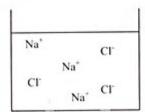
Unit 15 Molarity, pH, Strength PH值色度差別表 6.0 7.0 酸性・ 鹼性

HKDSE Syllabus
Students should learn
e. Concentration of solutions
□ concentration of solutions in mol dm-3 (molarity)
b. Indicators and pH
□ acid-base indicators as exemplified by litmus, methyl orange and phenolphthalein
\Box pH scale as a measure of acidity and alkalinity $pH = -log[H_+(aq)]$
□ use of universal indicator and an appropriate instrument to measure the pH of solutions
c. Strength of acids and alkalis
☐ meaning of strong and weak acids as well as strong and weak alkalis
in terms of their extent of dissociation in aqueous solutions
☐ methods to compare the strength of acids/alkalis
Students should be able to
□ convert the molar concentration of solutions to g dm-3
□ perform calculations related to the concentration of solution
□ state the colours produced by litmus, methyl orange and phenolphthalein in acidic solutions and alkaline solutions
☐ describe how to test for acidity and alkalinity using suitable indicators
☐ relate the pH scale to the acidity or alkalinity of substances
□ perform calculations related to the concentration of H+(aq) and the pH value of a strong acid solution
□ suggest and demonstrate appropriate ways to determine pH values of substances
☐ describe the dissociation of acids and alkalis
□ relate the strength of acids and alkalis to their extent of dissociation
\square describe acids and alkalis with the appropriate terms: strong and weak, concentrated and dilute
□ suggest and perform experiments to compare the strength of acids or alkalis

中性


A. Concentration and Molarity

Concentration of Solutions

(a)

Unit of concentration =

In a 10 dm³ solution, 58.5 g of sodium chloride can be found. Find the concentration in g dm⁻³.

(b)

Unit of molarity =

Find the molarity (concentration) of the NaCl solution.

(R.A.M. of Na = 23, CI = 35.5)

No of particles	Mole	Mass
	Molarity	
Remarks: e.g. 25cm ³ 0.75 moldn	X =	

Examples

A 25 cm³ sodium hydroxide solution contains 4 g of NaOH.

(R.A.M. of H = 1, Na = 23, O = 16)

- (a) Calculate the concentration of the solution in g/dm3.
- (b) Calculate the molarity of the solution.
- (c) Calculate the number of moles of Na⁺ ions in 10 cm³ of the solution.

Questions:

- 1. 500.0 cm^3 of calcium nitrate solution contains 11.5 g of calcium nitrate. What is the molarity of the solution? (Relative atomic masses: N = 14.0, O = 16.0, Ca = 40.1)
- 2. A solution of potassium hydroxide contains 11.2 g of potassium hydroxide in 250.0 cm 3 of the solution. What is its molarity? (Relative atomic masses: H = 1.0, O = 16.0, K = 39.1)
- 3. 7.69 g of ethanedioic acid crystals ((COOH)₂ $2H_2O$) are dissolved in distilled water and made up to 250.0 cm^3 . What is the molarity of the ethanedioic acid solution?(RAM: H = 1.0, C = 12.0, O = 16.0)
- 4. A 0.50 mol dm^{-3} zinc sulphate solution is prepared by dissolving 14.4 g of zinc sulphate-7-water crystals (ZnSO₄ 7H₂O) in distilled water. What is the volume of the solution formed? (Relative atomic masses: H = 1.0, O = 16.0, S = 32.1, Zn = 65.4)
- 5. 102 g of lead(II) nitrate were used to prepare a $0.616 \text{ mol dm}^{-3}$ solution. What was the volume of the solution obtained? (Relative atomic masses: N = 14.0, O = 16.0, Pb = 207.2)
- 6. What is the mass of solute present in 750.0 cm^3 of $0.400 \text{ mol dm}^{-3}$ sodium hydroxide solution? (Relative atomic masses: H = 1.0, O = 16.0, Na = 23.0)
- 7. What is the mass of anhydrous sodium carbonate required to prepare 2 000.0 cm 3 of 0.108 mol dm $^{-3}$ sodium carbonate solution? (Relative atomic masses: C = 12.0, O = 16.0, Na = 23.0)
- 8. What is mass of ethanedioic acid crystals ((COOH)₂ $2H_2O$) required to prepare 250.0 cm³ of 0.180 mol dm⁻³ solution? (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

2.	What mass of anhydrous sodium carbonate would be used to prepare	
	250 cm ³ of 0.05 M sodium carbonate solution?	

(R.A.M. of Na = 23, C = 12, O = 16)

2.0 g of magnesium was added to 250 cm³ of 1 M HCl which is in excess.

