
4/1/2010 Page 1

Kernel Projects for Linux
Web Version of First Edition

Gary Nutt

University of Colorado

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the author
was aware of the claim, the designations have been printed in initial caps or in all caps.

Creative Commons
Attribution-Noncommercial-No Derivative Work 3.0 License
You are free to share (to copy, distribute and transmit the work),
under the conditions that (1) you must attribute the work to Gary
Nutt (but not in any way that suggests that Gary Nutt endorses
your use of the work), (2) you may not use this work for
commercial purposes, and (3) you may not alter, transform, or
build upon this work.

4/1/2010 Page 2

Preface to the First Edition
To the Student
Experience has shown that the best way to learn the details of how an operating system
(OS) works is to experiment with it – to read, modify, and enhance the code. However
OS software, by its nature, must be carefully constructed. This is because it directly
controls the hardware used by all the processes and threads that execute on it. As a
result, experimenting with OS code can be difficult, since an experimental version of the
OS may disable the test machine. This laboratory manual provides you with a learning
path for studying the Linux kernel with as little risk as possible. By learning about the
Linux kernel this way, you will develop a technique by which you can learn and
experiment with other kernels as well. Consider this learning path to be a graduated set
of exercises. First you will learn to inspect various aspects of the OS internal state
without changing any code. Second, you will extend the OS by writing new code to read
(but not write) kernel data structures. Third, you will reimplement existing data
structures. Finally, you will design and add your own functions and data structures to the
Linux kernel.

The Linux kernel is written in the C programming language. Therefore you need to
relatively proficient in using C before you can study the kernel. If you know C++, you
will not have difficulty understanding the source code, though when you add or change
parts of the kernel code you will not be able to use objects.

This manual is designed as a companion to a general OS textbook. It consists of two
parts. Part 1 offers an overview of the Linux design. If you are using this manual at the
beginning of your first OS course, you might discover the Part 1 discusses several topics
that are new to you. However, work your way through it to get a feeling for how Linux is
built. It gives the “big picture,” but not many details. Then go back to Part 1 as needed
as you work the exercises.

Part 2 consists of a dozen laboratory exercises that help you to learn to use Linux Each
exercise is a sself-contained unit consisting of the following sections:

• Introduction
• Problem Statement
• Attacking the Problem

The exercises link the general concepts and Linux details. Each begins with an
introduction that explains Linux concepts and details relevant to the exercise. The
introduction explains how the generic concepts that you will have learned in lecture and
textbooks are realized in Linux. The next part of the exercise presents the problem on
which you will be working. It includes detailed Linux-specific information that you will
need to solve the problem. Sometimes, a quick review of the pertinent parts of Part 1 will
help you to frame the work of the exercises before you dive into the details.

Your school’s laboratory probably will have already been set up as a Linux lab. For you
to solve most of the exercises in this manual, the laboratory administrator will provide
you with a copy of the Linux source code and superuser permission to create new
versions of the OS. Do not abuse your privilege as a superuser! You need this privilege
to modify the kernel, but you must not use it for other purposes. This manual includes a

4/1/2010 Page 3

CD-ROM, containing the Linux source code that you can use to install Linux on your
own computer.

Good luck on your study of operating systems. I hope this exercise manual is a valuable
learning tool in seeing how OS concepts appear in Linux.

4/1/2010 Page 4

To the Instructor
Today, abstraction is the basis of most software that is written – in the classroom or in
practice. Students are taught to think of software solutions in terms of objects,
components, threads, messages, and so on. This perspective teaches them to leverage the
power of the hardware to solve increasingly more complex tasks. In this way, they
reduce programming time while reusing lower level abstractions. At the bottom of all
these abstractions is the operating system – processes and (and sometimes threads) and
resources. Application software and middleware use these OS abstractions to create their
own higher level abstractions. These range from accounting packages, spreadsheets, and
missile trackers, to windows, databases, objects, components, messages, and continuous
media streams.

This trend toward the heavy use of abstraction prompts some to argue that operating
systems are no longer worthy of serious study, since they are largely transparent to the
application programmers working at higher layers of abstraction. However the OS is still
fundamental because its design and implementation are the basis of the design and
implementation of all the other abstractions. Programmers will always be able to write
better middleware and application programs if they understand how operating systems
work. Moreover, the need for people who understand basic OS technology remains,
whether they are to write drivers for new devices, to create new microkernel servers, or to
provide new systems capable of efficiently handling evolving requirements such as
continuous media.

Typically an OS instructor has to decide whether an OS course should focus on issues
and theory or provide an environment in which students can experiment with OS code.
The 1991 (and draft 2001) IEEE/ACM undergraduate course recommendation describes a
course with a substantial amount of time spent on issues, but also with a significant
laboratory component. Even though the trend is toward courses based on conceptual
materials, students and instructors seem to agree that hands-on experience is invaluable in
learning about operating systems. Many courses attempt to follow the IEEE/ACM lead
by dividing the course into lecture and lab components, with the lecture component
focusing on issues and theory and the laboratory component providing some form of
hands-on exercises.

The IEEE/ACM recommendation supports the idea that the laboratory component should
allow student to learn how to use the OS mechanisms specifically by focusing on the OS
application programming interface (API) as the primary mechaism for experimentation.
The philosophy behind this approach is that students must learn how to use an OS before
they can really understand how to design one. This philosophy drives a companion book
on programming Windows NT via the Win32 API [Nutt, 1999], and the concepts and
issues in [Nutt, 2004].

However, in a recent (late 1998) survey of 78 universities conducted by Addison Wesley,
43 indicated that they teach OS internals in the introductory OS course. Of these 43, 26
use a variant of UNIX as the target OS: 13 use Linux, 10 use an unspecified version of
UNIX, and 3 use MINIX. Eight said they used some other OS as the subject system
(such as Nachos), and the remaining 9 did not say what OS they use. The survey clearly
showed that a significant fraction of the community teaches OS internals as a component

4/1/2010 Page 5

of the introductory OS class, despite the IEEE/ACM recommendation, and despite the
heavy use of conceptual OS textbooks. It also showed that most of these courses use two
books: A traditional OS theory book (such as [Silberschatz and Galvin, 1998] or [Nutt,
2004]) and a reference book (such as [Stevens, 1993], [McKusick, et al., 1996], or [Beck,
et al, 1998]). Of course, no single-term undergraduate course can possibly cover all the
material in both a theory book and a book describing an entire OS. The lack of a good
lab manual forces the instructor to have students buy a supplementary book that contains
much more information than they will have time to learn in a single academic term.
Further, the instructor will have to learn all the material in both books, as well as learn
the the subject OS, derive a suitable set of exercises, and provide some form of guidance
through the OS reference materials so the students can solve the exercises.

This textbook is a laboratory manual of Linux internals exercises. It complements an OS
theory book by providing a dozen specific lab exercises on Linux internals that illustrate
how theoretical concepts are implemented in Linux. The instructor need not become a
“complete” Linux kernel expert or derive a set of exercises (either with full
documentation for the exercise or with pointers into appropriate sections in a
supplementary reference book). Instead, the instructor, lab assistant, and students can use
this manual as a self-contained source of background information and exercises to study
how concepts are implemented. Thus the less expensive lab manual replaces a general
reference book, while providing focused information for a set of kernel internals
exercises. For the student who wants to understand related information that is not
required in order to solve the exercise, the background material for exercises provide
pointers to reference books (and the literature).

A single-semester OS course consists of 15 weeks of course material. In my experience,
many undergraduate students have difficulty doing a substantial programming exercise in
less than one and a half to two weeks. This means that my students have been able to
complete perhaps six to eight programming assignments in a semester. This manual
provides enough exercises to allow you to choose a subset that best suit your students’
background and your preferences. Most of the exercises include options that allow you
to vary the assignments from term to term (thereby reducing the probability of public
solutions from previous terms). As mentioned above, my intention is to release frequent
editions; I expect that the new editions will have new exercises that require new
solutions.

Also provided is a solution to each exercise. Thus more difficult exercises can be chosen,
and as necessary you can distribute parts of the solution that are not published in the
manual.

None of these exercises in this manual are as difficult as building a new kernel from
scratch. Rather they emphasize having students study the existing Linux kernel by
modifying or extending its components. The first ones are easy, and the background
material is comprehensive. Later exercises increase in difficulty with decreasing amounts
of “hand-holding” information. Exercises 1 and 2 would ordinarily require a week or less
to complete, but the last third of the exercises are likely to require a couple of weeks
each. If your students need extra practice with C programming, you might carefully
consider using Laboratory Exercises 1 and 2 as tutorial mechanisms. This may require

4/1/2010 Page 6

that you provide a little extra assistance, especially with the concurrency elements of
Laboratory Exercise 2.

Any hands-on study of an OS must commit to a particular version of the OS. This first
edition was originally written for Version 2.0.36, then it was updated for Linux Version
2.2.12 before it was published. With the rapid evolution of Linux, Version 2.2.12 may be
out of date by the time the book is published.

Acknowledgements
This manual represents years of effort – mine and other people’s –learning about Linux.
I benefited considerably from the assistance, insight, and contributions of the teaching
assistants for Computer Science 3753: Operating Systems at the University of Colorado:
Don Lindsay, Sam Siewert, Ann Root, and Jason Casmira. Phil Levis provided
interesting and lively discussions of Linux and the exercises. When I first installed Linux
on a machine, it worked, but not as well as it would work after Adam Griff polished the
installation.

Many of the exercises are derived from projects and exercises in the undergraduate and
graduate operating system classes at the University of Colorado. In particular, Exercise 3
was created by Sam Siewert in spring 1996 for Computer Science 3753. Exercise 4 takes
some material from another exercise created by Sam Siewert. Exercise 9 comes from a
course project that Jason Casmira did in Computer Science 5573 (the graduate OS class)
in fall 1998. Exercise 10 was first designed by Don Lindsay in fall 1995, and then
refined by Sam Siewert in spring 1996. Exercise 1 also appears in the author’s
companion OS textbook [Nutt, 2004] and Exercise 2 is an extension of one that also
appears in that book. Exercises 11 and 12 are similar to exercises for Windows NT that
appear in another one of the author’s manuals [Nutt, 1999]; Norman Ramsey created the
original Windows NT exercises, and Ann Root introduced them to me.

Many reviewers helped make the manual much better than its original draft. Richard
Guy was willing to suffer through the first draft of the manuscript at UCLA. Paul
Stelling (UCLA) did a careful reading of the draft, correcting errors and providing insight
into good and bad aspects of it. Simon Gray (Ashland University) provided particularly
lucid and insightful comments on the exercises. The following also provided helpful
comments that greatly improved the manual: John Barr (Ithaca College), David Binger
(Centre College), David E. Boddy (Oakland University), Richard Chapman (Auburn
University), Sorin Draghici (Wayne State University), Sandeep Gupta (Colorado State
University), Mark Holliday (Western Carolina University), Kevin Jeffay (University of
North Carolina at Chapel Hill), Joseph J. Pfeiffer (New Mexico State University),
Kenneth A. Reek (Rochester Institute of Technology), and Henning Schulzrinne
(Columbia University).

The Addison Wesley staff was very helpful in preparing this work. Molly Taylor and
Jason Miranda provided wide ranges of assistance in handling reviews and otherwise
supporting the early stages of development. Lisa Hogue finished the process, particularly
by saving the day by finding a version of the Linux source code that could be distributed
with [the print version of] the book. Laura Michaels did her usual diligent job in copy

4/1/2010 Page 7

editing the work,1 Gina Hagen helped with production and Helen Reebenacker was the
production editor. Last, but not leas, Maité Suarez-Rivas, the acquisition editor,
recognized the need for the book and relentlessly pushed forward to make it happen.
All of these people helped to produce the content, but of course, any errors are my
responsibility.

Gary Nutt
Boulder, Colorado

1 Laura’s fine copy edits have not yet been incorporated into this preliminary draft of the web version of the
book.

4/1/2010 Page 8

Preface to the Web Version of the First Edition
The print edition of this book, published by Addison Wesley, appeared in 2000, ten years
prior to the release of this web edition. From a business perspective, Addison Wesley did
a huge favor to the community, since anecdotal evidence suggests that the first edition
was widely used, even though it was rarely adopted for classroom use and was never
financially successful for the publisher. Thank you Addison Wesley!

Early in 2010, Addison Wesly returned the copyright for the book to me. I have decided
to make minor changes to adopt the book for web distribution. The text is essentially the
same as the first edition of the Addison Wesley print version. Part 1 of the web edition is
available under the Creative Commons Attribution-Noncommercial-No Derivative Work
3.0 License for open textbooks. This allows people to read and copy the work, but
reserves rights related to selling or deriving new materials from this work.

The Exercises in Part 2 are published on my commercial site, where they will be
accessible for a modest fee; contact me at Gary.Nutt@colorado.edu if you wish to access
the Exercises. If you are an instructor who wishes to review the material, please send me
(Gary.Nutt@colorado.edu) authentication that you are an instructor and let me know that
you would like to review the Exercises. If you have adopted the book for a course, send
me authentication to receive a solution set for the Exercises.

