Unit 15 Molarity, $p H$, Strength

HKDSE Syllabus

Students should learn

e. Concentration of solutions
\square concentration of solutions in mol dm-3 (molarity)
b. Indicators and pH
\square acid-base indicators as exemplified by litmus, methyl orange and phenolphthalein
$\square \mathrm{pH}$ scale as a measure of acidity and alkalinity $\mathrm{pH}=-\log \left[H_{+}(a q)\right]$
\square use of universal indicator and an appropriate instrument to measure the pH of solutions
c. Strength of acids and alkalis
\square meaning of strong and weak acids as well as strong and weak alkalis
in terms of their extent of dissociation in aqueous solutions
\square methods to compare the strength of acids/alkalis

Students should be able to

\square convert the molar concentration of solutions to g dm-3
\square perform calculations related to the concentration of solution
\square state the colours produced by litmus, methyl orange and phenolphthalein in acidic solutions and alkaline solutions
\square describe how to test for acidity and alkalinity using suitable indicators
\square relate the pH scale to the acidity or alkalinity of substances
\square perform calculations related to the concentration of $\mathrm{H}_{+}(\mathrm{aq})$ and the pH value of a strong acid solution
\square suggest and demonstrate appropriate ways to determine pH values of substances
\square describe the dissociation of acids and alkalis
\square relate the strength of acids and alkalis to their extent of dissociation
\square describe acids and alkalis with the appropriate terms: strong and weak, concentrated and dilute
\square suggest and perform experiments to compare the strength of acids or alkalis

A. Concentration and Molarity

Concentration of Solutions

(a)

$$
\text { Concentration of solution }=\frac{\text { of solute }(\quad)}{\text { of solution }(\quad)}
$$

Unit of concentration $=$
In a $10 \mathrm{dm}^{3}$ solution, 58.5 g of sodium chloride can be found. Find the concentration in $\mathrm{g} \mathrm{dm}^{-3}$.

(b)

$$
\text { Molarity of solution }=\quad \text { of solute }(\quad)
$$

(concentration)

Unit of molarity $=$
Find the molarity (concentration) of the NaCl solution.
(R.A.M. of $\mathrm{Na}=23, \mathrm{Cl}=35.5$)

No of particles	Mole	Mass

Remarks: \qquad X \qquad $=$ \qquad
e.g. $25 \mathrm{~cm}^{3}$
0.75 moldm $^{-3}=$

Examples

1. A $25 \mathrm{~cm}^{3}$ sodium hydroxide solution contains 4 g of NaOH .
(R.A.M. of $\mathrm{H}=1, \mathrm{Na}=23, \mathrm{O}=16$)
(a) Calculate the concentration of the solution in $\mathrm{g} / \mathrm{dm}^{3}$.
(b) Calculate the molarity of the solution.
(c) Calculate the number of moles of Na^{+}ions in $10 \mathrm{~cm}^{3}$ of the solution.

Questions:

1. $500.0 \mathrm{~cm}^{3}$ of calcium nitrate solution contains 11.5 g of calcium nitrate. What is the molarity of the solution? (Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{Ca}=40.1$)
2. A solution of potassium hydroxide contains 11.2 g of potassium hydroxide in $250.0 \mathrm{~cm}^{3}$ of the solution. What is its molarity? (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~K}=39.1$)
3. 7.69 g of ethanedioic acid crystals $\left((\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ are dissolved in distilled water and made up to $250.0 \mathrm{~cm}^{3}$. What is the molarity of the ethanedioic acid solution? (RAM: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
4. A $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ zinc sulphate solution is prepared by dissolving 14.4 g of zinc sulphate-7-water crystals $\left(\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$ in distilled water. What is the volume of the solution formed? (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Zn}=65.4$)
5. 102 g of lead(II) nitrate were used to prepare a $0.616 \mathrm{~mol} \mathrm{dm}^{-3}$ solution. What was the volume of the solution obtained? (Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{~Pb}=207.2$)
6. What is the mass of solute present in $750.0 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution? (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
7. What is the mass of anhydrous sodium carbonate required to prepare $2000.0 \mathrm{~cm}^{3}$ of $0.108 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate solution? (Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \quad \mathrm{Na}=23.0$)
8. What is mass of ethanedioic acid crystals $\left((\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ required to prepare $250.0 \mathrm{~cm}^{3}$ of 0.180 mol dm^{-3} solution? (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
9. What mass of anhydrous sodium carbonate would be used to prepare $250 \mathrm{~cm}^{3}$ of 0.05 M sodium carbonate solution?
(R.A.M. of $\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$)
10. What volume of 0.05 M solution of ZnSO_{4} can be prepared from 115.0 g of zinc sulphate crystals $\left(\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$?
(R.A.M. of $\mathrm{Zn}=65.4, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)
11. 2.0 a of magnesium was added to $250 \mathrm{~cm}^{3}$ of 1 M HCl which is in excess.
(R.A.M. of $\mathrm{Mg}=24.3, \mathrm{Cl}=35.5, \mathrm{H}=1$)
(a) Calculate the concentration of magnesium chloride formed in $\mathbf{m o l ~ d m}{ }^{-3}$.
(b) Calculate the concentration of magnesium chloride formed in $\mathbf{g ~ d m}^{\mathbf{- 3}}$.
(c) The mass of hydrogen gas produced.
12. Which statement(s) is/are true concerning 1.5 M solution of CaCl_{2} ?
(1) 1.5 g of CaCl_{2} can be found in each dm^{3} of solution.
(2) 1.5 mol of CaCl_{2} molecules can be found in each dm^{3} of solution.
(3) Concentrations of Ca^{2+} ions and Cl^{-}ions are 1.5 M and 3.0 M respectively.
13. Which of the following contains the largest number of ions ?
(a) $20 \mathrm{~cm}^{3}$ of $0.6 \mathrm{M} \mathrm{NaOH}(\mathrm{s})$.
(b) $30 \mathrm{~cm}^{3}$ of $1.2 \mathrm{M} \mathrm{ZnCl}_{2}(\mathrm{I})$.
(c) $100 \mathrm{~cm}^{3}$ of $0.6 \mathrm{M} \mathrm{HCl}(\mathrm{g})$.
(d) $25 \mathrm{~cm}^{3}$ of $0.8 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})$.
14. 2.0 M sulphuric acid is used to neutralize $80.0 \mathrm{~cm}^{3}$ of 1.5 M potassium hydroxide solution in örder to" prepare potassium sulphate.
(a) Calculate the volume of 2.0 M sulphuric acid required for neutralization.
(b) Calculate the molarity of the potassium sulphate solution formed.
15. 2.0 g of sodium carbonate was added to $50.0 \mathrm{~cm}^{3}$ of 2.0 M hydrochloric acid.
(a) (i) Calculate the molarity of sodium chloride formed.
(R.A.M. of $\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1, \mathrm{Cl}=35.5$)
(ii) State an assumption in the experiment.
(b) (i) Calculate the mass of carbon dioxide gas produced.
(ii) Given that one mole of gas occupies $24 \mathrm{dm}^{3}$. Calculate the volume of CO_{2} gas.
(iii) Hence find the density, in $\mathrm{g} \mathrm{dm}^{-3}$, of CO_{2} gas.
(iv) State TWO factors affecting the density of CO_{2} gas.
16. 14.3 g of hydrated sodium carbonate are required to make one litre of 0.05 M solution. Calculate the number of molecule of water of crystallization in the hydrated salt.
(R.A.M. of $\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1, \mathrm{Cl} 35.5$)

HKCEE MC

The formula of a metal carbonate $\mathrm{X}_{2} \mathrm{CO}_{3} .100 \mathrm{~cm}^{3}$ of a solution containing 0.69 g of the carbonate requires $50 \mathrm{~cm}^{3}$ of a 0.20 M hydrochloric acid for complete reaction. What is the relative atomic mass of metal X ?
(R.A.M. of $\mathrm{C}=12, \mathrm{O}=16$)
A. 19.0
B. 23.0
C. 39.0
D. 78.0

2012 DSE

10. A sample of 1.02 g of potassium hydrogenphthalate $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}\right)$ is dissolved completely in distilled water, and then diluted to $250.0 \mathrm{~cm}^{3}$. What is the concentration of the solution obtained?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~K}=39.1$)
A. $\quad 0.004 \mathrm{M}$
B. $\quad 0.010 \mathrm{M}$
C. $\quad 0.020 \mathrm{M}$
D. $\quad 4.080 \mathrm{M}$
11. What is the theoretical volume of carbon dioxide that can be obtained, at room temperature and pressure, when 1.2 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ reacts with $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{HNO}_{3}$?
(Molar volume of gas at room temperature and pressure $=24 \mathrm{dm}^{3}$;
Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
A. $\quad 272 \mathrm{~cm}^{3}$
B. $\quad 544 \mathrm{~cm}^{3}$
C. $\quad 600 \mathrm{~cm}^{3}$
D. $\quad 1200 \mathrm{~cm}^{3}$