(R.A.M. of Mg = 24.3, CI = 35.5, H = 1)

(a) Calculate the concentration of magnesium chloride formed in mol dm⁻³.

- (b) Calculate the concentration of magnesium chloride formed in g dm⁻³.
- (c) The mass of hydrogen gas produced.
- Which statement(s) is/are true concerning 1.5 M solution of CaCl₂?
 - (1) 1.5 g of CaCl₂ can be found in each dm³ of solution. ()
 - (2) 1.5 mol of CaCl₂ molecules can be found in each dm³ of solution.
 - (3) Concentrations of Ca2+ ions and Cl ions are 1.5 M and 3.0 M respectively. ()
- 6. Which of the following contains the largest number of ions?
 - (a) 20 cm3 of 0.6 M NaOH(s).
 - (b) 30 cm3 of 1.2 M ZnCl2(I).
 - (c) 100 cm3 of 0.6 M HCl(g).
 - (d) 25 cm³ of 0.8 M Al₂(SO₄)₃(s).

- 7. 2.0 M sulphuric acid is used to neutralize 80.0 cm3 of 1.5 M potassium hydroxide solution in order to prepare potassium sulphate.
 - (a) Calculate the volume of 2.0 M sulphuric acid required for neutralization.

- (b) Calculate the molarity of the potassium sulphate solution formed.
- 2.0 g of sodium carbonate was added to 50.0 cm³ of 2.0 M hydrochloric acid.
 - (a) (i) Calculate the molarity of sodium chloride formed. (R.A.M. of Na = 23, C = 12, O = 16, H = 1, CI = 35.5)

- (ii) State an assumption in the experiment.
- (b) (i) Calculate the mass of carbon dioxide gas produced.
 - (ii) Given that one mole of gas occupies 24 dm³. Calculate the volume of CO₂ gas.
 - (iii) Hence find the density, in g dm⁻³, of CO₂ gas.
 - (iv) State TWO factors affecting the density of CO₂ gas.

14.3 g of hydrated sodium carbonate are required to make one litre of 0.05 M solution. Calculate the number of molecule of water of crystallization in the hydrated salt.
 (R.A.M. of Na = 23, C = 12, O = 16, H = 1, Cl 35.5)

HKCEE MC

The formula of a metal carbonate X_2CO_3 . 100 cm³ of a solution containing 0.69 g of the carbonate requires 50 cm³ of a 0.20 M hydrochloric acid for complete reaction. What is the relative atomic mass of metal X?

A. 19.0

B. 23.0

C. 39.0

D. 78.0

2012 DSE

10. A sample of 1.02 g of potassium hydrogenphthalate (C₈H₅O₄K) is dissolved completely in distilled water, and then diluted to 250.0 cm³. What is the concentration of the solution obtained?

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, K = 39.1)

A. 0.004 M

B. 0.010 M

C. 0.020 M

D. 4.080 M

25. What is the theoretical volume of carbon dioxide that can be obtained, at room temperature and pressure, when 1.2 g of Na₂CO₃(s) reacts with 50 cm³ of 1.0 M HNO₃?

(Molar volume of gas at room temperature and pressure = 24 dm^3 ; Relative atomic masses: H = 1.0, C = 12.0, N = 14.0, O = 16.0, Na = 23.0)

A. 272 cm^3

B. 544 cm^3

C. 600 cm^3

D. 1200 cm^3

2104 DSE

6. 50.0 cm³ of 0.6 M FeSO₄(aq) is mixed with 150.0 cm³ of 0.2 M Fe₂(SO₄)₃(aq). What is the concentration of SO₄²⁻(aq) ions in the resulting mixture?