Gary Nutt

Boulder, Colorado

http://www.gnutt.com/StudyCS/KPFL/index.html
mailto:Gary.Nutt@colorado.edu?subject=Regarding%20KPFL%20web%20edition
mailto:Gary.Nutt@colorado.edu?subject=Regarding%20KPFL%20web%20edition

4/1/2010 Page 9

PREFACE TO THE FIRST EDITION..2

PREFACE TO THE WEB VERSION OF THE FIRST EDITION8

PART 1: OVERVIEW OF LINUX...11

1 The Evolution of Linux.. 11

2 General Kernel Responsibilities.. 13
2.1 Resource Abstraction... 13
2.2 Sharing Resources ... 14
2.3 A Partition of OS Functions .. 17

3 Kernel Organization .. 18
3.1 Interrupts.. 19
3.2 Using Kernel Services ... 20
3.3 Serial Execution... 23
3.4 Daemons .. 24
3.5 The Booting Procedure.. 24
3.6 Logging Into the Machine ... 27
3.7 Control Flow in the Machine... 27

4 Process and Resource Management ... 28
4.1 Running the Process Manager ... 30
4.2 Creating a New Task ... 31
4.3 The Scheduler .. 32
4.4 IPC and Synchronization... 32
4.5 Protection Mechanism ... 33

5 Memory Management.. 34
5.1 Managing the Virtual Address Space .. 34
5.2 The Secondary Memory .. 35
5.3 Handling Missing Pages .. 36
5.4 Address Translation... 36

6 Device Management ... 38
6.1 The Device Driver ... 39
6.2 Handling Interrupts.. 40

7 File Management .. 41
7.1 Mounting the File System.. 43
7.2 Opening a File ... 44
7.3 Reading and Writing the File... 46
7.4 The Ext2 File System .. 47

4/1/2010 Page 10

8 Learning More About Linux... 48

PART 2: EXERCISES ...50

1 Observing Linux Behavior .. 50

2 Shell Program ... 50

3 Kernel Timers... 50

4 Kernel Modules .. 50

5 System Calls .. 50

6 Shared Memory.. 50

7 Virtual Memory.. 51

8 Synchronization Mechanisms.. 51

9 The Scheduler ... 51

10 Device Drivers ... 51

11 File Systems ... 51

12 File I/O ... 51

FURTHER STUDY..53

REFERENCES ...54

4/1/2010 Page 11

PART 1: OVERVIEW OF LINUX
Linux is a contemporary, open implementation of UNIX, available at no cost on the
Internet. Since its introduction in 1991, it has become a highly respected, robust
operating system (OS) implementation, enjoying great success as a platform for studying
contemporary operating systems, especially the internal behavior of a kernel. Just as
significant, Linux is now used in many corporate information processing systems. Thus
studying Linux internals provides valuable career training as well as being an excellent
means of educational experimentation. Today several new companies provide industrial-
strength support for Linux.

1 The Evolution of Linux
Linux has evolved within the UNIX community. The UNIX operating system was
introduced to the public in a classic research paper in 1973 [Ritchie and Thompson,
1973]. UNIX established two new trends in operating system (OS) design: Previous
operating systems were huge software packages – typically the largest software package
that ran on the computer – and they were designed for a specific hardware platform. By
contrast UNIX was intended to be a small, no-frills OS that could be made to run on any
small computer. Second, the UNIX philosophy was that the OS kernel should provide
the minimum essential functionality, and that additional functionality should be added (as
user programs) on an as-needed basis. UNIX was revolutionary, and within half a dozen
years it had become the preferred OS by programmers in multivendor hardware
environments (universities, research laboratories, and system software development
organizations).

Even though the UNIX kernel could be ported onto a new hardware platform without
redeveloping the entire OS, the source code was owned by AT&T Bell Laboratories.
Other organizations could obtain the right to use the source code (for example, to port it
onto their preferred computer hardware) by paying a licensing fee to AT&T. By 1980,
many universities and research labs had obtained the source code and were busily
modifying it to meet their own needs, the most prominent work being done at the
University of California at Berkeley under a Defense Advanced Research Projects
Agency (DARPA) research contract. Commercial computer vendors had also begun to
use the UNIX source code to derive their own version of the UNIX operating system.

By 1985 there were two primary versions of UNIX (running on many different hardware
platforms): The main line version from AT&T Bell Labs (called System V UNIX), and an
alternative version from the University of California at Berkeley (called BSD UNIX).
The DEC VAX version of BSD UNIX was more specifically referred to as Version 4
BSD UNIX, or simply 4.x BSD UNIX. Both versions implemented system call interfaces
that were recognizable as UNIX, though they differed from one another in several details.
By this time, there were also substantial differences in the way the two OS kernels were
implemented. The competition between System V and BSD UNIX systems was very
active, with programmers swearing by one version or the other. Ultimately the leading
commercial proponent of 4.x BSD UNIX (Sun Microcomputers) and AT&T reached a
business agreement by which these two leading versions would be merged into a
common version of UNIX (the Sun Solaris operating system).

4/1/2010 Page 12

Meanwhile other computer makers pushed for an alternative implementation of the UNIX
system call interface. An important event was the formation of a committee to develop a
standardized UNIX system call interface – POSIX.1.2 Once POSIX.1 had been
established, everyone was free to design and build their own kernel that provided the
functionality specified by this application programming interface (API). For example at
Carnegie Mellon University, a group of OS researchers led by Richard Rashid developed
the Mach operating system with a POSIX/UNIX system call interface. Mach was an
alternative to the 4.x BSD and System V UNIX kernel implementations. Eventually a
version of Mach was used as the basis of the Open Systems Foundation OSF-1 kernel.
The technique that was first used to implement the POSIX/UNIX interface in Mach, was
to simply incorporate substantial amounts of BSD UNIX code into the Mach kernel.
However by the time Version 3 was released, Mach had been redesigned as a microkernel
with servers; though the Version 3 Mach microkernel contained no licensed source code,
the BSD server still implemented the 4.x BSD system call interface using the BSD source
code [Tanenbaum, 1995].

On a smaller scale Andrew Tanenbaum designed and implemented a complete version of
UNIX named MINIX: “The name MINIX stands for mini-UNIX because it is small
enough that even a nonguru can understand how it works.” [Tanenbaum, 1987]. MINIX
implements a once-popular version of the AT&T UNIX system call interface known as
Version 7 UNIX; this version was the basis of both BSD and System V UNIX.
Tanenbaum distributed MINIX as a supplement to his OS textbook, providing a
comprehensive discussion of how the kernel was designed and implemented. As he
notes: MINIX “… was written a decade after UNIX, and has been structured in a more
modular way.” [Tanenbaum, 1987]. That is, MINIX is based on a microkernel with
servers, as opposed to the monolithic design of BSD and System V UNIX. MINIX was
initially quite successful as a pedagogical operating system, but it eventually lost some of
its support because of its main feature – its simplicity. MINIX was small enough to
study, but not robust enough to use as a practical OS.

In 1991, Linus Torvalds began creating the first version of Linux.3 He was apparently
inspired by the success of MINIX, but he intended for his OS to be more robust and
useful than MINIX. Torvalds released his Linux source code to anyone who wanted to
use it (by making it freely available over the Internet under the GNU Public License). It
quickly caught on as a significant implementation of the POSIX system call interface –
Linux was the first version of UNIX for which the source code was completely free.
Soon, people all over the world began to contribute their own modifications and
enhancements to Torvalds’ original code. Today the Linux distribution includes the OS
and a spectrum of supplementary tools, written by many different contributors. Besides
the original Intel 80386/80486/80586 (also called the “x86” or “i386”) implementation,
there are now implementations for the Digital Alpha, Sun Sparc, Motorola 68K, MIPS,

2 The system call interface is often simply called “POSIX”, though that can be misleading since the POSIX
committee developed several different application programming interfaces – APIs – and only the first of
these standards addresses the kernel system call interface. In this book we consider only POSIX.1, so we
will often use the more popular, but less accurate, designation of POSIX to refer to the POSIX.1 system
call interface.
3 The comp.os.minix newsgroup had a few postings from Torvalds in early 1991 in which he let the
world know that he was working on a public implementation of POSIX.

4/1/2010 Page 13

and PowerPC. By 1996 – five years after it was created – Linux had become a significant
OS. By 1997 it became an important part of the commercial OS scene, while continuing
its first role as a free implementation of the UNIX interface.

Following the UNIX philosophy, Linux is actually the nucleus or “kernel” of an
operating system rather than the complete OS. The UNIX kernel was introduced to the
world as a minimal operating system that implemented the bare necessities, leaving the
software to provide the desired bells and whistles to libraries and other user mode
software. The early UNIX kernel followed the principle of “small is beautiful.” In the
intervening quarter of a century, this minimal kernel has continually had features added
to it; as a contemporary UNIX kernel can no longer be thought of as a minimal set of OS
functionality.

Linux started with a clean slate in 1991; it has attempted to return to the “small is
beautiful” philosophy of early UNIX while still implementing the POSIX interface.
However, since it is freely available, anyone can add features to the kernel, so it is
susceptible to the same “creeping featurism” that caused the UNIX kernel to grow large.
The Linux kernel is still relatively small … but growing very rapidly. The Version 2.2
Linux kernel is larger and more complex than the Version 2.0 kernel (which is larger and
more complex than Version 1).

This book is about the design and implementation of the Version 2.2 Linux kernel –
specifically, the exercises and explanation were taken from the latest stable release of
Linux in early 2000, Version 2.2.12. Part 1 of this book describes the overall
organization of the kernel. The lab exercises focus on different aspects of the kernel, so
each exercise provides considerably more detail about the part of the kernel that is
relevant to the exercise.

2 General Kernel Responsibilities
The UNIX family of operating systems divide the functionality into two classes: The
kernel executes with the CPU in supervisor mode (see Sections 2.2.2 and 3.2 below) and
all other OS components execute with the CPU in user mode. In this laboratory manual,
you will focus on the Linux kernel. In general, the kernel is responsible for abstracting
and managing a machine’s hardware resources, and for managing the sharing of those
resources among executing programs. Since Linux implements a UNIX style interface,
the general definition of the resource abstractions and sharing models is already defined.
The kernel must support processes, files, and other resources so that they can be managed
with the traditional UNIX system calls. Linux differs from other systems that implement
a UNIX interface in the data structures and algorithms it uses to meet those
responsibilities.

2.1 Resource Abstraction
Resource abstraction refers to the idea of creating software (usually) to simplify the
operations that must be applied to the hardware to cause it to function properly. For
example a device driver is a software resource abstraction that hides the details of how
the physical device is manipulated to perform an I/O operation. Once a device driver has
been implemented, other software can then use it to read or write the device without
having to know details such as how to load commands and data into the device’s

4/1/2010 Page 14

controller registers. Abstraction can also be used to create resources that have no
particular underlying hardware; messages and semaphores are example of this type of
resource. Abstract data types and objects are common software mechanisms that are used
for creating abstract resources.

Historically (and in Linux), the computer’s components are abstracted into processes and
resources; a file is a special case of a resource. A process is an abstraction of the CPU
operation. In conventional computers, an object program (produced by the compiler and
loader) is placed in the machine’s executable memory. A process is an abstract entity
that executes the object program

Linux is a multiprogrammed OS, meaning that it has been designed so that multiple
programs can be loaded into the executable memory at once, and the OS will execute one
program for a while, then switch to one of the others that are currently loaded in memory.
That is, the executable memory is space-multiplexed – meaning that it is divided into
blocks called memory partitions, and each partition contains a program ready for
execution. The CPU can then be time-multiplexed to execute the programs currently
loaded in different memory partitions. The OS must keep track of which program is
being executed for which user (using some previously allocated set of resources); the
process abstraction allows the OS to control the execution of each instance of a program.
For example, the OS can decide which process should execute, and which should be
made to wait for the CPU to become available. All of the aspects of abstracting the
operation of the CPU into the process notion are part of process management.

Resource management is the procedure for creating resource abstractions and for
allocating and deallocating the system’s resources to and from the processes as they
execute. For example, a portion of executable memory (often called the “RAM” or
random access memory) must be allocated to a process when the process begins, and
when the process releases memory, it must be made available to other processes. The
memory resource manager is responsible for controlling the use of the machine’s
executable memory. A system resource is any logical component that is managed by the
OS, and which can only be obtained by having the process request the use of the resource
from the OS. The CPU is a specialized OS resource that is controlled by the kernel,
though historically it has been treated as a special case compared to other system
resources. Executable memory is another system resource, and it too has a specialized
resource manager (the memory manager). What are the other resources that the kernel
manages? All the system’s devices are resources with their own abstraction models.
Storage devices are normally abstracted so that information stored on them appears as a
logical byte stream – commonly known as a file. In UNIX, there is an attempt to make
every resource other than the CPU and executable memory look like a file.

2.2 Sharing Resources

The Linux notion of a resource implicitly relies on the idea that there are processes that
can request resources, use them, and then release them. When a process requests a
resource, it ordinarily needs exclusive use of the resource. Exclusive use of a resource
means that when a unit of the resource is allocated to one process, then no other process
has any access to that unit of resource. There are two critical aspects to this resource

4/1/2010 Page 15

management: The competition to acquire units of a resource, and the assurance of
exclusive use.
2.2.1 Managing Competition for Resources

Competition for a resource is controlled by that resource’s manager – the OS must
contain a component that will be responsible for accepting requests to use each resource,
for allocating the resource to a process, and for retrieving a resource when a process
releases it. The simplest model for using a resource is the following:
• A process P requests K units of resource X from the manager for resource X.
• If K units of the resource are available, the manager allocates them to P (marking its

internal “assigned” and “available” data structures to indicate that they are allocated
and unavailable to other processes).

• If there are not K units available, the manager for X blocks process P while it waits
for K units of X to become available. P will be prevented from further execution
until the resource manager for X allocates the K units to P.

• When at least K units of X become available through a deallocation by some other
process P’, the manager for X chooses one of the waiting processes whose request
can be satisfied, say P, then allocates the K units of resources to the process.

• Process P is then once again ready to execute using the K units of resource X.

