
1

How can negative numbers be represented using only binary 0’s and 1’s so that a computer can

“read” them accurately?

The concept is this: Consider the binary numbers from 0000 to 1111 (i.e., 0 to 15 in base ten).

 0001 0111 will represent the positive numbers 1 7 respectfully

 and, 10011111 will represent the negative numbers 7 1, respectfully.

In a computer, numbers are stored in registers where there is reserved a designated number of

bits for the storage of numbers in binary form. Registers come in different sizes. This handout

will assume a register of size 8 for each example.

It is easy to change a negative integer in base ten into binary form using the method of two’s

complement.

First make sure you choose a register that is large enough to accommodate all of the bits

needed to represent the number.

Step 1: Write the absolute value of the given number in binary form. Prefix this number with 0
indicate that it is positive.

Step 2: Take the complement of each bit by changing zeroes to ones and ones to zero.
Step 3: Add 1 to your result. This is the two’s complement representation of the negative

integer.

EXAMPLE: Find the two’s complement of 17

Step 1: 1710 = 0001 00012

Step 2: Take the complement: 1110 1110

Step 3: Add 1: 1110 1110 + 1 = 1110 1111.

Thus the two’s complement for -17 is 1110 11112. It begins on the left with a 1, therefore we

know it is negative.

Now you try some:

Find the two’s complement for

a. 11

b. 43

c. 123

To translate a number in binary back to base ten, the steps

are reversed:

Step 1: Subtract 1: 1110 1111 1 = 1110 1110

Step 2: Take the complement of the complement: 0001 0001

Step 3: Change from base 2 back to base 10 16 + 1 = 17

Step 4: Rewrite this as a negative integer: 17

Two’s Complement

2

This suggests a new way to subtract in binary due to the fact that subtraction is defined in the
following manner:
 X – Y = X + (-Y)

EXAMPLE 1: Subtract 17 from 23, as a computer would, using binary code.

Given a register of size 6, 23 – 17 = 23 + (-17) becomes

 0001 0111 + 1110 1111 = 10000 0110. (Verify both the binary form of 23 and the

addition.) Since this result has 9 bits, which is too large for the register chosen, the leftmost bit

is truncated, resulting in the binary representation of the positive (it starts with a 0) integer

00000110. When this is changed to a decimal number, note that 4 + 2 = 6 which is the answer

expected.

Note that a register of size eight can only represent decimal integers between 2(8-1) and +2(8-1)

and, in general, a register of size n will be able to represent decimal integers between 2(n-1) and

+2(n-1)

EXAMPLE 2: Subtract 29 from 23, as a computer would, using binary code.

Again we use a register of size 8, so that 23 – 29 = 23 + (-29) becomes

 0001 0111 + 1110 0011 = 1111 1010. (Verify both the binary form of 29 and the
addition.) Note that no truncation of the leftmost bit is necessary here. The result is the
negative (it starts with a 1) integer 1111 1010. This needs to be “translated” to change it back
to a decimal (see the steps on how to do this in the box above). Hence, going backwards,
1111 1010 – 1 = 1111 1001. The complement of which is 0000 0110 which is 6 in decimal.
Negating this we get -6 as expected.

Now you try some:

Subtract each, as a computer out, using binary

code using registers of size 8.

a) 26 – 15

b) 31 – 6

c) 144 – 156

d) Make up your own exercises as needed.

3

ANSWERS

11 = 1111 01012

43 = 1101 01012

123 = 1000 01012

26 – 15 = 26 + (-15) = 0001 1010 + 1111 0001 = 10000 1011, and truncating the leftmost 1 to

remain within a register of 8, the answer is 0000 10112

31 – 6 = (31) + (6) = 1110 0001 + 1111 1010 = 11101 1011, and truncating the leftmost 1

to remain within a register of 8, the answer is 1101 10112

144 – 156 = 144 + (156) = 1001 0000 + 0110 0100 = 1111 0100, which remains within the

register of 8 bits (so nothing gets truncated), thus the answer is 1111 01002.

