUPAC name:

H - C - C - C - H

e.g.

Physical properties:

 1. Boiling point (b.p.)
 chloromethane

 With similar molecular size., which has a higher b.p.?
 alkane
 or
 haloalkane

 As halogens are more electronegative than C, the C-halogen bond is polar / non-polar.
 There are _________ attractions between molecules.
 There are ___________ attractions between molecules.

How is the b.p. change as the no. o	f C atoms increases?	increase	or	decrease
As molecular	_ increases, strength of V	D.W.F. also	increas	es.

Class work :	Explain briefly the order of b.p. if the following compounds.					
	$CH_4 < CH_2 = CH_2 < CH_3CH_2F < CH_3CH_2I$					
CH ₄ :						
CH ₂ =CH ₂ :						
CH ₃ CH ₂ F:						
CH ₃ CH ₂ I:						

2. Solubility

A few lower haloalkanes are slightly soluble in water, most of them being insoluble because the

- _____ attractions are **NOT** as strong as the ______ bonds between water molecules.
- : Haloalkanes are more soluble in most of the ______ solvents.

C. Benzene

Physical properties :

- <u>Polar / non-polar</u>
- Colourless liquid with aroma
- <u>Less dense / denser</u> than water
- Good organic solvent
- Carcinogenic
- -

Ex.

What is the IUPAC name of the above compound?

- A 2-cyclohexylbutane
- B 3-cyclohexylbutane
- C 2-phenylbutane
- D 3-phenylbutane

Topic 8Unit 29 An introduction to Selected Homologous Series HKDSE

D. <u>Alkanols (Alcoh</u>	<u>ols)</u>						
IUPAC name : (suffix -	·)	(name of functio	nal group:)		
Monohydric alkanol: CH		ary alkanol	Secondary alka	nol	Tertiary alkanol		
		3 CH ₂ OH	CH ₃ CHCH ₃		$CH_3 - CH_3$ $CH_3 - C - OH$ CH_3		
					·		
Polyhydric alkar	Polyhydric alkanol: CH ₂ CH ₂ OH OH OH OH OH OH OH OH						
Physical properties : 1. Boiling point (b.p.) Lower members of alkanols are <u>liquid / gases</u> . They have <u>higher / lower</u> b.p. than alkanes with similar molecular size due to stronger intermolecular bonds. Hydrogen bonds between ethanol molecules:			Boiling point/°C 230- 190- 150- 110- 70- 30- 10- 0 20 40	*····*	alcohol walkane 100 120 140 160 Molecular mass		
2. Solubility							

The structure of a	lkanol makes it a good solvent because it can dissolve BOTH	
(e.g. water) and	compounds (e.g. oil).	

$CH_3CH_2 - OH$

The All	is non-polar while the	is polar .
	with water as they can form hydrogen bonds w	ith H_2O molecules.
Mi	liscible = soluble?	
\checkmark	Ethanol is miscible with water. (i.e. able to mix in	proportions)
\checkmark	Pentan-1-ol is immiscible with water. (i.e. they do not mix in ALL	proportions)
	It is only slightly in water.	
rue or	or False	
B.p	p. of butan-1-ol is higher than that of methylpropan-2-ol.	(

- Polyhydric alcohols have even higher b.p., viscosity and density than monohydric alcohols. 2. ()
- 3. As the carbon chain of alkanols gets longer, solubility in water increases rapidly.

(

)

)

E. Aldehydes and Ketones

Both series of compounds contain the functional group, the carbonyl group : They only differ in the **position** of the carbonyl group in the carbon chain.

Aldehydes

Ketones

The **carbonyl group** is attached to R groups (can be the same or different) : IUPAC name : (suffix - ____)(name of functional group: ____

True or False

1. Possession of carbonyl group makes aldehydes and ketones molecules polar. ()
2. Aldehydes and ketones can form hydrogen bonds between their own molecules.	()
3. Aldehydes and ketones can form hydrogen bonds with water molecules.	()

Physical properties :

1. **Boiling point** (b.p.)

Lower members of aldehydes and ketones are gases and liquids at room conditions.

With similar molecular size, b.p. of

Alkanes	☐ Aldehydes and ketones ☐ Alcohols

As the carbon chain gets longer, b.p. increases / decreases.

2. Solubility

Lower members of aldehydes and ketones are miscible with water in ALL proportions because they can form hydrogen bonds with H₂O molecules. As the carbon chain gets longer, solubility increases / decreases.

CH.

H,C

F. <u>Carboxylic acids</u>

Physical properties :

- 1. Boiling point (b.p.)
- (a) Since both carbonyl group and hydroxyl group can involve in the formation of hydrogen bonds, carboxylic acid molecules can form MORE _______ intermolecular hydrogen bonds.

- ... With similar molecular size, b.p. of Alkanes < Aldehydes and ketones < Alcohols Likewise, as the carbon chain gets longer, b.p. increases / decreases.
- 2. Solubility

Lower members (methanoic \rightarrow butanoic acid) are miscible with water in ALL proportions because they can form hydrogen bonds with H₂O molecules.