Process PProcess P

AssignedAssigned

AvailableAvailable

Resource XResource X

Request K Units

Release K Units

Allocate K Units

Request

Acquire K Units
Resource
Manager

Figure 1: Resource Manager Schematic

Observe that the CPU resource also conforms to this same model of behavior: When
processes Pi and Pj are ready to execute, but the CPU resource is being used by some
other process Pk then Pi and Pj are blocked waiting for the CPU to become available.
When Pk gives up the CPU, then the scheduler will choose a waiting process, say Pi, and
allocate the CPU to it. The scheduler is just a resource manager for the CPU resource.
2.2.2 Exclusive Use of a Resource

The OS uses many different mechanisms to assure that a process has exclusive use of an
allocated resource, depending on the nature of the resource. The way that the CPU is
given exclusively to a process differs from the way memory or a device might be
dedicated to the process. This is because the CPU is time-multiplexed, meaning that
when a process is allocated the CPU, no other process can use it for a selected period of

4/1/2010 Page 16

time. Choosing efficient and effective mechanisms to assure exclusive use of each
resource is one of the challenges of designing any OS. A process is given exclusive use
of the CPU by assuring that other processes cannot interrupt the process’s execution
(unless they are “more important” than the running process). Exclusive use of memory is
assured through hardware memory protection mechanisms that prevent the CPU from
accessing memory that is not allocated to the process currently using the CPU. Exclusive
use of devices is assured by preventing the CPU from executing an I/O instruction for the
device unless it is performed in behalf of the process that has been allocated the device.

Creating mechanisms to guarantee exclusive use of a resource can be very difficult. Over
the years, OS and hardware designers have evolved to a model of operation in which part
of the mechanism to assure exclusive use is implemented in the OS and part of it in
hardware. A key aspect of this approach is that the hardware “knows” when the OS is
executing on the CPU. This allows the hardware mechanisms to react to instructions
issued by trusted software, and to ignore attempts to perform instructions that might
violate exclusive use (executed by software that is untrusted by the OS). Contemporary
CPUs such as the Intel 80286 (and above) microprocessors are built with a mode bit that
can be set to supervisor or user mode. When the CPU is in supervisor mode – which is
also called kernel mode – the presumption is that the CPU is executing trusted software –
software that has been carefully designed and analyzed so that it performs exactly as
intended. The hardware will execute any instruction in its repertoire and reference any
memory address if the CPU is in supervisor mode. Otherwise (when the CPU is in user
mode), the CPU is assumed to be executing untrusted software so the CPU will not
execute privileged instructions (such as I/O instructions) and will only reference the
memory allocated to the process currently using the CPU.

The mode bit is a very powerful mechanism. It is used by Linux and other contemporary
operating systems to esure exclusive use of the system’s resources: The entire Linux
kernel executes in supervisor mode (so it is often called kernel mode as well as
supervisory mode in all UNIX-like systems), and all other software executes with the
CPU in user mode. The Linux kernel is trusted software, and all other programs are
untrusted software that have not been analyzed to determine whether or not they are
correct. This means, for example, that only kernel code can actually execute device I/O
instructions; all user mode software must ask the kernel to perform an I/O operation by
making a system call to the kernel. An obvious challenge in designing the hardware and
OS is to determine a safe means by which user mode software causes the CPU to change
modes to execute the kernel in supervisor mode, and to change the mode back to user
mode when the kernel finishes its work. CPU modes are discussed more in Section 3,
and complete details for the way the Intel 80386 and higher hardware – referred to as the
i386 architecture in the Linux source code –and Linux accomplish this is deferred until
Exercise 5.
2.2.3 Managed Sharing

In some cases, two or more processes need to share a resource. For example, one process
might read a file containing the number of hours each employee worked, while the
second process writes payroll checks. While the second process is writing the check for
record i, the first process could be reading the hours for record i+1. How can the first
process tell the second process the amount of the check it should write? If the two

4/1/2010 Page 17

processes shared a block of memory, then the first process could write the amount for
record i into the shared memory then immediately start reading record i+1. When the
second process was ready to write the check for record i it would read the amount from
the shared memory.

The barriers that the system uses to enforce exclusive use of a resource (for example to
prevent one process from reading or writing the memory that had been allocated to
another process) generally prevent sharing strategies. In order to accommodate sharing
when it is needed, the OS must make some provision for violating the exclusive use
mechanism when both processes wish to share a resource. Just as the mechanism that is
used to enforce exclusive use varies among resources, so too does the mechanism for
allowing resource sharing. This adds a new level of complexity to the design of the
resource manager.

2.3 A Partition of OS Functions
Over the years, OS designers have partitioned the functions that must be performed into a
set of four classes:
• Process and Resource Management. This is the heart of a multitasking OS. This

class of functionality creates the software environment that has the illusion of
multiple virtual machines with their own logical resources being used by the multiple
processes.

• Memory Management. This part of the system is responsible for allocating memory
to processes, for protecting allocated memory from unauthorized access, and
sometimes for automatically moving information back and forth between the memory
and storage devices. The Linux memory manager employs virtual memory based on
paging. These systems provide the most general functionality, accomplishing all the
goals of allocation, protection, and automatic movement. However, there is a cost in
time, space, and hardware for virtual memory.

• Device Management. Computers can be configured with a wide array of different
device types. Some devices are low-speed character devices, e.g., a keyboard, touch-
sensitive screen, or remote control; others are high-speed block devices, e.g., a packet
network interface. The device manager function is to provide controlling functions
for this array of devices.

• File Management. This part of the OS implements a specialized resource abstraction
for storing information on the computer’s storage devices (such as disk drives). In
Linux, a file is a named sequence of bytes that can be read and written as blocks of
one or more bytes. The file manager also provides directories for organizing
collections of files. Like most contemporary operating systems, Linux uses a
hierarchical file directory. The file manager uses the functionality of the device
manager to implement these abstraction.

The UNIX philosophy – adhered to in Linux – is to implement the minimum amount of
mechanism for the functions in the kernel, with the remainder being implemented in user
space software (libraries, runtime software, middleware, and application programs). This
approach attempts to implement as much of the OS mechanism in the kernel as possible,
and to implement as much of the OS policy as possible in user space software.

4/1/2010 Page 18

A simple example of this philosophy is the way files are handled. Applications programs
nearly always manipulate records of data instead of linear streams of bytes. In the UNIX
philosophy, only byte stream files are implemented in the kernel. If an application
intends to organize the stored information as records, then it is the application’s
responsibility to define the structure of the data (for example as a C struct), to
translate the structure into a byte stream before it is written into a file, and to translate the
byte stream back into a structure after it has been read from the file. The kernel file
mechanism has no knowledge of any application’s data structures – it only handles byte
streams. User space code (libraries such as the stdio library or the application
software) defines the data structures used with each byte stream file.

3 Kernel Organization
The Linux kernel uses the same software organization as most predecessor UNIX
kernels: It is designed and implemented as a monolithic kernel.4 In the traditional UNIX
kernel, process and resource management, memory management, and file management
are carefully implemented within a single executable software module. Data structures
for each aspect of the kernel are generally accessible to all other aspects of the kernel.
However device management is implemented as a separate collection of device drivers
and interrupt handlers (that also execute in kernel mode). Each device driver is intended
to control a particular type of hardware device, for example a 1.44 MB floppy disk. The
philosophy behind this design is that the main part of the kernel should never be changed;
the only new kernel space software that should be added to the system would be for
device management. Device drivers are relatively easy to write and add to the kernel
(compared to, say, adding a feature to process management).

As technology evolved, this design assumption became a serious barrier to enhancing the
kernel. The first UNIX systems did not support the spectrum of hardware components
that are common in today’s machines, especially including bitmap displays and networks.
The interface between the kernel and the device drivers was designed to support disks,
keyboards and character displays. As hardware evolved to include these newer devices,
it became increasingly difficult to provide appropriate kernel support wholly within a
device driver.

Linux addressed this problem by providing a new “container” in which to implement
extensions to the main part of the kernel – modules (see Figure 2). A module is an
independent software unit that can be designed and implemented long after the operating
system has been compiled and installed, and which can be dynamically installed as the
system runs. The interface between a module and the kernel is more general than the one
used with UNIX device drivers, providing the systems programmer with a more flexible
tool with which to extend the kernel functionality than device drivers. Interestingly,
modules have proven to be so flexible that they are sometimes used to implement device
drivers. You will learn to write a module to extend the kernel in Exercise 4, and to
implement a device driver in Exercise 9.

4 There is a trend in many modern operating systems, such as Mach and other research operating systems,
to use a microkernel organization where the normal kernel functions are distributed between a minimal
microkernel that executes in supervisory space and a collection of servers that execute in user space. Your
textbook provides more information about microkernel organizations.

4/1/2010 Page 19

Linux Kernel

Device Drivers

Modules

D
ev

 D
rv

r
In

te
rf

ac
e

M
od

ul
e

In
te

rf
ac

e

Figure 2: Kernel, Device Drivers, and Modules

3.1 Interrupts
The kernel reacts to service requests from any active, external entity. In some cases the
external entity is a process that performs a system call (described in Section 3.2); in other
cases a hardware component can request service from the kernel by issuing an interrupt.
An interrupt is an electronic signal produced by an external component (such as a device)
that is fielded by the CPU hardware, causing the CPU to begin executing a program
sequence that is independent of the one it was executing at the time the interrupt
occurred. Usually, the interrupt means that a device has finished an I/O operation that
was started earlier by a device driver. However sometimes the interrupt signals an event
such as the physical clock device having just “ticked.” In the i386 architecture the
hardware behavior of an interrupt can be represented by the algorithmic description
shown in Figure 3. The basic part of the fetch-execute hardware algorithm is that the
program counter (PC) holds the address of the next instruction to be executed. When it is
time to execute the instruction, it is copied from the memory into the instruction register
(IR). The control unit part of the CPU then decodes and executes the instruction from the
IR.

InterruptRequest = FALSE;
…
while (haltFlag not set during execution) {
 IR = memory[PC]; /* Fetch into instruction register */
 PC++; /* Point the PC at the next instruction */
 execute(IR); /* Execute the current instruction */
 if (InterruptRequest) {
 /* Interrupt the current process */
 save_PC(); /* Save the PC */
 restore_PC(IRQ); /* Branch to the ISR for this IRQ */
 }

Figure 3: The Hardware Process’s Algorithm

When an external component wishes to obtain service, it makes an interrupt request
(IRQ) that sets a conceptual interrupt request flag, InterruptRequest, in the CPU.
As shown in Figure 3, the control unit hardware checks InterruptRequest at the
end of each fetch-execute cycle. If an IRQ has occurred, the hardware algorithm causes
the CPU to cease executing the sequence of instructions addressed by the hardware
program counter (PC) and, instead, to branch to an interrupt service routine (ISR) for this

4/1/2010 Page 20

IRQ (by writing the address of the ISR into the PC with the restore_PC(IRQ)
function in the algorithm description). The ISR address is stored in a kernel table that was
setup when the kernel was initialized. When the branch occurs, the hardware saves the
original PC value (address of the next instruction to be executed) of the interrupted
process.

When the ISR begins executing, the CPU registers will contain values being used by the
interrupted process (excluding the PC). The ISR immediately saves all the general and
status registers of the interrupted process and copies its own values into every CPU
register so that it can run the main part of the ISR routine to handle the interrupt
occurrence.

A problem can occur if an interrupt occurs while one ISR is in the midst of execution
when the second IRQ occurs. That is, before the processor can finish handling the first
interrupt, it could restart due to the occurrence of a second interrupt. Depending on
exactly which part of the ISR is currently being executed for the first interrupt, the CPU
state could be lost or the interrupt processing for the first device operation might never be
completed. Of course, some parts of the ISR can be interrupted and then resumed later
without harm. The problem occurs if one ISR begins to execute and begins saving the
state of the process it interrupted; if it is in the middle of saving CPU register contents
when another IRQ occurs, then the second ISR would start saving registers, saving some
values from the original process and some from the interrupted ISR execution. When the
first ISR is eventually allowed to complete, it will continue saving the register contents of
some process other than the one it originally interrupted.

It is easy to see that the second ISR will not behave correctly, and may even cause the
first I/O operation to fail. This race condition between the execution of the ISR and the
occurrence of another IRQ must be avoided if the machine is to perform I/O operations
reliably.

The race condition can be handled by incorporating another mechanism to explicitly
prevent interrupts from interrupting the handler. Machines, like the i386, that incorporate
interrupts also include an interrupt-enabled flag. Linux provides one kernel function
(cli()), to set the interrupt-enabled flag to FALSE, and another kernel function
(sti()) to set the flag to TRUE. These two system functions are used throughout the
kernel when it is important to avoid a race condition caused by interrupts. How does a
designer know when to use cli() and sti()? By carefully analyzing the context in
which any piece of the code executes. Clearly this is more difficult in a monolithic
kernel than it would be in a kernel that used a more modular approach.

Interrupts do not alter the control flow of the process executing on the processor, they
simply delay the process’s execution by running extra programs “behind the process’s
back.” Once sti() has been executed, the InterruptEnabled flag is set to TRUE.

3.2 Using Kernel Services
As suggested by Figure 4, user programs view the kernel as a large abstract data type
(abbreviated as ADT – similar to an object) that maintains state, and which has a number
of functions on its public interface – the system call interface. This ADT provides OS
service to a user program whenever the program calls a function on its public interface;

4/1/2010 Page 21

the exact nature of the service depends on the particular function that is called, its
parameters, and the state of the OS when the function is called. Hence, the public
interface specification for the kernel is the main description of the OS functionality. In
the case of Linux, the system call interface is nominally defined by the POSIX.1
specification. It is only nominal, since any version of Linux may not implement some of
the fine details of the specification, and because the specification does not completely
specify the semantics of the interface. However, the POSIX.1 specification is sufficiently
complete that programmers are generally willing to accept it as a basic OS interface
specification.

Public POSIX.1 System Call Interface

Kernel

Private Implementation

User Space Program Calls System

Figure 4: The Kernel as an ADT

Continuing the ADT analogy, the implementation of the POSIX.1 system call interface is
private, so the implementations may differ from system to system, and even among
versions of the Linux implementation. In theory – and generally in practice – the
boundaries between device drivers or modules and the kernel are not discernible to the
user program. These are characteristics of the internal design, not of the public interface.
Thus, the POSIX.1 system call interface defines functions that normally are implemented
in the kernel, device drivers, or modules. If the function is implemented in a device
driver or module, when a user program invokes the function, the kernel fields the call and
passes it through an internal interface to the appropriate device driver or module. In a
Linux implementation of the POSIX.1 system call interface, some functions may even be
implemented as user space programs – for example most versions of Linux rely on library
code to implement the thread package [Beck et al., 1998].