2104 DSE
6. $\quad 50.0 \mathrm{~cm}^{3}$ of $0.6 \mathrm{M} \mathrm{FeSO}_{4}(\mathrm{aq})$ is mixed with $150.0 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$. What is the concentration of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ions in the resulting mixture ?
A. $\quad 0.3 \mathrm{M}$
B. $\quad 0.4 \mathrm{M}$
C. $\quad 0.6 \mathrm{M}$
D. $\quad 0.8 \mathrm{M}$

2015 DSE
9. In an experiment to prepare calcium sulphate, excess dilute sulphuric acid is added to $10.0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ calcium nitrate solution. Which of the following is the theoretical mass of the calcium sulphate obtained?
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Ca}=40.1$)
A. $\quad 0.68 \mathrm{~g}$
B. $\quad 1.36 \mathrm{~g}$
C. $\quad 2.72 \mathrm{~g}$
D. $\quad 4.08 \mathrm{~g}$

B. pH value

pH Scale

What is pH ?

It is the - $\log _{10}$ of the concentration of H^{+}lons in $\mathrm{mol} \mathrm{dm}^{-3}()$:
\square

Classwork

1. Calculate the pH of the following aqueous solutions at $25^{\circ} \mathrm{C}$:
(i) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
(ii) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$
2. Calculate the hydroxonium ion concentration when $\mathrm{pH}=5.2$ at $25^{\circ} \mathrm{C}$.

True or false

1. As temperature increases, the degree of ionization of water increases.
2. The higher the pH , the higher the acidity of the solution.
3. A change of 1 pH unit $=10$ change in concentration of H^{+}ions.

Questions:

1. What is the concentration of hydrogen ions in a solution with a pH of 4.68 ?
A $\quad 2.09 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
B
$2.14 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.468 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 0.670 \mathrm{~mol} \mathrm{dm}^{-3}$
2. What is the concentration of hydrogen ions in a sample of lemon juice with a pH of 2.44 ?
A $3.63 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~B}$
B $\quad 3.87 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
C
$0.363 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 0.387 \mathrm{~mol} \mathrm{dm}^{-3}$
3. The pH of human blood is 7.40 . What is the concentration of hydrogen ions in human blood?
A $3.98 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~B}$
B $\quad 3.98 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
C
$0.869 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 1.15 \mathrm{~mol} \mathrm{dm}^{-3}$
4. The concentration of hydrogen ions in a bottle of apple juice is $3.22 \times 10-4 \mathrm{~mol} \mathrm{dm}-3$. What is the pH of the juice?
A 3.22
B 3.49
C 5.08
D 6.44
5. A $6.30 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid sample was prepared. The acid dissociated completely in water. What is the pH of the acid sample?
A 0.501
B 1.00
C 1.90
D 2.20
6. The pH of a sample of sulphuric acid is 1.04 . What is the concentration of the acid?
A $\quad 0.00852 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.0170 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.0456 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 0.0912 \mathrm{~mol} \mathrm{dm}^{-3}$

Class work

Calculate the resulting pH when $120 \mathrm{~cm}^{3} 1 \mathrm{M} \mathrm{HCl}$ is added to $100 \mathrm{~cm}^{3} 1 \mathrm{M} \mathrm{NaOH}$ at $25^{\circ} \mathrm{C}$.

True or false

1. As the concentration of H^{+}ions increases, the pH decreases.
2. pH value can never be negative.
3. A solution of pH 3 has an H^{+}concentration 100 times that of a solution of pH 5 .
4. A trout fishery owner added limestone to his loch to decrease the effects of acid rain. He managed to raise the pH of the water from 5 to 7 .

The concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions

A increased by a factor of 2 .
B increased by a factor of 100 .
C decreased by a factor of 2 .
D decreased by a factor of 100 .
8. The pH of solution X is 2 while that of solution Y is 6 . Which of the following statements about the concentration of hydrogen ions in the two solutions is correct?
A It is three times as great in solution X as that in solution Y .
B It is three times as great in solution Y as that in solution X .
C It is 10000 times in solution Y as than in solution X .
D It is 10000 times in solution X as than in solution Y .

> A, A,A,B,C,C,D,D

Acid－Base Indicators（酸鹼指示劑）

－Acid－base indicators change \qquad with different concentrations of H^{+}ion．
－The following table shows the colour of some common indicators in different pH ranges ：

	pH range where colour changes	pH scale														
		0	1	2	3	4	5	6	7			10	11	12	13	14
	3．1－4．4															
Litmus	5．0－8．0															
	8．3－10．0															

Measuring the pH value of a Solution

1. \qquad （通用指示劑）
－a mixture of several indicators
Two forms are available ：
（a）Universal indicator（
（b）Universal indicator paper（ ）
The resulting colour is compared with the pH \qquad ．
2. \qquad
－gives an accurate measure of the pH value
3. \qquad （數據收集儀）with pH

1．Which of the following reagents can be used to measure the pH of a solution？
A Litmus solution
B Universal indicator
C Phenolphthalein
D Methyl orange

2．Arrange the following substances in descending order of pH values．
（1）Milk
（2）Lemon juice
（3）Human blood
（4）Detergent solution

A $\quad(4)>(3)>(2)>(1) \quad$ B $\quad(3)>(1)>(4)>(2)$
C $\quad(4)>(3)>(1)>(2) \quad$ D $\quad(2)>(1)>(3)>(4)$

C. Strength of Acids and Alkalis

Strong and Weak Acids

Although both $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ have the same concentration, their pH values are 1 and 3 respectively.

Explain why $\mathrm{HCl}(a q)$ is more acidic than $\mathrm{CH}_{3} \mathrm{COOH}(a q)$.
When, acids dissolve in water, they \qquad to give \qquad ions. Different acids ionize to
\qquad extents.
$\therefore \mathrm{HCl}(\mathrm{aq})$ is a \qquad acid while $\mathrm{CH}_{3} \mathrm{COOH}$ is a \qquad acid.
A strong acid is an acid that almost ___ ionizes / dissociates in water.

A weak acid is an acid that only ionizes / dissociates in water.

Questions

Comment on the following statement :

A bottle of acid (pH 6.5) must contain a weak acid.

True or False

1. A strong acid is also a concentrated acid.
2. A concentrated acid is also a strong acid.
3. The strength of acids depends mainly on the degree of ionization in water to give H^{*} ions.
4. The concentration of acids depends on the amount of solute per unit volume.
5. The terms, strength and concentration (used to describe acids), have the same meaning.

Strong and weak acids

	Name of acid	Equation of ionization	Main type of particles present (besides $\mathrm{H}_{2} \mathrm{O}$ and OH)
Strong acids	Hydrochloric		
	Sulphuric		
	Nitric		
Weak acids	Hydrofluoric		
	Carbonic		
	Sulphurous		
	Ethanoic		

	1 M Weak acids	1 M strong Acids
Addition of	Bubble are evolved at a\qquad rate	Bubble are evolved at a\qquad rate
Addition of		
Test for		

*** The strong acid has a higher electrical conductivity because it has more \qquad
*** A strong/weak acid is also a strong/weak \qquad -
${ }^{* * *} \mathrm{pH}$ paper can also be used to distinguish them.

Challenging Ouestions

1. Magnesium ribbons are added to same volumes of 1 M HCl and 1 M CH 33 COOH respectively. Which of the following is/are correct?
(a) Both reaction rates are the same.
(b) Both require the same mass of magnesium for complete reaction.
(c) Both take the same amount of time for complete reaction (magnesium is in excess).
2. Which acid has a lower $\mathrm{pH}, 1 \mathrm{M}$ hydrochloric acid or 1 M sulphuric acid?