A. 0.3 M

B. 0.4 M

C. 0.6 M

D. 0.8 M

2015 DSE

9. In an experiment to prepare calcium sulphate, excess dilute sulphuric acid is added to 10.0 cm³ of 1.0 mol dm⁻³ calcium nitrate solution. Which of the following is the theoretical mass of the calcium sulphate obtained?

(Relative atomic masses: O = 16.0, S = 32.1, Ca = 40.1)

A. 0.68 g

B. 1.36 g

C. 2.72 g

D. 4.08 g

B. pH value

	ı	oH Scale								
		What is pH ?								
		It is the -log 1	o of the	concentra	ation of H+ lon	s in mol dm	3():			
		Classwork								
		1. Calculate t			wing aqueou	s solutions a	at 25°C:			
		(i) 0.1 mg								
		(ii) 0.1 mo			•	turation in the more	-U - F 2	ot 25°C		
		2. Calculate t	he hyd	roxonium	ion concent	ration when	pri – 5.2	at 25 C.		
		True or false								
		1. As tempera						eases.	()
		2. The higher							()
		3. A change of	f1pHι	unit = 10 c	hange in con	centration of	H'ions.		()
	Qu	estions:								
1.	Wha	at is the conce	entratio	on of hyd	lrogen ions	in a solution	on with a	pH of 4.68?		
	A							$0.468 \text{ mol dm}^{-3}$	D	$0.670\;mol\;dm^{-3}$
2.	Wha	at is the conce	entratio	on of hyd	lrogen ions	in a sampl	e of lemo	on juice with a pH	of 2.44	?
	A	$3.63 \times 10^{-3} \mathrm{m}$								$0.387 \text{ mol dm}^{-3}$
3.	The	nH of human	blood	l is 7.40.	What is the	e concentra	tion of h	ydrogen ions in hu	man bl	ood?
		-						$0.869 \text{ mol dm}^{-3}$		1.15 mol dm ⁻³
		5.50 N 10 1	nor u n		3.30 H 1				2	THE HIET GIII
4	The	concentration	n of hy	udrogen i	ions in a bo	ottle of ann	le inice i	is 3.22 x 10 <u>–4</u> mol	dm_3	What is the pH of
٠.		juice?	i oi ii,	ydrogen	ions in a oc	ouic or app	ic juice	13 3.22 X 10 4 IIIOI	un J	what is the pir or
	A	3.22	В	3.49	C	5.08	D	6.44		
		3.22	D	2		2.00	D			
_	۸ (20 10-3	.1 1	-311		1		. The self floors	.4.1	1 . 4 . 1
Э.				-		mpie was	prepared	i. The acid dissoci	ated co	ompletely in water.
		at is the pH of		-		1.00	Ъ	2.20		
	A	0.501	В	1.00	С	1.90	D	2.20		
6.				_				entration of the acid		2
	A	0.00852 mol	dm ⁻³	В 0.0	0170 mol d	m^{-3} C	0.0456	$\operatorname{mol} \operatorname{dm}^{-3} \operatorname{D} 0.$.0912 r	nol dm ⁻³

Class work

Calculate the resulting **pH** when 120 cm³ 1M HCl is added to 100cm³ 1M NaOH at 25°C.

-			
True	or	ta	lse

1.	As the concentration of H ⁺ ions increases, the pH decreases.	()
2.	pH value can never be negative.	()
3.	A solution of pH 3 has an H ⁺ concentration 100 times that of a solution of pH 5.	()

7. A trout fishery owner added limestone to his loch to decrease the effects of acid rain. He managed to raise the pH of the water from 5 to 7.