If the kernel ADT were actually implemented as a C++ object, it would be a passive
object. That is, the kernel software does not have any internal thread of execution or
process – it is simply a collection of functions and data structures that maintain state.
Any process that uses kernel services – the process is an active entity – makes a kernel
request by (logically) making a procedure call on the system call interface. That is, a
process that is executing outside the kernel begins to execute the kernel code when it
makes the system call; this is contrasted with the idea that the process executing user

4/1/2010 Page 22

code might obtain service from a distinct kernel process. In Linux, the process executing
the user program also executes the kernel programs when a system call in made.

Conceptually, then, whenever a process executing an application program desires service
from the OS, it simply calls the appropriate OS function through the POSIX.1 system call
interface. Before the call the process is executing the application program, and after the
call (but before the return) the process is executing the kernel software. However, recall
that the kernel is executed with the CPU in supervisor mode but the application program
is executed in user mode. When the process performs the system call, the CPU must
change from user to supervisor mode, and when the system call returns the CPU must
change from supervisor to user mode. The return case is simple to handle, since one of
the privileged instructions that can be executed when the CPU is in supervisor mode is to
switch the CPU mode from supervisor to user mode. Here is the dilemma: How can a
user mode program switch the CPU to supervisor mode with the assurance that once the
switch is done that the CPU will be executing trusted kernel code and not untrusted user
code? If the program is executing in user mode, it must be able to direct the hardware to
switch to the supervisor mode – the instruction must not be a privileged instruction. If
there were an ordinary (not privileged) instruction to switch the mode, then what would
prevent a program from executing the instruction then to execute privileged instructions
as untrusted software?

Normally, the compiler translates any function call into machine language statements that
prepare actual parameters for passing, then by performing a procedure call instruction on
the entry point of the target function. In the case of kernel calls, this would have two
significant implications:
• Every kernel routine (and hence the entire kernel) would be linked into every

application program.
• Every kernel routine would immediately have to execute a machine instruction to

switch the CPU to supervisory mode before performing the work.

Notice that since the kernel code would be linked into the user program, the code would
be readable by the process while it was executing in user mode. It would be possible to
copy the machine instruction for switching to supervisory mode and use it to switch the
mode to run untrusted software.

CPUs that incorporate the mode bit also usually incorporate a hardware trap instruction.
A trap instruction causes the CPU to branch to a prespecified address (sometimes as a
function of an instruction operand), and also to switch the CPU to supervisory mode. Of
course the details of each machine’s trap instruction are unique to that machine. A trap
instruction is not a privileged instruction, so any program can execute a trap. However
the destination of the branch instruction is predetermined by a set of addresses kept in
supervisory space which are configured to point to kernel code.

4/1/2010 Page 23

S
Mode

Branch Table

Trusted
Code

trap

User Supervisor

1

2

3

Figure 5: The Trap Instruction Operation

Suppose the assembly language representation for a trap is
trap argument

Figure 5 pictorially describes the behavior of a trap instruction:
1. Switch the CPU to supervisor mode
2. Look up a branch address in a kernel space table
3. Branch to a trusted operating system function.

The trap instruction provides a safe way for a user-mode process to execute only
predefined software when it switches the mode bit to supervisor mode.

Now we can summarize the actions performed to accomplish a system call. For a system
call, F, a stub procedure is used to invoke F (the stub is also named “F”). The stub is
linked into the (user space) calling program. When a process executes the call to F at
runtime, control is transferred to the stub procedure rather than directly to the kernel.
The stub procedure validates the parameter values being passed to the kernel procedure,
and could in principle authenticate the process that calls the stub procedure. Finally the
stub procedure executes a trap instruction that switches the CPU to supervisory mode and
branches (indirectly through a kernel table containing kernel function entry points) to the
entry point for the target kernel function. Since the trap instruction is compiled into the
stub procedure, user space programs cannot easily determine the destination address for
the trap, and even if they could, they would be unable to branch indirectly through the
kernel space function table. As a result, a user space program cannot directly invoke a
kernel function, but must use the system-provided stub for doing so. In Exercise 5, you
will add a system call to Linux by adding an entry to the system table for your kernel
function.

3.3 Serial Execution
Linux is a multiprogramming kernel; however kernel functions are normally executed as
if they were in a critical section. That is, once a process calls a system function, the
function normally runs to completion and returns before the CPU will be allocated to a
different process. However, IRQs can interrupt the execution of a system call to perform
an ISR. This is called a single-threaded kernel, since (ignoring the ISRs) only one thread

4/1/2010 Page 24

of execution is allowed to execute in the kernel at a time; one thread of execution cannot
start a function call and become interrupted by the scheduler to let another process run
(and possibly make a kernel call). There are at least two important implications of this
approach:
• A kernel function can update various kernel data structures without being concerned

that another process will interrupt its execution and change related parts of the same
data structures. Race conditions among processes do not occur. (However, race
conditions between the process and interrupt-induced execution may occur.)

• If you are writing a new kernel function you must always keep in mind that you
cannot write code that will block waiting for a message or other resource that can
only be released by some other process. This might produce deadlock in the kernel.

3.4 Daemons
Earlier in this section, we explained how normal processes execute kernel code, that is,
that there are no special “kernel process” which executes kernel code. While this is
accurate, there are several user-transparent processes called daemons, that are started
when a Linux machine is started, and which must exist for correct operation of the
operating system. For example, if the machine is connected to a network, there must be a
process to respond to incoming network packets; another daemon process logs system
messages and errors, and so on. The particular daemons that are running on any Linux
installation varies according to the way the system administrator has set up the machine
(more details of this are explained in the next subsection on booting up a Linux machine).

By convention, daemon processes execute programs whose name ends with a character
“d”, for example the network daemon is usually called inetd, the system logging
daemon is called syslogd, and so on. You can make a good guess as to what daemons
are running on your Linux machine by typing the following line to your shell

ps aux | more

The ps command reports the process status, and the –aux parameters indicate that you
want a report in user format (the u parameter) for all processes (the a parameter)
including those without a controlling terminal (the x parameter). As you scan the list,
look for commands that end with the character “d” and which have a TTY field of “?”
(no controlling terminal). You will normally see syslogd, klogd, crond, and lpd
running on your system. You can find out what each of these daemons are doing by
looking at the manual page (for example use “man syslogd” to read the manual page
for syslogd) for the program that the daemon is running.

3.5 The Booting Procedure
Every computer has a sequence of instructions that are executed whenever the computer
is powered up or restarted. Similarly, every OS has a sequence of instructions that it
executes prior to beginning normal operation. The hardware bootup procedure is
determined by the computer hardware designers when they construct the machine.
Contemporary i386 machines have ordinarily been designed to support Microsoft
operating systems, so they incorporate the Basic Input/Output System (BIOS) at a
prespecified location in the system’s read-only memory (ROM). When the computer is

4/1/2010 Page 25

started, it begins executing from BIOS code. BIOS first runs the manufacturer’s
hardware booting sequence by executing the Power-On Self Test (POST). The POST
performs various diagnostic tests to check the memory and devices for their presence and
for correct operation. The POST usually takes several seconds – possibly even a couple
of minutes. When the POST has completed, the machine is ready to load and start the
operating system.
3.5.1 The Boot Sector

The OS will be loaded from the system’s boot disk. An i386 system treats the A: floppy
disk drive as the default boot disk if it contains a diskette; otherwise one of the system’s
hard disk drives is treated as the boot disk. A boot disk must be configured to contain a
boot record at the first logical sector on the boot disk. The boot record fits into a single
512-byte disk sector (so it is often referred to as the boot sector). The boot sector is
organized as shown in Figure 6 [Beck, 1998; Messmer, 1995].

0x000 0x002 <a jump instruction to 0x0XX>
0x003 … Disk parameters (used by BIOS)
0x0XX 0x1fd Bootstrap program
0x1fe 0x1ff 0xaa55 (magic number for BIOS)

Figure 6: Boot Sector

When the POST finishes executing, the BIOS copies the boot record from the disk into
memory. The boot record also includes various parameters that describe the physical
description of the disk – the number of tracks, the number of sectors per track, and so on
– stored in well-known locations in the boot record. Once loaded, the BIOS program can
read these parameters from the well-known addresses. Further, when the boot record has
been loaded, BIOS branches to the first location in the program. It then immediately
branches to location 0x0XX (the value of XX is 3e for the Linux boot record and 1e for
the MS-DOS boot record). The small program stored in the boot record can now load a
more sophisticated loader from other sectors on the disk; the more sophisticated loader
loads the OS.

Hard disks can have an additional level of abstraction, called disk partitioning. If a hard
disk is partitioned, each resulting partition is treated like a physical disk above the
abstract machine that accesses the physical disk (BIOS, in MS-DOS). A hard disk can be
partitioned to have up to 4 different logical disks, each with its own set of logical sectors.
If a disk partition is a bootable disk partition, then its logical sector number zero will be a
boot sector. In a partitioned disk, the physical head 0, track 0, sector 1 (the first logical
disk sector) contains a partition sector rather than a boot sector. The partition sector
provides information to describe how the hard disk is partitioned into logical disks.
Roughly speaking, the partition sector starts off with a 446-byte program. When the
hardware is powered up, it will go to head 0, track 0, sector 1 and begin executing code.
If the disk is partitioned, there will be a 446-byte bootstrap program at the first byte in the
sector. If the disk is not partitioned, there will be a jump instruction to start the execution
on the boot program stored at location 0x0XX in the sector. After the bootstrap

4/1/2010 Page 26

program, there is a 64-byte partition table for the disk. It contains space for the four
partition entries, each of which describes the portion of the physical disk that is used for
its partition (starting sector of the partition, ending sector, number of sectors in the
partition, and so on). The last two bytes of the partition sector contain a magic number of
0xaa55 to identify the partition sector.

An i386 computer can be booted with Linux by using a Linux boot disk where the boot
record contains a Linux boot program rather than a Windows OS boot program. In cases
where the boot disk is a partitioned hard disk, it is possible to load different operating
systems in different partitions. Windows operating systems can handle multi partition
disks by designating one of the partitions as being the active partition. The system will
always boot from the active partition.

Linux provides a special Linux Loader (LILO) that can be placed in the system boot
record to allow the user to choose at boot time which partition should be the active
partition. In this case LILO is loaded in the boot record so that the BIOS will run it after
the POST.
3.5.2 Starting the Kernel

When the machine is powered up, the hardware fetch-execute cycle begins, causing the
control unit to repeatedly fetch and decode instructions, and the arithmetic-logic unit to
execute them. Intuitively, the hardware is now executing some “process” that we will
call the hardware process. The hardware process is not a Linux process since it starts
when the hardware starts, long before the kernel has even been loaded. After the POST
has completed, the boot record has been read, and the loader has placed the OS into
primary memory, the booting procedure begins to run kernel code to initialize the
computer’s hardware. The computer is then ready to start the kernel by first setting the
CPU in supervisor mode and branching to the main entry point in the kernel. This main
entry point is not an ordinary C program with the conventional main header line, since it
is started in the boot sequence (rather than being started as a conventional main program).

Once the main entry point has been entered, the kernel initializes the trap table, the
interrupt handler, the scheduler, the clock, modules, and so on. Near the end of this
sequence, it initializes the process manager, meaning that it is prepared to support the
normal process abstraction. Logically, the hardware process then creates the initial
process. The initial process is allocated the first entry in the kernel’s process descriptor
table, so it is also referred to internally as process 0, or task[0], or INIT_TASK. The
initial process then creates the first useful Linux process to run the init program, then
the initial process begins to execute an idle loop. That is, the initial process’s only duties
after the kernel is initialized is to use idle CPU time – it uses the CPU when no other
process wants to use the CPU (so it also sometimes referred to as the idle process).

The first real process continues initializing the system, but now using higher level
abstractions than were available to the hardware process. It starts various daemons, the
file manager, creates the system console, runs other init programs from /etc, /bin,
and/or /sbin, and runs /etc/rc (if necessary).

Starting the kernel is a complex procedure, and there are many opportunities for
something to go wrong. There are several places in the procedure where various

4/1/2010 Page 27

alternatives are checked in case the default boot algorithm fails. By the time the kernel
initialization has been completed, the initial process will be enabled and several other
daemons will have been started. Chapter 3 of [Beck, et al., 1998] provides a more
detailed discussion of the steps involved in starting up the kernel.

3.6 Logging Into the Machine
During initialization the kernel will have created one process on each communication
port that can be used to support user logins. These processes are each running a copy of
the getty program (see

Figure 7). The getty process initializes itself, then waits for a user to begin using the
port. When the port begins to be used, getty runs the login program; it expects a user
identification on the first line and a password on the second line. After the port’s login
program obtains the identification and the password, it verifies the user’s identity by
looking up the given identification and password in the system’s /etc/passwd file.
Each entry has the form:
jblow:eNcrYPt123:3448:35:Joe Blow:/home/kiowa/jblow:/bin/bash

Each line in this file is a record for a different user, with fields in the record separated by
the “:” character. In the example record, the user login is “jblow”, “eNcrYPt123” is
an encrypted copy of the password, the next two numbers are the user ID and group ID,
the fifth field is the user’s real name, “/home/kiowa/jblow” is the user’s home
directory, and “/bin/bash” is the path to the shell command line interpreter preferred
by the user. If this authentication is successful, the login process changes the current
directory to the user’s home directory, then executes the specified shell program so that
the user can interact directly with the login process using the shell.

Serial Port A

Serial Port B

Serial Port C

Serial Port Z

login

login

login

login

gettygetty

/etc/passwd

Figure 7: The getty Program

A user who logs into a UNIX machine simply begins using a process that was created
when the machine was started. (There are actually many more details to starting a shell,
but conceptually, this description is accurate.) Thus the user’s process is executing a shell
program (for example the Bourne shell, the C shell, or the Korn shell) with a unique copy

4/1/2010 Page 28

of the data and stack segments for the shell execution. The unique data includes the user’s
environment variables such as the PATH variable. When the user logs off the machine,
the login process returns from its shell call and waits for the next user to login.

