
Hands-on CasADi course on optimal control, Yacoda

Exercise: Rootfinding

In this exercise, we’ll be finding a root of a 2-dimensional residual function g : R2 7→ R2:

g

([
x
y

])
=

[
tanh((x+ 2)y2 1

25
− 0.5)

sin(x)− 0.5y + 1

]
. (1)

1 Rootfinding, finite-differences

Tasks:

1. Follow the CasADi install instructions from http://install35.casadi.org. Write a Python
function that implements g:

from casadi import *

def g(w):

x = w[0]

y = w[1]

g1 = tanh((x+2)*y**2/25-0.5)

g2 = sin(x)-0.5*y + 1

return vertcat(g1,g2)

Here, vertcat places two matrices underneath each other (in this case we place two scalars
underneath each other to form a column vector). There is also an equivalent horzcat for hor-
izontal concatenation. Verify that g(vertcat(-0.8,2)) yields [-0.2986,-0.7174]. Also
verify that the shape of the return object is 2-by-1 using .shape.

2. Write a script that computes the Jacobian of g using finite differences with ε = 1e-8, at the

point x0 =

[
−0.8
2

]
. Verify that the Jacobian at this location is [0.1457 0.1749; 0.6967

-0.5000].

3. Perform 5 Newton steps starting from x0. Verify that you end up at [0.1945;2.3866]. Use
solve(A,b) to compute A−1b.

2 Rootfinding, using a CasADi Jacobian

For now, all you need to know about CasADi is:

1. Symbols are created as in x = MX.sym('x').

Page 1 Python

http://install35.casadi.org

2. Symbols, numbers and operations can be composed into symbolic expressions e.g. sin(x)-0.5.

3. Symbolic expressions can be evaluated by constructing a CasADi Function using a list of input
symbols and list of output expressions:

f = Function('f',[x],[sin(x)-0.5])

f(0.8) # evaluate for x=0.8

4. The output of a CasADi Function evaluation is a CasADi numeric type (DM). Use ‘np.array‘
or ‘tocsc()‘ to convert it to a numpy or scipy matrix.

Tasks:

1. Create a two-by-one symbolic matrix x as follows:

X = MX.sym('X',2);

Verify that g(X) evaluates without error. Use Python’s type(.) function to check the
datatype of g(X), and .shape to check its dimension: it is a 2-by-1 symbolic expression. Can
you make sense of print-representation? Inspect the symbolic expression J=jacobian(g(X),X).
What are its datatype and dimensions?

2. Create a CasADi Function called Jf (see syntax in step 3 above) that maps from X to J .The
print representation1 of this Function will look like:

Jf:(i0[2])->(o0[2x2]) MXFunction

Keeping in mind that a print representation should convey something insightful in a compact
way, what do you think [2] and [2x2] mean here?

3. Now that we created a Function out of J , evaluate it numerically (see syntax in step 4 above)

at x0 =

[
−0.8
2

]
. Verify the result with the finite difference result obtained earlier.

4. Perform 5 Newton steps starting from x0 and using a Jacobian computed by CasADi.

Here, we will pause the exercise and dive a bit deeper into CasADi basics. . .

1print(Jf)

Page 2 Python

3 CasADi’s rootfinder

Instead of writing out the Newton steps ourselves, we may also use a built-in rootfinder of CasADi.
Mathematically, the expected form for the residual function is:

g(x, p) = 0, (2)

with x ∈ Rn the unknowns, and p ∈ Rm parameters.
Syntax-wise, the construction of this CasADi Function looks like:

rf = rootfinder('rf','newton',{'x':...,'p': ...,'g':...})

where 'rf' is a label, 'newton' identifies a particular solver implementation, and the dots are
placeholders for symbolic expressions. The x and p expressions should be symbols, while the g

expression should depend on those (and only those) symbols. The p keyword and expression may
also be omitted (indeed, here we have no parameters i.e. m = 0).

Tasks:

1. Create a CasADi rootfinder Function object rf that can be used to solve Equation 1. Use only
expressions defined earlier in the exercise. Verify that the print representation is as follows:

rf:(x0[2],p[])->(x[2]) Newton

This means that the function expects 2 inputs:

(a) The initial guess for the unknown x, a two-vector.

(b) The parameter vector p, an empty vector [].

2. Verify that the evaluation of the rootfinder Function object rf gives the same result as the
hand-coded Newton iterations for the same initial guess:

rf([-0.8,2],[])

3. Have a look at print(rf.stats()). How many iterations did the rootfinder take?

4. The rootfinder constructor takes an optional fourth argument: a dictionary of options.

Try out what information you can get with a 'print iteration' option set to True.

Page 3 Python

	Rootfinding, finite-differences
	Rootfinding, using a CasADi Jacobian
	CasADi's rootfinder