The concentration of H⁺(aq) ions

- increased by a factor of 2. Α
- increased by a factor of 100. В
- C decreased by a factor of 2.
- D decreased by a factor of 100.
- 8. The pH of solution X is 2 while that of solution Y is 6. Which of the following statements about the concentration of hydrogen ions in the two solutions is correct?
 - It is three times as great in solution X as that in solution Y. Α
 - В It is three times as great in solution Y as that in solution X.
 - \mathbf{C} It is 10 000 times in solution Y as than in solution X.
 - D It is 10 000 times in solution X as than in solution Y.

A, A,A,B,C,C,D,D

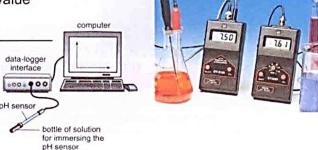
Acid-Base Indicators (酸鹼指示劑)

- Acid-base indicators change _____ with different concentrations of H⁺ ion.
- The following table shows the colour of some common indicators in different pH ranges:

	pH range where colour changes	pH range pH scale														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	3.1 - 4.4															
Litmus	5.0 - 8.0			4	H						ń					į.
	8.3 – 10.0															

Measuring the pH value of a Solution

- 1. _____(通用指示劑)
 - a mixture of several indicators Two forms are available:


 - (a) Universal indicator (
 - (b) Universal indicator paper (

The resulting colour is compared with the pH __

- gives an accurate measure of the pH value

3. _____(數據收集儀) with pH ____

- 1. Which of the following reagents can be used to measure the pH of a solution?
 - A Litmus solution
- В Universal indicator
- \mathbf{C} Phenolphthalein
- D Methyl orange
- 2. Arrange the following substances in descending order of pH values.
 - (1) Milk
- (2) Lemon juice (3) Human blood
- (4) Detergent solution

- (4) > (3) > (2) > (1)Α
- (3) > (1) > (4) > (2)
- (4) > (3) > (1) > (2) \mathbf{C}
- D (2) > (1) > (3) > (4)

C. Strength of Acids and Alkalis

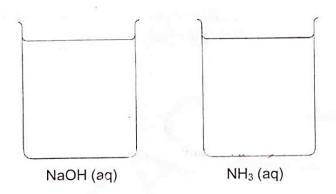
Strong and Weak Acids

Although both 0.1 M HCl(aq) and 0.1 M CH₃COOH(aq) have the same concentration, their pH values are 1 and 3 respectively.

∴ HCI(aq) is a acid while CH₃COOH is a acid. A strong acid is an acid that almost ionizes / dissociates in water. A weak acid is an acid that only ionizes / dissociates in water. Destions comment on the following statement: A bottle of acid (pH 6.5) must contain a weak acid. Frue or False 1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (When acids dissolve exten	in water, they	_ to give			nize to	
A strong acid is an acid that almost	CATCH	113.					
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A strong acid is an acid that almost							
A weak acid is an acid that only	∴ HCI(aq) is a	acid while CH ₃ C	COOH is a _	ac	id.		
rue or False A strong acid is also a concentrated acid. A concentrated acid is also a strong acid. The strength of acids depends mainly on the degree of ionization in water to give H* ions.	A strong acid is ar	- a sid that almost			izos / disso	ciatos in	wat
rue or False A strong acid is also a concentrated acid. A concentrated acid is also a strong acid. The strength of acids depends mainly on the degree of ionization in water to give H* ions.		n acid that almost		ior	ilzes / dissoc	ciales in	wat
A bottle of acid (pH 6.5) must contain a weak acid. True or False 1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions.							
irue or False 1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (
irue or False 1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions.	A weak acid is						
1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is	an acid that only					
A strong acid is also a concentrated acid. A concentrated acid is also a strong acid. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions	an acid that only	5.5) must co	ionizes	/ dissociate		
rue or False 1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. 4. The concentration of acids depends on the amount of solute per unit volume. (A weak acid is uestions	an acid that only	5.5) must co	ionizes	/ dissociate		
A strong acid is also a concentrated acid. A concentrated acid is also a strong acid. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions	an acid that only	.5) must co	ionizes	/ dissociate		
A strong acid is also a concentrated acid. A concentrated acid is also a strong acid. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions	an acid that only	.5) must co	ionizes	/ dissociate		
1. A strong acid is also a concentrated acid. 2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions	an acid that only	.5) must co	ionizes	/ dissociate		
2. A concentrated acid is also a strong acid. 3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions	an acid that only	.5) must co	ionizes	/ dissociate		
3. The strength of acids depends mainly on the degree of ionization in water to give H* ions. (A weak acid is nestions omment on the follow	an acid that only	.5) must co	ionizes	/ dissociate		
	A weak acid is sestions omment on the following acid.	an acid that onlywing statement :	i.5) must co	ionizes	/ dissociate		
The concentration of acids depends on the amount of solute per unit volume.	A weak acid is nestions formment on the following acid is also	an acid that only	5.5) must co	ionizes	/ dissociate		
	A weak acid is also 2. A concentrated acid	an acid that only wing statement: bottle of acid (pH 6) a concentrated acid. is also a strong acid.		ionizes	/ dissociate	s in wat	