3.7 Control Flow in the Machine
Ultimately, the behavior of the computer is controlled by the action of the hardware
process – remember that there is only one hardware process. It will execute the algorithm
shown in Figure 3 until the computer is halted. Even though the kernel may switch from
running one program – an ISR, a user program, and so on – the hardware process
operates at a level of abstraction below the kernel. Therefore the hardware process has no
notion of software process, ISR, or other kernel abstraction; instead, it just fetches and
executes instructions. At this low level view of the behavior of the computer, even
interrupts are nothing more than branch instructions.

Figure 8 provides an intuitive visual description of the behavior of the hardware process.
When the machine is powered up, the hardware process starts executing the fetch-execute
cycle on the BIOS program (including the POST). Eventually it runs kernel code, then
(in this hypothetical example), it executes code on behalf of Linux Process i, then back to
the kernel, then to an ISR, and so on.

Kernel Process jProcess iISRsIdle Process

Hardware Process Starts

Program

Hardware
process

Switch to
another
program

BIOS

Figure 8: The Hardware Process

4 Process and Resource Management
The process manager is responsible for creating the process abstraction that programmers
use, and providing facilities so that a process can create, destroy, synchronize and protect
other processes. Similarly, resource management involves creating appropriate
abstractions to represent entities that a process might request (and block their execution if
the resources are unavailable); besides abstraction, resource managers must provide an
interface by which a process can request, acquire, and release resources.

4/1/2010 Page 29

Address
 Space

Virtual
 CPU

Primary
Memory CPU

Address
 Space

Virtual
 CPU

Address
 Space

Virtual
 CPU...

Kernel
Data

Structures

Kernel
Data

Structures
SchedulerSchedulerIPCIPCProtection

Mechanisms
Protection

Mechanisms
Timers,

Interrupts,
...

Timers,
Interrupts,

...

H
ar

dw
ar

e
Pr

oc
es

s M
gr

A
pp

lic
at

io
n

Figure 9: Process Abstraction

It is useful to summarize the execution of a program at various levels of abstraction to get
a firm understanding of the job of the process manager (see Figure 9):

• Hardware Level. The hardware simply fetches an instruction from the memory
location addressed by the PC, executes it, then fetches the next one, and so on.
The hardware does not distinguish one program from another – they are all simply
instructions in the primary memory. As a result, there is only the notion of the
hardware process executing stored instructions, but no further abstraction such as
a Linux process.

• Process Manager Level. The process manager creates a collection of idealized
virtual machines, each of which has the characteristics of the host CPU when it is
running in user mode. The process manager uses the hardware level to create a
Linux process by using timers, interrupts, various protection mechanisms,
interprocess communication (IPC) and synchronization mechanisms, scheduling,
and a collection of data structures. Applications interact with the process
manager (using the system call interface) to create instances of the virtual
machine (with fork()), to load the address space with a particular program
(using exec()), to synchronize a parent and a child virtual machine (with
wait()), and so on.

• Application Level. Conventional Linux processes are used at the application
level. The process’s address space is the memory of its virtual machine
(containing the text, stack, and data segments), the virtual CPU instructions are
the user mode hardware instructions augmented by the system call interface
functions, and the virtual resources (including devices) are manipulated via the
system call interface.

The process manager must manipulate the hardware process and physical resources to
implement a set of virtual machines. It must multiplex the execution of the virtual
machines on top of the single physical machine. (Linux supports multiprocessor CPUs,

4/1/2010 Page 30

but in this manual we focus only on the single CPU implementation.) It must also
provide facilities to accommodate sharing – protection and synchronization.

Within the kernel code, the terms task and process are used almost interchangeably. In
this book, we will generally use the task terminology when the execution takes place in
supervisor mode and the process terminology when execution occurs in user mode.
When a process is created, it is normally created with a new address space – a set of
virtual addresses that the process can read or write as it executes. From the kernel
perspective, this means that when the hardware process is executing in behalf of process
i, it can read and write only the addressable machine components that correspond to the
virtual address in process i’s address space.

4.1 Running the Process Manager
The portion of the kernel that handles process scheduling (like all other parts of the
kernel) is only executed when a process begins executing in supervisor mode – either due
to a system call or an interrupt (see Figure 10).
• System call. Suppose a process is executing user mode software and it makes a

system call. The process traps into the kernel code to the entry point for the target
function. The function is executed by the kernel task corresponding to the user
process that made the system call. When the function completes its work, it returns to
the kernel so that it can perform a standard set of tasks in the
“ret_from_sys_call” code (a block of assembly language code in the kernel).
This code block dispatches any accumulated any system work – such as handling
signals, completing certain forms of pending interrupt process (called “executing the
bottom halves of pending interrupt handlers”), or scheduling other tasks. The system
call is completed with the calling process in the TASK_RUNNING (ready to use the
CPU when it is available) state, or in the TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE state if the kernel cannot complete the requested work
immediately. If the task is blocked (or it has used all of its time slice) the scheduler is
then called to dispatch a new task.

• Interrupt (IRQ). When an IRQ occurs, the currently running process completes
executing its current instruction, then the task starts executing the ISR (interrupt
service routine) for the corresponding IRQ. Linux differentiates between fast and
slow interrupts. A fast interrupt is one that takes very little time to complete, so
while it is being processed other interrupts are disabled, the interrupt is handled, the
interrupts are reenabled, then the user process is continued. A slow interrupt involves
more work: After the interrupts are disabled, the task executes the ISR. The ISR can
have a bottom half, which has work that needs to be performed before the interrupt
handling is completed, but which does not have to be done in the ISR itself. The
pending bottom half work is scheduled in a kernel queue for the next time that bottom
halves are to be processed (see the ret_from_sys_call processing in the system
call description). Fast interrupts can, themselves, be interrupted; therefore, the queue
of bottom half work can build up when nested interrupts occur. If the same ISR is
invoked two or more times before the bottom halves are run, then the corresponding
bottom half will only be run once even though the ISR executed multiple times.
When the slow interrupt finishes the ISR, it executes the ret_from_sys_call
block of code.

4/1/2010 Page 31

Task is Running

Execute System Function

System Call

IRQ

Execute ISR

SlowFast

Task Continues Running

Sched Bottom Half if needed

Return From System Call

Schedule New Task

Trap

Figure 10: Part of Task Control Flow in the Kernel

4.2 Creating a New Task

A new task/process is created when its parent process invokes the fork() system call.
When the kernel creates a new task, it must allocate a new instance of the process
descriptor so that it will have a data structure to hold all the information it needs to
manage the new task. In the Linux kernel, the process descriptor is an instance of the
struct task_struct data type. The process table keeps the collection of process
descriptors for each task/process. Older versions of the Linux kernel incorporated a static
array of pointers to task_struct instances. The current version has replaced the
static table with a linked list of pointers. In either case, the idle task occupies the first slot
in the list or table (hence the designation of task[0] for the idle process).

Each process descriptor may be linked into one or more lists (besides the process table),
depending on the current state of the process. For example, if the process is in the
TASK_RUNNING state, it is in a list pointed to by a static kernel variable (named
current) indicating which processes are currently ready to use a CPU. If it is blocked
waiting for an I/O operation to complete, then it appears in a list of processes waiting for
an interrupt from the device. You will begin a detailed study of the struct
task_struct in Exercise 1, culminating in Exercise 9.

The fork() system call creates a new process by performing the following steps:
1. Allocate a new instance of a struct task_struct and link it into the task

list.
2. Create a new kernel space stack for the task to use when it is executing in the

kernel.
3. Copy each field from the parent’s task descriptor into the child’s task descriptor.
4. Modify the fields in the child’s descriptor that are specific to the child.

• Save the new process identifier (PID)
• Create links to this task’s parent and siblings.

4/1/2010 Page 32

• Initialize process-specific timers (such as creation time, time left in the current
time slice, and so on)

5. Copy other data structures that are referenced in the parent descriptor and which
should be replicated for the child process.
• Create a file table and a new file descriptor for each open file in the parent’s

file table.
• Create a new user data segment for the child task, then copy the contents of

the parent’s user data segment into this new segment. (This could be very
time-consuming, since the data segment could contain megabytes of
information.)

• Copy information regarding the signals and signal handlers.
• Copy virtual memory tables.

6. Change the child’s state to TASK_RUNNING and return from the system call.

Of course an execve() system call will also greatly influence the contents of the
process descriptor, since it causes the process to load and execute a different program
than it was executing when it called execve(). Briefly, the execve() code causes
the kernel to find the new executable file in the file system, to check access permissions,
to adjust the memory requirements as necessary, then to load the file for subsequent
execution. This will require that the details of the memory references in the process
descriptor be updated.

The Linux kernel also includes a system call named clone(), that is intended to be
used to support threads. The clone()and fork()call both invoke the internal kernel
function named do_fork(), so they behave almost the same. The difference is in the
way that the parent and child data segment is handled: While fork() copies the data
segment, clone() shares it (and most of the rest of the parent’s address space) between
the parent and child tasks. Beck, et al. [1998] point out that even though the POSIX
interface specifies calls to invoke threads, and that clone() is intended to support
threads, that the 2.0.x versions of the kernel use the Pthread library to implement them.

4.3 The Scheduler
The scheduler is the kernel component responsible for multiplexing the CPU among the
programs in memory, that is, among the processes that are in the TASK_RUNNING state.
It incorporates the policy used to select the next process to be allocated the CPU. The
schedule() kernel function can be called via a trap, and it is also called as part of the
ret_from_sys_call code block – so it always runs as a task that is associated with a
user process or with an interrupt. The scheduler is responsible for determining which
runnable task has the highest priority, then for dispatching that task (allocating the CPU
to it). In Exercise 9 you will study the Linux scheduler in detail.

4.4 IPC and Synchronization
There are two distinct synchronization mechanisms used in Linux – one used within the
kernel code itself, and the other to provide synchronization mechanisms for user
processes. The kernel always executes as a single task invoked via the system call
interface, or as activity caused by an interrupt. Kernel activity can never be interrupted
by a system call, since when either an interrupt is being handled or a system call is being

4/1/2010 Page 33

processed, then no user process can issue a system call. Therefore, the primary need for
synchronization within the kernel is to be sure that interrupts do not occur while the
current kernel code is in a critical section. This is satisfied by disabling interrupts at the
beginning of the critical section (using the cli()— CLear Interrupt – kernel function),
then reenabling them (using the sti()— SeT Interrupt – function) when the critical
section is complete.

The external synchronization mechanism is based on an event model. The kernel
implements an abstract data type called a wait_queue to manage events. Each event
has a corresponding wait_queue; a task can be added to a designated wait_queue
using the add_wait_queue(), kernel function. Correspondingly, the
remove_wait_queue() kernel function removes a single task from the designated
wait queue. This abstract data type is the basis of any system call to perform
synchronization, such as the System V semaphore system calls. You will learn more
about the wait_queue in Exercise 8.

There are four different mechanisms by which a user process can perform IPC using the
kernel:

1. Pipes (and named pipes). These mechanisms export the same interface as files, so
much of the implementation is like a file. A pipe uses a 4 KB circular buffer to
move information from one address space to another via the file read() and
write() system calls. From a process management perspective, this procedure is
straightforward. There is more discussion of pipes in Exercise 2.

2. System V IPC. This interface allows user processes to create IPC objects (such as
semaphores) in the kernel. The kernel allocates the data structure instance, then
associates it with a user-space identifier that is shared among user processes. In the
case of semaphores, one process creates the semaphore, then others manipulate it
using the external reference and operations. The semaphore semantics are
implemented using a wait_queue instance. System V messages generalize this
approach so that structured messages can be saved/retrieved from kernel data
structures.

3. System V shared memory. The shared memory facility is the generalization of the
System V IPC mechanism. In this case, a block of memory is allocated in the
kernel, then an external reference is used by different processes to access the
memory. You will study the shared memory implementation in Exercise 6.

4. Sockets. This mechanism is a special case of the network socket funtionality. A
socket implementation requires that the kernel allocate and manage buffer space
and socket descriptors. These kernel entities are normally used by the network
code, though they can also by used in the “UNIX name domain” as a specialized
form of pipe. They differ from pipes in that a socket is full duplexed, and is
designed to use a protocol for reading and writing information.

4.5 Protection Mechanism
The primary form of protection used in the kernel is address space isolation. This
depends on a process being able to define a set of virtual addresses that cannot be read
nor written by any other process (except using the IPC and memory sharing mechanisms

4/1/2010 Page 34

mentioned in the previous section). In Linux the address space protection scheme is built
into the virtual memory mechanism, discussed in the next section.

The other predominant protection mechanism is file protection. Processes and files are
associated with users: Each file has an owner user, identified by a user ID (uid). A user
can be associated with one or more groups, each having a group ID (gid). Each file
enables read, write, and execute permission for the file owner, a process that is in the
same group as the owner, or any other process (called world permissions). The kernel
enforces this model by carefully checking permissions whenever it manipulates a file.

5 Memory Management
The memory manager is responsible for:
• Allocate blocks of the system’s primary (or executable) memory upon request.
• Ensure exclusive control of a block once it has been allocated.
• Provide a means by which cooperating processes can share blocks of memory with

one another.
• Automatically move information between the primary and secondary memory.

Linux uses a demand paged virtual memory model as the basis of its memory
management design. In this model each process is allocated its own virtual address
space. Processes reference virtual addresses, and the system maps each such reference
into a primary (also called physical) memory addresses prior to accessing the memory
location. The kernel and the hardware, together, ensure that the contents of the virtual
memory location are placed into the physical memory, and that the corresponding virtual
address is bound to the correct physical memory location when it is referenced by the
process.