Strong and weak alkalis

	Name of acid	Equation of ionization	Main type of particles present (besides $\mathrm{H}_{2} \mathrm{O}$ and OH)
Strong alkalis	Sodium hydroxide		
	Potassium hydroxide		
	Calcium hydroxide		
Weak alkali			

MCQ

1. Which of the following solutions has the HIGHEST pH value ?
A. 1 M sulphuric acid
B. 1 M magnesium hydroxide solution
C. 1 M ammonia solution
D. 1 M potassium hydroxide solution
2. A sample of sulphuric acid and a sample of ethanoic acid both have a pH of 3 . It can be concluded that
A. they are equally strong.
B. they are of the same concentration.
C. the volume of the two samples are equal.
D. they contain the same concentration of hydrogen ions.
3. Which of the following is NOT found in a sulphurous acid solution ?
A. $\mathrm{SO}_{2}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})$
C. $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
4. The pH of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid is about 1 but that of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid is about 3 . This is because
A ethanoic acid is a covalent compound.
B ethanoic acid contains more hydrogen atoms per molecule.
C ethanoic acid does not dissociate completely in water.
D ethanoic acid is a strong acid.
5. Two flasks contain equal volumes of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid and $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Which of the following statements concerning them is correct?
A They give the same colour change when the same quantity of universal indicator is added.
B They contain equal concentration of hydrogen ions.
C They react at the same rate with magnesium.
D They neutralize the same number of moles of sodium hydroxide.
6. Comparing the same volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$, which of the following is INCORRECT?

$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$

A Lower pH
B Higher electrical conductivity
C Higher initial rate of reaction with magnesium
D Requires a greater number of moles of NaOH for neutralization
$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \underline{\mathrm{COOH}(\mathrm{aq})}$ higher pH lower electrical conductivity lower initial rate of reaction with magnesium requires a smaller number of moles of NaOH for neutralization
4. Which of the following statements concerning $25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid and $50 \mathrm{~cm}^{3}$ of 1 mol dm^{-3} ethanoic acid is INCORRECT?
A They require the same volume of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous ammonia for complete neutralization.
B They give the same colour change when the same quantity of universal indicator is added.
C They have different electrical conductivity.
D They react at different rates with zinc.
5. Why does magnesium react faster with $20 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid than with $20 \mathrm{~cm}^{3}$ of 1 mol dm^{-3} ethanoic acid?
A There are more mobile ions in $20 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
B The concentration of hydrochloric acid is higher.
C There are more hydrogen ions in $20 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
D There are more mobile electrons in $20 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
4. Which of the following statements concerning $\mathrm{CH}_{3} \mathrm{COOH}$ and HCl is correct?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ is a stronger acid than HCl .
B. The pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is lower than that of $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.
C. Both $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$ react with $\mathrm{NH}_{3}(\mathrm{aq})$, each giving a salt.
D. Both $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$ react with $\mathrm{Ag}(\mathrm{s})$, each giving a colourless gas.

2013 DSE

10. Consider the four solutions $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} listed below:

$$
\begin{array}{ll}
\mathbf{W}: & 0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}(\mathrm{aq}) \\
\mathbf{X}: & 0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
\mathbf{Y}: & 0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq}) \\
\mathbf{Z}: & 0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq})
\end{array}
$$

Which of the following represents the four solutions arranged in increasing order of pH ?
A. $\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$
B. $\quad \mathbf{W}, \mathbf{X}, \mathbf{Z}, \mathbf{Y}$
C. $\mathbf{X}, \mathbf{W}, \mathbf{Y}, \mathbf{Z}$
D. $\mathbf{X}, \mathbf{W}, \mathbf{Z}, \mathbf{Y}$

2014 DSE

13. Which of the following gases, after dissolved in $1 \mathrm{dm}^{3}$ of water, would give a solution with the highest pH ?
A. $\quad 0.002 \mathrm{~mol}$ of NO_{2}
B. $\quad 0.002 \mathrm{~mol}$ of SO_{2}
C. $\quad 0.002 \mathrm{~mol}$ of NH_{3}
D. $\quad 0.002 \mathrm{~mol}$ of HCl
14. A bottle of concentrated hydrochloric acid $\mathrm{HCl}(\mathrm{aq})$ is shown below:

2015 DSE

1. Which of the following statements is correct ?

According to the information on the label, calculate the concentration of the concentrated hydrochloric acid in moldm ${ }^{-3}$.
A. All aqueous solutions contain $\mathrm{H}^{+}(\mathrm{aq})$ ions.
B. The pH of all acid solutions is greater than zero.
C. All acidic compounds contain hydrogen as their constituent elements.
D. A 'corrosive' hazard warning label must be displayed on all reagent bottles containing acid solution.