Strong and weak acids

	Name of acid	Equation of ionization	Main type of particles present (besides H ₂ O and OH ⁻)
Strong	Hydrochloric		
acids	Sulphuric		
	Nitric		
Weak	Hydrofluoric		
acids	Carbonic		
	Sulphurous		
	Ethanoic		


	1 M Weak acids	1 M strong Acids
Addition of	Bubble are evolved at a	Bubble are evolved at a
Addition of	rate	rate
Test for		

e strong acid has a higher electrical conductivity because it has more strong/weak acid is also a strong/weak paper can also be used to distinguish them.		
Challenging Questions		
. Magnesium ribbons are added to same volumes of 1M HCl and 1M CH ₃ COOH re Which of the following is/are correct ?	spective	ly.
(a) Both reaction rates are the same.	()
(b) Both require the same mass of magnesium for complete reaction.	()
	,	
(c) Both take the same amount of time for complete reaction (magnesium is in excess).	()
	paper can also be used to distinguish them. Challenging Quertion Magnesium ribbons are added to same volumes of 1M HCl and 1M CH ₃ COOH rewhich of the following is/are correct? (a) Both reaction rates are the same.	paper can also be used to distinguish them. Challenging Overtion Magnesium ribbons are added to same volumes of 1M HCl and 1M CH ₃ COOH respective Which of the following is/are correct? (a) Both reaction rates are the same. (b) Both require the same mass of magnesium for complete reaction.

2. Which acid has a lower pH, 1M hydrochloric acid or 1M sulphuric acid?

Strong and weak alkalis

	Name of acid	Equation of ionization	Main type of particles present (besides H ₂ O and OH ⁻)
Strong	Sodium		
alkalis	hydroxide		
	Potassium		
	hydroxide		
	Calcium		
	hydroxide		
Weak			
alkali			

MCQ

- 1. Which of the following solutions has the HIGHEST pH value?
 - A. 1 M sulphuric acid
 - B. 1 M magnesium hydroxide solution
 - C. 1 M ammonia solution
 - D. 1 M potassium hydroxide solution
- 2. A sample of sulphuric acid and a sample of ethanoic acid both have a pH of 3. It can be concluded that
 - A. they are equally strong.
 - B. they are of the same concentration.
 - C. the volume of the two samples are equal.
 - D. they contain the same concentration of hydrogen ions.
- 3. Which of the following is NOT found in a sulphurous acid solution?
 - A. SO₂(aq)
 - B. H⁺(aq)
 - C. SO₃²-(aq)
 - D. H₂SO₃(aq)

- 1. The pH of 0.1 mol dm⁻³ hydrochloric acid is about 1 but that of 0.1 mol dm⁻³ ethanoic acid is about 3. This is because
 - ethanoic acid is a covalent compound. Α
 - В ethanoic acid contains more hydrogen atoms per molecule.
 - \mathbf{C} ethanoic acid does not dissociate completely in water.
 - D ethanoic acid is a strong acid.
- 2. Two flasks contain equal volumes of 0.1 mol dm⁻³ hydrochloric acid and 0.1 mol dm⁻³ ethanoic acid. Which of the following statements concerning them is correct?
 - They give the same colour change when the same quantity of universal indicator is added. Α
 - В They contain equal concentration of hydrogen ions.
 - C They react at the same rate with magnesium.
 - D They neutralize the same number of moles of sodium hydroxide.
- 3. Comparing the same volume of 0.1 mol dm⁻³ HCl(aq) and 0.1 mol dm⁻³ CH₃COOH(aq), which of the following is INCORRECT?