Like all demand paged virtual memory managers, the basic unit of memory allocation
and transfer is a page. In the i386 implementation each page contains 212 (4,096) bytes.
Since Linux uses a paged virtual memory approach, the general characteristics of the
manager’s responsibilities are that:
• Blocks are allocated and deallocated as physical memory page frames.
• The protection mechanism is on a page-by-page basis.
• The memory sharing is based on pages.
• Automatic movement through the memory hierarchy is controlled by moving pages

back and forth between the secondary and primary memories.

5.1 Managing the Virtual Address Space

Each process is created with its own virtual address space. In the i386 architecture a
virtual address is 32 bits wide, meaning that the space contains addresses for 4 GB. Since
a page is 212 bytes, this means there are 220 pages in an address space.

Each virtual address space is divided into segments – a 3 GB user segment and a 1 GB
kernel segment. A programmer can use any address in the user segment to reference all
of its code and data by having the OS map information into specific virtual addresses.
Unmapped virtual addresses are simply not used. The virtual addresses in the kernel
segment are permanently mapped and are associated with fixed physical memory
addresses used by the kernel. This means that every process’s virtual address space

4/1/2010 Page 35

shares the same kernel segment, since the kernel virtual addresses all map to the physical
addresses used by the kernel.

Each of the kernel and user segments is further partitioned into code and data sectors.
Each virtual address contains a sector identification and offset within the sector. When
the CPU is in the instruction fetch phase, it always references a code sector (in either the
user or kernel segment). Therefore, the compiler does not bother to generate the sector
identification as part of the address used by an instruction (there is no need to have
special object code formats for Linux).

Whenever a process is executing, its state includes a segment selector. If the process is
executing in user space, then the segment selector is set to user, but if it is executing in
the kernel segment the selector is set to kernel. The memory manager forms the
virtual address by using the value of the segment selector with the offset address provided
by the process. Linux provides macros for setting the segment selector for each of the
four segments in the virtual address space.

When a process is initialized, it defines its virtual address space by specifying the set of
virtual addresses that it will be using. The kernel provides a function named
do_mmap(), that reserves a set of virtual addresses in the virtual address space. Part of
the procedure to determine the virtual addresses to be used, then, is to read the executable
file to determine the load map (and virtual addresses) for the executable file. The
do_mmap() function is called by execve() when it loads a file. Other parts of the
OS can also call do_mmap(); for example, the brk() system call also invokes
do_mmap() when it needs to add more space to the heap used to support malloc().
Once virtual addresses have been mapped, the corresponding file contents are associated
with a block of virtual addresses. However, the contents of the virtual addresses are
stored in the secondary memory (on the disk) where they will remain until they are
referenced as the process executes in the virtual address space.

5.2 The Secondary Memory
A paging system is designed to have (the mapped part of) each process’s virtual address
space defined in the secondary memory. The Linux system may be configured so that an
entire disk partition is dedicated to holding these virtual address spaces, or the virtual
address spaces may be saved in individual files kept in an ordinary partition. For
historical reasons, this disk partition is called a swap device, or if files are used then each
file is called a swap file. (In some operating systems, for example Windows NT, these
entities are more accurately called paging disks and paging files.) There can be a
compile-time constant (MAX_SWAPFILES) number of swap devices or files – the default
value is 8.

When a virtual address is mapped, corresponding physical space is reserved in the swap
device/file. However, no primary memory is allocated or loaded as a result of the
mapping operation. When the process is ready to run, then the pages that contain the
entry point of the program it is using are loaded into the primary memory. As the process
executes, the memory manager translates each virtual address referenced by the process
into the physical address containing the information that was copied from the swap
device/file when the page was loaded.

4/1/2010 Page 36

5.3 Handling Missing Pages
The system address translation mechanism (see the next section) can determine that the
process is referencing a missing page that is not currently loaded in the primary memory,
but which is defined in the swap device/file. When the process references a missing
page, the memory manager copies the missing page from the secondary memory into the
primary (physical) memory. Page loading requires that the memory manager find the
target page in the swap device/file, copy it into a physical memory page frame, adjust the
appropriate page translation table(s), then to complete the memory reference.

Each page frame in the primary memory has a kernel data structure of type mem_map_t
to provide details about the state of that page frame. A node of type mem_map_t may
appear in various lists, depending on whether the page is unallocated, locked, shared, and
so on. If the page is loaded, then the mem_map_t instance references the inode and
offset of the file where the page is stored in the swap device/file. All other information
required to manage the page frame (such as locking and sharing) is kept in the
mem_map_t data structure.

Suppose that the manager has determined that it needs to load a page into a page frame.
The memory manager first attempts to acquire a block of new page frames for the process
by calling an internal kernel function, __get_free_pages(). In this function, a
parameter is used to select a strategy to be used in seeking a page frame – for example if
an interrupt routine is searching for space, it is treated differently than if a user process is
requesting space. The size of the block is a kernel compile-time parameter, normally set
to allow blocks to be up to 32 pages. Page frames are managed as a free list of blocks of
size 2k page frames. Page frame blocks are allocated by finding the right size of block, or
by splitting a larger block. If there is no block available, then the page manager attempts
to free space. Blocks may have been allocated to the file system to buffer pages being
read or written by block devices (see Exercise 12), so the page manager first looks to see
if there is a block that can be deallocated from the buffer pool. If no block can be found
there, the page manager next attempts to reclaim page frames that were reserved for
System V shared memory (see Exercise 6). If the block request still cannot be satisfied,
the page manager begins looking at all page frames allocated to hold user space portions
of virtual address spaces using an approximation of a global least-recently-used (LRU)
replacement algorithm.

If a page has to be removed from the physical memory, then the page manager checks to
see if it is dirty – meaning that it has been written to, so that it is different from the copy
that exists in the swap device/file. If a page is not dirty there is no need to write it back to
the swap device/file.

5.4 Address Translation
The Linux memory manager uses a demand paged virtual memory strategy. Processes
issue virtual addresses (that have already been mapped), and the memory manager is
responsible for determining if the corresponding page is loaded in some physical memory
page frame or not. If it is not loaded, the page is found in the secondary memory (the
disk), then it is loaded into a page frame in the physical memory as described in the
previous section. If the page is currently loaded in some page frame in the physical

4/1/2010 Page 37

memory, the virtual address is translated into the appropriate physical memory address.
The physical memory location can then be read or written as desired.

Linux defines an architecture-independent memory model that transcends current-day
CPUs and memory management units (MMUs), so it includes components are not used in
the i386 implementation. In the general model, a virtual address is translated into a
physical address using a three-level map. A virtual address, j, is partitioned into four
parts:
• A page directory offset, j.pgd.
• A page middle directory offset, j.pmd.
• A page table offset, j.pte
• And the offset within the page, j.offset.

j.pgdj.pgd j.pmdj.pmd
Virtual Address

Page
Directory

Page
Directory
Base

Page

Page
Table

Page Middle
Directory

j.ptej.pte j.offsetj.offset

Figure 11: Virtual Address Translation

If a page is loaded into the physical memory, the physical address, i, for a virtual address
j is determined by:

i = PTE(PMD(PGD(j.pgd) + j.pmd) + j.pte) + j.offset

where PGD represents the page directory table, PMD represents the page middle
directory table, and PTE represents the page table. Conceptually (see Figure 11), this
means that the virtual address is first divided into the four parts, then the j.pgd part is
used to locate an entry in the page directory. This page directory entry references the
base of a page middle directory and the j.pmd part of the address is used as offset into the
designated page middle directory. This references an entry in the page middle directory
that points at the base of the page table to be used. The j.pte portion of the virtual address
is an offset in the page table that references a page descriptor containing the physical
address of the first location in the page frame that contains the target page. Finally the
page offset, j.offset, is added to the page frame address to determine the physical memory
address, i, for the virtual address, j. Of course, if any map is undefined, a missing page
interrupt will be generated during address translation, causing the page manager to load
the page and to then map the virtual address.

4/1/2010 Page 38

The i386 microprocessor and compatible MMUs do not have sufficient hardware to
support the full three-level translation process, so in this architecture only two of the
three levels of translation are implemented. This is accomplished by reducing each page
middle directory to contain only a single entry; this means that the j.pmd part of the
address is not used since the page directory entry points directly at the single entry in the
page middle table.

6 Device Management
There are two basic approaches to device management in Linux: Using polling to
determine when a device has completed an operation, and using interrupts. In the polling
case (see Figure 12) the user process performs an I/O request (for example a read
system call on a device) at the system call interface, causing the device driver to start the
device. The corresponding task then periodically polls the device to inspect its status to
determine when the device has completed the operation.

Device
Driver

Device
Driver

St
at

us

 I/O Request

Device

User Space
Kernel Space

C
om

m
an

d

Po
ll

fo
r S

ta
tu

s
C

al
l

R
et

ur
n

Figure 12: Polling Mode I/O

Device
Driver

Device
Driver Bottom

Half
Bottom

Half

ISRISR

IRQ

 I/O Request
(Process Blocks)

Device
SchedulerScheduler

ret_from_sys_call

Process Resumes
User Space

Kernel Space

Figure 13: Interrupt Mode I/O

4/1/2010 Page 39

In interrupt mode I/O, a device driver, interrupt request (also called IRQ), interrupt
handler (also called interrupt service routine or ISR), and a device bottom half may be
involved in carrying out the operation. As described in Section 4.1 and summarized in
Figure 13, when a process issues an I/O request to the kernel the device driver checks the
status of the device, and if it is available, starts the device on the I/O operation. The task
blocks in state TASK_INTERRUPTIBLE while the device is performing the I/O it
requested. Meanwhile, the device operates autonomously until it completes the
operation, at which time it issues an IRQ to the CPU. The IRQ causes the ISR that is
associated with the IRQ to be executed; the ISR performs a minimum of the processing
tasks associated with the completion of the operation, and marks its bottom half for later
processing if necessary. Once the ISR (and all other ISRs that might have interrupted the
original ISR) has completed, the ret_from_sys_call code block is executed. This
block of code (so-named because it is also run when any system call is completed) runs
all marked bottom halves, marks the completed processes as ready (TASK_RUNNING),
then calls the scheduler. Ultimately the scheduler will dispatch the subject task and it
will resume operation following its I/O request.

Interrupt mode is generally the preferred I/O technique, since it allows the CPU to be
allocated to other processes whenever one process is waiting for an I/O operation to
complete. However, polling may be used in any of the following situations:

• The I/O operation is so critical to the complete operation of the system that it is
deemed worthwhile to have the CPU poll the device for completion without the
possibility of other processes running in the meantime.

• The I/O operation is very fast, and the overhead of interrupt management is not
considered to be worthwhile.

• The hardware device does not have an interrupt capability.

For the remainder of this discussion, we will focus on interrupt I/O mode.

6.1 The Device Driver
Device drivers and devices are referenced using major and minor numbers. A major
number is associated with each device driver that will be used by the Linux kernel.
(Device driver major number reservation is a manual procedure whereby a designated
person decides which device drivers are “standard” and should have a permanent major
number assigned to them.) For example, major number 6 is associated with parallel
interfaces, 21 with a SCSI interface, and so on. Temporary major numbers can be
assigned while a device driver is being debugged. Each device driver can be used with
more than one different physical device, for example a single device driver for a hard
disk drive can be used with multiple disk drives on a given machine. The minor number
is used to distinguish among the physical devices that use a particular device driver.

UNIX devices are classically divided into block devices and character devices. A block
device is one whose physical characteristics allow blocks of data to be referenced in any
order. A character device reads or writes a single character at a time, and the data must
be read or written in sequential (byte stream) order. Even though some block devices
allow reading of the blocks in random order, buffering is used with block devices but not
with character devices. (The file manager is able to predict the order in which blocks will
be read, so it can direct the input and output buffering – see the next section.) The APIs

4/1/2010 Page 40

for the two classes are different, meaning that the functions implemented in a block
device driver are different than for a character device driver. Linux maintains the general
distinction, but the differences between the APIs for devices of the two classes are much
smaller than in UNIX systems.

When a machine is booted, the device drivers are normally registered with the OS.
(Linux modules can be used to implement device drivers, and they need not be registered
until run time – see Exercises 4 and 10.) There is a kernel function that is called to
register a device. The kernel function requires the major number, a character string name
for the device, and a list of type struct file_operations that identifies the entry
points for every device operation supported by the driver:
check_media_change()
fasync()
fsync()
ioctl()
lseek()
mmap()
open()
read()
readdir()
release()
revalidate()
select()
write()

The API for the device driver is the same as the file operation API for the file manager.
This registration process saves the device driver name and file operations in either the
chrdevs[]or blkdevs[] kernel table (depending whether the device is a character or
block device), using the major number as the table index. A temporary major number is
assigned to the driver if it is registered with a major number of 0.

6.2 Handling Interrupts
Section 4.1 provides a general description of how IRQs and ISRs are used to respond to
the occurrence of an interrupt. The ISR is associated with a particular IRQ using an
explicit kernel function, request_irq(). This function has arguments to specify the
IRQ, whether the ISR is for a fast or slow interrupt, the entry point of the ISR, and an
argument of type void * that can be used to pass arbitrary information (specified as an
argument to request_irq). If the IRQ already has an ISR associated with it, the
request fails.

There are a limited number of IRQ identifiers in a computer – the number being
determined by the hardware. If two different devices must use the same IRQ, a master
ISR must demultiplex IRQs to a collection of ISRs. It does this by polling the hardware
to determine which device actually caused the IRQ, then it selects the proper ISR from
the collection.

The ISR can be constructed to perform any work that is needed to complete the I/O
operation after the devices finishes. For example, it might check the device status to
ensure that the operation completed successfully. If the operation was a read operation, it
might also transfer data from the device buffer to primary memory.

4/1/2010 Page 41

Recall that ISRs are expected to run quickly, even if they do not have interrupts disabled.
In cases where one instance of an ISR might get interrupted by a second instance of the
same ISR (such as multiple clock ticks that might occur while some series of ISRs are
being executed), parts of the ISR work can be relegated to a bottom half. The ISR can
then mark the bottom half for later execution, effectively postponing some of its
processing. When ret_from_sys_call runs, it will detect the marked bottom half
and run it before calling the scheduler.