As the carbon chain gets longer, solubility increases / decreases.

G. Esters

They contain the ester functional	l group :				
Esterification (a preview) :					
Alkanoic acid +	Alkanol	<u> </u>	Ester	+	water
		<u> </u>			
		<u> </u>			
IUPAC name : (suffix	_)(name of function	nal group:)
0		O II			
$H - C - O - CH_2CH_3$	$CH_3 - O -$	$- \overset{\parallel}{\mathrm{C}} - \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}$	CH3	3COOCH2	CH_2CH_3
True or False					

1. Ester molecules are polar.) 2. Esters can form hydrogen bonds between their own molecules. 3. Esters can form hydrogen bonds with water molecules.

Physical properties :

1. **Boiling point** (b.p.)

Most ester are liquids at room temperature.

With similar M.S. , b.p. of	Alkanes	< Aldehydes and ketones	<	Alcohols	<	Carboxylic acids
Likewise, as the carbon cha	in gets lon	ger, b.p. <u>increases / decrease</u>	es.			0
Solubility					R′	

2. Solubility

Lower members are miscible with water in ALL proportions because they can form hydrogen bonds with water molecules.

As the carbon chain gets longer, b.p. increases / decreases.

	1 1 1 1	
Ex CH ₃ — CH — COO — C ₂ H ₅	5 What is the IUPAC name of the above compound?	
	A 3-methylhexanoic acid	
CH₃	B 4-methylhexanoic acid	
	C ethyl methylpropanoate	
	D methylpropyl ethanoate	
		i

7

H. <u>Amines (primary)</u>

Amines may be considered as organic derivatives of NH₃.

The functional group of primary amine is :

IUPAC name : (suffix -)(name of functional group:		
$CH_3 - N - H$	CH_3CH_2 — N — H	CH_3	
H	Н	CH ₄ CHCH ₂ NH ₂	

True or False

1. Primary amine molecules are polar.		()
2. Primary amine molecules are form hydrogen bonds between their own mo	olecules.	()
3. Primary amine molecules are form hydrogen bonds with water molecules.		()
Physical properties :	Hydrogen bonds between amine m	olecules	;
1. Boiling point (b.p.)			

Lower members are gases while others are **liquids** at room conditions. Compared to alcohols & carboxylic acids :

: E.N._{nitrogen} E.N._{oxygen}, <u>N-H bond / O-N bond</u> is less polar.

. Intermolecular hydrogen bonds are weaker in primary amines / alcohol & carboxylic acids.

... With similar molecular size, b.p. of

Alkanes < Esters, Aldehydes and ketones < Alcohols < Carboxylic acids

Likewise, as the carbon chain gets longer, b.p. increases / decreases.

2. Solubility

Lower members are miscible with water in ALL proportions because they can form hydrogen bonds with As the carbon chain gets longer, b.p. increases / decreases.

$$CH_3CH_2 \longrightarrow N \longrightarrow H$$

Ex Wh	nich of the follow	ving con	npounds is the <i>lea</i> .	st solub	le in water?			
А	CH ₃ CH ₂ Cl	В	CH ₃ CH ₂ OH	С	HCOOCH ₃	D	CH ₃ COOH	
Copyrig	ht © 2020 RS Educ	ation All	rights reserved.		www.dse.vide	20	Ron Lam	8

I. <u>Amides (unsubstituted)</u>

Amides are derived from carboxylic acids by dropping the -OH group and replacing it with a $-NH_2$ group. So the functional group is :

(Unsubstituted means the two H atoms are NOT replaced by any other atoms or group of atoms) IUPAC name : (suffix - ____)(name of functional group: _____)

True or False

1. Primary amide molecules are polar.	()
2. Primary amide molecules are form hydrogen bonds between their own molecules.	()
Primary amide molecules are form hydrogen bonds with water molecules.	()

Physical properties :

1. Boiling point (b.p.)

Except methanamide (a liquid), ALL amides are white solids at room temperature.

: Amides can form intermolecular hydrogen bonds **MORE** extensively.

... With similar molecular size, b.p. of

Alkanes < Esters, Aldehydes and ketones, Amine < Alcohols < Carboxylic acids	Alkanes	<	Esters, Aldehydes and ketones, Amine <	Alcohols	<	Carboxylic acids
--	---------	---	--	----------	---	------------------

Likewise, as the carbon chain gets longer, b.p. increases / decreases.

2. Solubility

Lower members are miscible with water in ALL proportions because they can form hydrogen bonds with As the carbon chain gets longer, b.p. <u>increases / decreases.</u>

Ex CH₃COCH₂COOH

What functional groups does the above compound contain?

- (1) Carbonyl group
- (2) Carboxyl group
- (3) Hydroxyl group
- A (1) and (2) only B (1) and (3) only
- C (2) and (3) only D (1), (2) and (3)

L. Summary

	General formula	Polar?	Forming H bonds Between its molecules	Forming H bonds with water molecules?
Alkanes				
Alkenes				
Haloalkanes				
Alkanols				
Aldehydes				
Ketones				
Carboxylic acids				
Esters				
Primary amines				
Unsubstituted amides				