0.1 mol dm⁻³ CH₃COOH(aq) $0.1 \text{ mol dm}^{-3} \text{ HCl(aq)}$ Lower pH higher pH A В Higher electrical conductivity lower electrical conductivity Higher initial rate of reaction with magnesium lower initial rate of reaction with magnesium \mathbf{C} Requires a greater number of moles of NaOH requires a smaller number of moles of NaOH for D for neutralization neutralization

- 4. Which of the following statements concerning 25 cm³ of 1 mol dm⁻³ sulphuric acid and 50 cm³ of 1 mol dm⁻³ ethanoic acid is INCORRECT?
 - They require the same volume of 1 mol dm⁻³ aqueous ammonia for complete neutralization. A
 - They give the same colour change when the same quantity of universal indicator is added. В
 - \mathbf{C} They have different electrical conductivity.
 - D They react at different rates with zinc.
- 5. Why does magnesium react faster with 20 cm³ of 1 mol dm⁻³ hydrochloric acid than with 20 cm³ of 1 mol dm⁻³ ethanoic acid?
 - There are more mobile ions in 20 cm³ of 1 mol dm⁻³ hydrochloric acid. A
 - The concentration of hydrochloric acid is higher. В
 - There are more hydrogen ions in 20 cm³ of 1 mol dm⁻³ hydrochloric acid. \mathbf{C}
 - There are more mobile electrons in 20 cm³ of 1 mol dm⁻³ hydrochloric acid. D

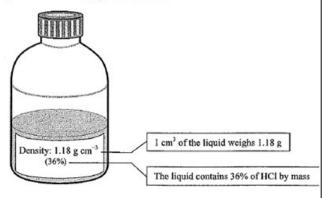
CDDBC 2012 DSE

- 4. Which of the following statements concerning CH₃COOH and HCl is correct?
 - A. CH₃COOH is a stronger acid than HCl.
 - The pH of 0.1 M CH₃COOH(aq) is lower than that of 0.1 M HCl(aq). B.
 - Both CH₃COOH(aq) and HCl(aq) react with NH₃(aq), each giving a salt. C.
 - D. Both CH₃COOH(aq) and HCl(aq) react with Ag(s), each giving a colourless gas.

2013 DSE

10. Consider the four solutions W, X, Y and Z listed below:

HKDSE


- 0.01 mol dm⁻³ HNO₃(aq) W:
- 0.01 mol dm⁻³ H₂SO₄(aq) X:
- 0.01 mol dm⁻³ KOH(aq) Y:
- 0.10 mol dm⁻³ KOH(aq) Z:

Which of the following represents the four solutions arranged in increasing order of pH?

- W, X, Y, Z A.
- W, X, Z, Y B.
- C. X, W, Y, Z
- X, W, Z, Y

2014 DSE

- 13. Which of the following gases, after dissolved in 1 dm' of water, would give a solution with the highest pH?
 - A. 0.002 mol of NO2
 - B. 0.002 mol of SO2
 - C. 0.002 mol of NH3
 - 0.002 mol of HC1
- A bottle of concentrated hydrochloric acid HCl(aq) is shown below:

According to the information on the label, calculate the concentration of the concentrated hydrochloric acid in **moldm**⁻³.

2015 DSE

- Which of the following statements is correct? 1.
 - All aqueous solutions contain H⁺(aq) ions. A.
 - The pH of all acid solutions is greater than zero. В.
 - All acidic compounds contain hydrogen as their constituent elements. C.
 - A 'corrosive' hazard warning label must be displayed on all reagent bottles containing D. acid solution.