A maximum of 32 different bottom halves can be marked for execution. If there is still
more postponed processing required (and no available bottom half marker slot), the work
can be enqueued in a task queue for subsequent execution. A task queue is a list of
functions with the prototype
void (*routine)(void *);

that will be executed, one after the other, after the bottom halves have all been run. The
task queue functionality distinguishes among functions that are scheduled with interrupts
disabled, from within an ISR or bottom half, or under any other circumstance.

7 File Management
The Linux file manager defines a single internal (application software) view of files that
can be used to read and modify files written onto a storage device using a variety of file
managers. For example a disk that contains files written using MS-DOS (or a Windows
OS with DOS compliant format) can be read or rewritten by a Linux application using the
Linux file manager. The internal Linux view of a file is that it is a named byte stream
that can be saved in the secondary storage system. The byte stream is fragmented into a
set of blocks, then the blocks are stored on the secondary storage device according to a
strategy chosen by a particular type of file system. The file manager fetches and puts the
blocks that contain the portions of the byte stream that an application program writes or
reads. That is, the file manager is responsible for determining which disk blocks should
be read or written whenever any part of the byte stream is read or written.

The Linux file manager is designed so that application programs use a fixed set of
functions to manipulate files – open(), close(), lseek(), read(), write(),
ioctl(), and so on, as specified by the POSIX interface. A file system independent
part of the file manager handles generic aspects of the work such as checking access
rights, determining when disk blocks need to be read or written, and so on. There is
another part of the file manager that handles all file system dependent aspects of the job,
such as determining where blocks are located on the disk, directing the device driver to
read or write specific blocks, and so on. The two combined parts enable Linux to provide
a fixed set of operations at the API, yet to handle files on disks even if the files were
written using a Windows OS, MINIX, or some other OS.

The Linux file manager API is built on an abstract file model that is exported by the
Virtual File System (VFS). The VFS implements the file system independent operations.
OS designers provide extensions to the VFS to implement all required file system
dependent operations; the Version 2.x release can read and write disk files that conform
to the MS-DOS format, the MINIX format, the /proc format, a Linux-specific format
called Ext2, and others. Of course this means that specific file system dependent

4/1/2010 Page 42

components are included in Version 2.2.12 to translate VFS operations and formats
to/from each of the external formats that are supported. This discussion focuses on the
VFS model. In Exercises 11 and 12 you will create your own DOS-like file system to use
with VFS.

VFS Switch

Linux File Manager System Call Interface

MS-DOS
File System

MINIX
File System

Ext2
File System

/proc
File System

Figure 14: The Virtual File System Switch
The heart of VFS is the switch, which provides the canonical file management API to
user space programs, and which also establishes an internal interface used by the different
file system translators that support MS-DOS files, MINIX files, Ext2 files, and so on (see
Figure 14). A new file system can be supported by implementing a new file system
dependent (“translator”) component. Each such translator provides functions that the
VFS switch can call (when it gets called by a user program), and which can translate the
external file representation into the internal one. Thus the translator is responsible for
determining the strategy used to organize disk blocks on the disk device, for reading and
writing disk properties, for reading and writing external file descriptor information, and
for reading and writing the disk blocks that contain file data.

The VFS file system model is patterned after conventional UNIX file systems. A VFS
file descriptor is called an inode (though it has its own unique format to support the
multiple file system approach). While VFS will contain its own format for a file
descriptor, each file system dependent translator converts the contents of the external
descriptor into the VFS inode format when the file is opened. VFS then operates on its
own inode data structure. Conversely, when the file is closed, the contents of the internal
inode are used to update the external file descriptor.

The VFS inode contains the file access rights, owner, group, size, creation time, last
access time, last time the file was written, and so on. The inode also reserves space for
the pointer mechanism that the specific file system uses to organize the disk blocks, even
though VFS does not know how these pointers will be organized (that information is
encapsulated in the file system specific translator component). VFS also supports
directories, so it presumes that the external file directories contain at least the name of
each file stored in the directory, and the address of its file descriptor (almost all file
systems contain this minimum amount of information).

VFS assumes a minimum structure on the disk organizations:

4/1/2010 Page 43

• The first sector on the disk is a boot block used to store a bootstrap program (recall
the earlier discussion of the bootstrap process in Section 3.5). The file system does
not really use the boot block, but it does presume that it is present on every file
system.

• There is a superblock, containing disk-specific information such as the number of
bytes in a disk block.

• There are external file descriptors on the disk that describe the characteristics of each
file.

• There are data blocks that are linked into each file to contain the data.

Before VFS can manage a particular file system type, a translator for that type must be
written, then it must be registered with VFS. The VFS register_filesystem()
function informs VFS of basic information it will need including the name of the file
system type and the entry point of a file system’s read_super() function that will be
used when the file system is mounted.

7.1 Mounting the File System
Computers with storage devices that have removable media (such as tape drives and
floppy disk drives) must be able to change the system’s file structure each time a medium
is placed in, or removed from, the device. VFS uses the conventional UNIX mechanism
to allow such file systems to be combined into the system’s directory hierarchy (but of
course Linux allows heterogeneous file systems to be combined whereas conventional
UNIX only combines homogeneous file systems). The mount() command appends a
new file system into an existing directory hierarchy. It does this by replacing a directory
in the previously mounted file system by the root of the new file system when the
corresponding replaceable medium is placed on the system.

For example, suppose a system contains an optical disk reader. When a particular optical
disk is placed in the reader, the mount operation requests that the file manager graft the
directory subtree of the optical disk onto an existing file system tree. The device root is
treated as a directory in the existing file system hierarchy (see Figure 15). In the example,
the file named ”c” has an absolute path name of /a/c since directories “a” and “b” are
combined as the mount point. After the file system has been mounted, it can be accessed
through all normal directory operations, including relative and absolute path names and
directory traversal operations. When the file system is to be removed, an unmount()
command is sent to the file manager. This command prevents access attempts to a part of
the file hierarchy no longer existing.

4/1/2010 Page 44

/

a

b

...

...

/

*b

b

...

...

mount b at a

c

c

Figure 15: The UNIX mount Command

When a file system is mounted, VFS creates an instance of the struct
super_block data structure to hold information it needs to administer the new file
system. VFS then calls the new file systems’s read_super() to retrieve the
information contained in the file system’s analog of the superblock (from the storage
device) and to translate this information and save it in the struct super_block data
structure. This superblock includes various fields that VFS needs to administer the file
system, particularly the field:

struct super_operations *s_op;

This s_op field specifies a collection of functions to write the superblock back to the
disk, to read and write inodes on the disk, to check the superblock status, and so on.
Thus, read_super() is the “bootstrap” function that is bound to VFS when the file
system type is registered. After VFS reads the superblock at mount time, the VFS can
use the super_operations to manipulate the on-disk superblock as needed. Another
way of thinking about the super_operations is that they define a public interface
for a private on-disk superblock abstract data type, thus making it possible for the
translator to “implement” superblocks and inodes as it chooses.

7.2 Opening a File
When a file is opened, the file manager searches the storage system for the specified path
name. Searching can be an extended procedure, since it is necessary to open each
directory in the path name (starting at the highest-named directory in the path), to search
the path for the next file or directory in the path name, to open that directory or file, and
so on. If the search encounters a mount point, then it moves from one file system to
another and continues the search. This means that the search may begin in, say, an Ext2
file system, but ultimately find the file in an MS-DOS file system. Once the file has been
found in a directory VFS checks the file and user permissions to ensure that the user’s
process has permission to open the file. If the process has the correct permissions, VFS
will set up various table entries to manage the I/O. First, an entry is created in the
process’s file descriptor table (see Figure 16). There is one file descriptor table for each
process, and each open file has an entry in the table. An entry is identified by a small
integer value returned by the call; this identifier is used for all subsequent references to
the file. Note that when the process is created the file descriptor table is created with

4/1/2010 Page 45

three entries: stdin has an entry identifier of 0, stdout has a value of 1, and stderr
has a value of 2. The next successful open or pipe call will create an entry in the file
descriptor table at location 3.

The entry in the file descriptor table points to an entry in the open file table called a file
structure (it has type struct file). The file structure entry keeps status information
specific to the process that opened the file for the process. For example, the value of the
file position for this process’s use is in the file structure entry; if two different processes
have the file open, then each will have its own file structure entry, and hence its own
copy of the file position. The file structure entry references the VFS inode after it has

been constructed into primary memory.

fid = open(“f_name”, flags);
…
read(fid, …);

Application Program

User Space

Kernel Space
stdin
stdout
stderr
f_name3

2
1
0

 Process’s
File Descriptor
 Table

File Structure
 Table

File inode

Figure 16: Kernel File Tables

The in-memory inode is created by the VFS by reading the external file descriptor (using
the read_inode() function specified in the superblock s_op list) and translating it to
the VFS inode format. Just as the superblock provides a field for a list of
super_operations, the inode provides a field to define a list of inode operations

struct inode_operations *i_op;

The struct inode_operations are a list of operations that VFS will need to
manipulate blocks that make up the file, for example create(), lookup(), link(),
and mkdir(). There is also a list of default operations that are used if the i_op list
does not provide an operation.

When inodes are allocated in the VFS, they are allocated to a single, large linked list.
This is useful whenever the VFS intends to scan all inodes. However, access is slow
when the VFS wants to reference a particular inode. Therefore, inode references are also
entered into an open hash table, where they can be accessed with a few (possibly a single)
table probe.

Changes to the in-memory version of the inode are not propagated to the external file
descriptor on the storage device the moment the file manager changes them. Instead, the

4/1/2010 Page 46

in-memory version of the inode is used to update the external file descriptor in the
secondary memory periodically, when the file is closed, or when the application issues a
sync command. If the machine halts while a file is open, changes to the in-memory
inode are likely to be different than the contents of the external file descriptor on the disk
if there have been any recent changes to the inode. The result can be an inconsistent file
system, since the most recent information about the file is lost when the in-memory inode
is destroyed. For example, if block pointers in the in-memory inode have changed (with
corresponding changes to disk blocks), then the disk may have an external file descriptor
that is inconsistent with pointers in various storage blocks on the disk.

7.3 Reading and Writing the File

An instance of struct file (entry in the file structure table) is created when the file
is opened. There is a field in the struct file for

struct file_operations *f_ops;

that specifies the entry points for read(), write(), lseek(), select(), and so
on, that are used to perform the file system specific I/O operations. There is also a set of
default file_operations specified in the inode, so that if any particular file
operation (like lseek()) is not specified in the f_ops list, the function from the
default list will be used.

The essential purpose of these routines is to move information back and forth between
user space addresses and the secondary storage blocks. The read() function invokes
the file system specific operations to transfer data from the disk to a system buffer, then
to copy the requested number of bytes from the system buffer to the user space address.
The write() function moves data from a user space address into a system buffer where
it will be written to the disk. These routines must also marshall and unmarshall the byte
stream.

Files are organized as sequential byte streams. One implication of this is that
applications normally read or write the file as a sequence of bytes rather than randomly
accessing characters in the file. As a consequence, buffering can be used to substantially
increase the performance of the system. In read buffering, the file system reads ahead on
the byte stream, fetching disk blocks that hold parts of the byte stream that appear after
the byte currently addressed by the file pointer. In write buffering, when a disk block
becomes full, it is staged for writing whenever the disk device becomes available. The
result is that the application need not wait for incoming buffers since they will have
already been read when they are referenced, and it need not wait for write operations
since they will take place as a background activity after the application has logically
written the bytes to the stream.

Linux attempts to use as much of the primary memory as it can to provide input and
output buffers. It creates a dynamic buffer cache whose size depends on the number of
page frames that are currently required to support virtual memory. Pages that are not
needed by the virtual memory system can be used in the buffer cache. When a page fault
occurs, the buffer cache is one of the first places that the virtual memory system will
search for page frames.

4/1/2010 Page 47

Block buffering is a relatively complex task. This part of the file manager must satisfy
each of the following constraints:
• Each file open for reading should have one or more buffers containing information

that has been read from the disk before the process has actually requested the
information.

• Each file open for writing has a set of buffers containing information that is to be
written to the device whenever the device is available.

• Output full blocks that are the same as blocks on the storage device should not be
written.

• When the virtual memory does not need all of physical memory, the buffer cache
should be made larger; when the virtual memory needs more physical memory, the
buffer cache size should be reduced (without effecting ongoing I/O).

• Buffers can be of varying size.
• Buffers can be shared among processes.

7.4 The Ext2 File System
The Ext2 file system is patterned after the BSD Fast File System [McKusick, et al.,
1996]. Specifically, the disk is formatted to contain a set of block groups, each of which
contains a superblock, group descriptor information, a table of inodes for the files in the
block group, and the data blocks. The superblock contains the following information:
• Number of inodes
• Number of free inodes
• Block details
• Allocation limits
• Last mount and write times
• Errors and status
• Other housekeeping information

A block descriptor is used to keep the details of the blocks within a particular block
group. A block can contain up to 8192 blocks for disk block sizes of 1024 bytes (each
block is of size 1024 = EXT2_MIN_BLOCK_SIZE < EXT2_BLOCK_SIZE <
EXT2_MAX_BLOCK_SIZE = 4096 bytes). The block descriptor also includes the set of
inodes for the files in the block group.

The inode uses a variant of an indexed allocation scheme for organizing blocks. It
contains pointers to 15 different storage blocks (see Figure 17). The first 12 blocks of the
file are indexed directly from the first 12 of 15 pointers in the inode. The last three
pointers are used for indirect pointers through index blocks. If the file manager is
configured with the maximum size 4KB blocks, the 12 direct pointers in the inode
accommodate files up to 48KB. If a file requires more than 12 blocks, the file system
allocates an index block and links it into the single indirect (thirteenth) pointer of the
inode. Hence, blocks 13 to k are indirectly addressed from the inode via the indirect
block identified by the thirteenth pointer in the inode. Similarly, larger files use the
fourteenth pointer to address a double indirect block, and the largest files use the fifteenth
pointer to point at a triple indirect block.

4/1/2010 Page 48

How big can UNIX files be? This depends on the size of the blocks and the size of the
disk addresses used in the system. To simplify the arithmetic, suppose an indirect block
can store 1,000 disk addresses (ordinarily, the number of disk addresses would be a
power of two such as 1,024). Then the single indirect block will provide pointers to an
additional 1,000 disk blocks. Blocks 0 through 11 are accessed via the direct pointers in
the inode, but blocks 12 through 1,011 are accessed indirectly through the single indirect
block. The fourteenth block pointer in the inode is the double indirect pointer. It points to
a block that contains pointers to blocks of the type referenced from the single indirect
field. The double indirect pointer addresses a block pointing to 1,000 indirect blocks, so
blocks 1,012 to 1,001,011 are accessed through the double indirect list. The fifteenth
block pointer is the triple indirect pointer. It points to a block that contains double
indirect pointers. Again, if each block can store 1,000 block addresses, then the triple
indirect pointer indirectly addresses blocks 1,001,012 to the maximum-sized file (under
these assumptions) of 1,001,001,011 blocks.

Permissions
Owner

*1-Indirect

*Block 0
...

Size

...
*Block 11

*2-Indirect
*3-Indirect

...

inode
Data

Index

DataData

DataDataData

Index
DataDataData

Index
DataDataData

Index

Index

Index
DataDataData

Index
DataDataData

Index

Index

Figure 17: Ext2 File Structure

With this block allocation strategy, very large files are possible, even though as files
grow larger, the access times are greater due to the indirection. There are other
considerations (designed into the inode structure) that prevent a file from reaching this
maximum size. For example, with the block sizes given previously, a file using the triple
indirect index would require that there be a device capable of storing 4000 GB. Current
versions of BSD UNIX do not use the triple indirect pointer, partly because of
incompatibility of file sizes with storage device technology and partly because the 32-bit
file offsets used in the file system preclude file sizes larger than 4GB.

8 Learning More About Linux

Linux continues to grow in popularity, so there are many excellent sources of information
to learn more details. The Exercises in the next part of the book focus on details for

4/1/2010 Page 49

learning about certain aspects of Linux, but the areas not covered by the Exercises are
discussed in these other sources.

The Linux Documentation Project
(http://metalab.unc.edu/mdw/Linux.html) is an excellent on-line
collection of articles about all aspects of Linux. The second edition of the Linux Kernel
Internals book by [Beck, et al., 1998] is also an excellent reference for describing the
organization of the Version 2.0 kernel, and for explaining many of the details of how
individual parts of the kernel are designed.

Vahalia’s book on UNIX internals [Vahalia, 2000], Bach’s book on UNIX [Bach, 1986]
System V internals, and McKusick, et al.’s book [McKusick, et al., 1996] on BSD 4.4
internals describe how traditional UNIX systems are built, and are excellent references
for understanding Linux.

In the end, people who study Linux internals must read the source code. There is a very
complete source code browser site at http://lxr.linux.no/source/. It is
expected that you will have a copy of the source code on your laboratory machine. It
may be loaded anyplace in the file system hierarchy, but the normal place it is loaded is at
the path /usr/src/linux, that is, linux is the root directory of the subtree that
contains all the source code. Exercise 3 includes a discussion of the organization of the
source code; this book will frequently refer to source code files by assuming that the
current directory is the root directory of the source subtree (for example
/usr/src/linux).

4/1/2010 Page 50

PART 2: EXERCISES
This manual’s are intended to complement the materials that you learn in your
undergraduate OS course. In the lecture part of your course, the focus is on concepts and
issues, with side discussions on Linux, UNIX, and/or Windows NT. This manual’s goal
is to put those theories into practice with a series of hands-on exercises using the Linux
kernel.

The exercises use the public distribution of the Linux source code, Version 2.2.12. By
the time you have completed these exercises, you will have studied and experimented
with considerable OS software, and will have gained a deep insight into how Linux and
other modern operating systems are designed.

The exercises address almost all the aspects of the OS. Following is a summary of what
you will do in each. Here is a link to the commercial web site that contains the Exercises.

1 Observing Linux Behavior

Learn about the kernel by having you use the /proc file system interface to read the
values of various kernel variables. You will gain an intuitive understanding of kernel
behavior, and learn a valuable tool for inspecting the kernel.

2 Shell Program
Gain experience with programming applications that consist of multiple processes.
While not focusing on kernel internals, it does provide prerequisite experience with
concurrency and file descriptors.

3 Kernel Timers
Your first opportunity to inspect the Linux kernel source code. You will learn how
interval timers are implemented in the kernel, and then use them to profile a user
program.

4 Kernel Modules
Write your first software which will execute in supervisor mode as part of the kernel.
Your solution code will use the loadable kernel module feature first to read the kernel’s
time variable and then to report it using the /proc file system interface.

5 System Calls

Add a new system call to the existing Linux kernel. The system function that you
implement is simple, but you will learn the details of how the system call mechanism
works, and then use it to change the system call interface to your copy of Linux.

6 Shared Memory
Modify the existing implementation of the System V shared memory facility. The
modification is not difficult, but it will give you the opportunity to study how this
functionality is designed and implemented.

http://www.gnutt.com/StudyCS/KPFL/index.html

4/1/2010 Page 51

7 Virtual Memory
Learn how Linux implements virtual memory, and then instrument the existing code to
provide reports on the virtual memory system’s performance.

8 Synchronization Mechanisms
Learn about a new synchronization mechanism to the kernel, called an event. Events are
shared among processes. One process creates an event, and then a community of
processes share the event, much like a barrier.

9 The Scheduler
Modify the Linux scheduler so that it uses an alternative policy. You will learn the
details of how the scheduler works and then how to change it.

10 Device Drivers
Write your first device driver to implement a FIFO (or pipe) among processes. You will
learn about the issues for writing drivers without manipulating hardware.

11 File Systems
Implement a file directory operations on a raw floppy disk driver.

12 File I/O
Complete the MS-DOS-compatible file system started in Exercise 11 by providing the
functions for reading and writing the data.

Three factors make kernel programming challenging:
• The lack of good documentation
• The need to be when you change the kernel
• The absence of a robust and safe debugging environment.

There is no way around these problems except to “bite the bullet” and dive into the
project.

As you work through these exercises, notice that to arrive at a solution you generally will
not have to write much software. However you will have to read a lot of softrware in
order to come up with a working solution. In addition, you will quickly observe that ou
need to have a good working knowledge of C or C++. The kernel is written in C and
assembly language (though you will rarely encounter the assembly language, and can
solve all these exercises without reading it). The discussion includes many code
fragments, most taken verbatim from the Linux source code. Also as part of my
pedagogical style, I have included some of my own comments into the code fragments.
Each is written with the C++ comment style (“// Here is a pedagogical
comment”) rather than the C comment style (“/* Here is a verbatim
comment */”).

The exercises increase in difficulty from 1 through 12. Considerable assistance is offered
in solving the early exercises and much less with the later ones. In this sense, you should
solve the last exercise by solving all of those that precede it. Realistically, that is too
many exercises to do in one term. Figure 18 shows the specific dependencies among the

4/1/2010 Page 52

exercises. The width of the arrow is intended to suggest the true strength of the
dependency. For example, whereas you’ll find it helpful to do Exercise 1 before doing
Exercise 4, you really should do Exercise 11 before doing Exercise 12. If you are
working on an exercise and are stuck, you might browse through earlier exercises to see
if there is something that can help you solve your problem.

1
2

3
4

5
6

7
8

9
10

11
12

Figure 18: Exercise Dependencies

4/1/2010 Page 53

Further Study
The exercises in this book teach you how the Linux kernel is designed and organized. Each exercise
focused on one or a few aspects of the kernel and then provided you with an exercise to experiment with
this aspect of the kernel.

All parts of ther kernel were at least touched on, but some were not not discussed very deeply and
might be topics for further study on your part, including the following:
• The virtual memory system is pervasive in the kernel data structures. Because the Linux virtual

memory uses dynamic memory allocation, added complexity exists in understanding how and when
page frames are taken away from one process (or buffer pool) and added to another. The discussion of
virtual memory in this lab manual barely scratched the surface of the virtual memory system.

• Most of the code in a kernel is for the file system. The Linux file system is certainly one of the larger
and more complex parts of the kernel. Its increased complexity results from the need to handle
buffering. Many details of the file system were omitted, so a next phase of study should focus more on
the existing file systems.

You can continue your study of kernels ni any of several ways. This manual’s goal has been to
provide you with enough background and experience so that you can read kernel and modify kernel code.
By necessity, the exercises have to be bounded to small problems so that they are good learning tools.
After solving the exercises in this manual you will be prepared to tackle most kernel problems (though
some situations will require considerable additional study of the code). Here are a few suggestions for
further study:
• Redesign and reimplement any module of the kernel.
• Extend the functionality; for example write your own implementation of threads.
• Write a new file system that is used with VFS.
• Work on another kernel.
• Write a new kernel.
• Start a company …

4/1/2010 Page 54

References

1. Bach, Maurice J., The Design of the Unix Operating System, Prentice Hall International, London,

1986.
2. Beck, Michael, Harald Bőhme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus, and Dirk Verworner,

LINUX Kernel Internels, Second Edition, Addison-Wesley, Reading, MA, 1998.
3. Deitel, Harvey M., An Introduction to Operating Systems, Second Edition, Addison-Wesley, Reading,

MA, 1990.
4. Johnson, M. K., Linux Kernel Hacker’s Guide, Version 0.7, Linux Document Project,

http://metalab.unc.com/mdw/Linux.html.
5. Linux web pages at http://metalab.unc.com/mdw/Linux.html.
6. McKusick, Marshall Kirk, Keith Bostic, Michael J. Karels, and John S. Quarterman, The Design and

Implementation of the 4.4 BSD Operating System, Addison-Wesley, Reading, MA, 1996.
7. Messmer, Hans-Peter, The Indispensable PC Hardware Book, Second Edition, Addison-Wesley,

Reading MA, 1995.
8. Nutt, Gary J., Operating System Projects for Windows NT, Addison-Wesley, Reading, MA, 1999.
9. Nutt, Gary J., Operating Systems, Third Edition, Addison-Wesley, Reading, MA, 2004.
10. Ousterhout, John K., Hervé Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and James G.

Thompson, “A Trace-Driven Analysis of the UNIX 4.2 BSD File System,” Proceedings of the Tenth
ACM Symposium on Operating Systems Principles, ACM, 1985, 15–24.

11. Pomerantz, Ori. The Linux Kernel Module Programming Guide, Version 1.0, 1999, Linux
Documentation Project, http://metalab.unc.com/mdw/Linux.html.

12. Ritchie, Dennis and Ken Thompson, “The UNIX Time-Sharing System,” Communications of the
ACM, 17, 7 (July 1974), 1897–1920.

13. Rusling, David A. The Linux Kernel, Version 0.8-3, 1996-99, Linux Documentation Project,
http://metalab.unc.com/mdw/Linux.html.

14. Silberschatz, Abraham and Peter Baer Galvin, Operating Systems Concepts, Fifth Edition, Addison-
Wesley, 1998.

15. Solomon, David A., Inside Windows NT, Second Edition, Microsoft Press, Redmond, WA, 1998.
16. Stallings, William, Operating Systems, Second Edition, Prentice Hall, Englewood Cliffs, NJ, 1995.
17. Stevens, W. Richard, Advanced Programming in the UNIX Environment, Addison-Wesley, Reading,

MA, 1993.
18. Tanenbaum, Andrew S., MINIX version, Prentice Hall, Englewood Cliffs, NJ, 1987.
19. Tanenbaum, Andrew S., Modern Operating Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.
20. Tanenbaum, Andrew S., Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.
21. Vahalia, Uresh, UNIX Internals: The New Frontiers, Second Edition, Prentice Hall, Englewood Cliffs,

NJ, 2000.
22. Welsh, Matt, “Implementing Loadable Kernel Modules for Linux,” Dr. Dobb’s Journal, May, 1995.

	Preface to the First Edition
	PART 1: OVERVIEW OF LINUX
	1 The Evolution of Linux
	2 General Kernel Responsibilities
	2.1 Resource Abstraction
	2.2 Sharing Resources
	2.2.1 Managing Competition for Resources
	2.2.2 Exclusive Use of a Resource
	2.2.3 Managed Sharing

	2.3 A Partition of OS Functions

	3 Kernel Organization
	3.1 Interrupts
	3.2 Using Kernel Services
	3.3 Serial Execution
	3.4 Daemons
	3.5 The Booting Procedure
	3.5.1 The Boot Sector
	3.5.2 Starting the Kernel

	3.6 Logging Into the Machine
	3.7 Control Flow in the Machine

	4 Process and Resource Management
	4.1 Running the Process Manager
	4.2 Creating a New Task
	4.3 The Scheduler
	4.4 IPC and Synchronization
	4.5 Protection Mechanism

	5 Memory Management
	5.1 Managing the Virtual Address Space
	5.2 The Secondary Memory
	5.3 Handling Missing Pages
	5.4 Address Translation

	6 Device Management
	6.1 The Device Driver
	6.2 Handling Interrupts

	7 File Management
	7.1 Mounting the File System
	7.2 Opening a File
	7.3 Reading and Writing the File
	7.4 The Ext2 File System

	8 Learning More About Linux

	PART 2: EXERCISES
	1 Observing Linux Behavior
	2 Shell Program
	3 Kernel Timers
	4 Kernel Modules
	5 System Calls
	6 Shared Memory
	7 Virtual Memory
	8 Synchronization Mechanisms
	9 The Scheduler
	10 Device Drivers
	11 File Systems
	12 File I/O

	Further Study
	References

