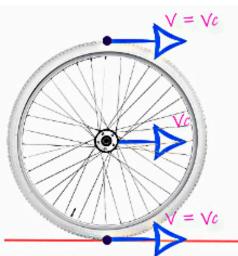
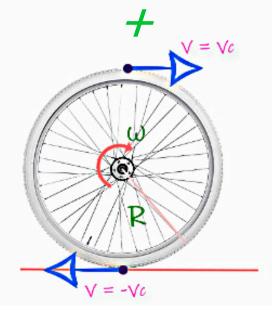
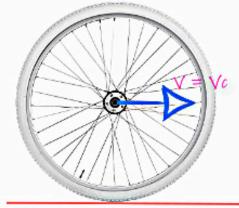


Rolling without slipping

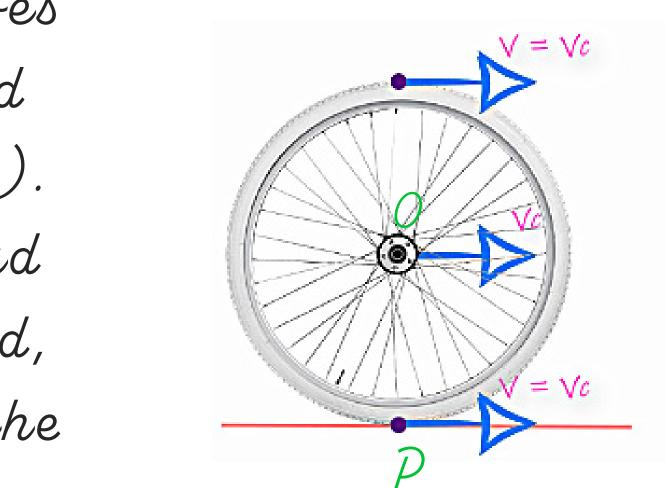

- 1. The concept
- 2. Cycle wheel as an example
- 3. Condition for rolling without slipping
- 4. Example of rolling with slipping
- 5. Rotation + Translation = Rolling
- 6. Velocity analysis
- 7. Key formulas and equations
- 8. Common mistakes and misconceptions



WHAT IS ROLLING WITHOUT SLIPPING?


- 1. Rolling motion: Movement without slipping, sliding, or bouncing. 2. Key Condition: No relative motion at the contact point, i.e velocity relative to the surface = 0
- 3. Components:
 - Translation: Straight-line motion of the center of mass.
 - Rotation: Spinning motion around an axis.

Rolling

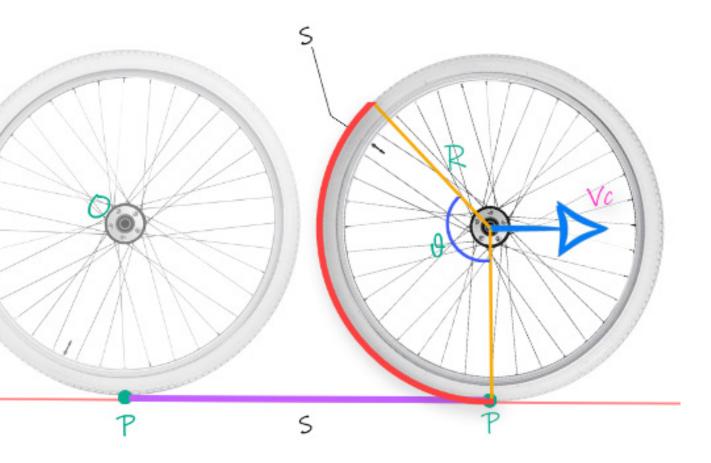


UNDERSTANDING ROLLING WITHOUT SLIPPING

Using a Bicycle Wheel as an example-

1. Point O: The center of the wheel moves forward at a constant speed, denoted by v_c (velocity of the center of mass). 2. Point P: The contact point on the road also moves forward at the same speed, v_c (and so do all points), ensuring the wheel moves as a single unit.

UNDERSTANDING ROLLING WITHOUT SLIPPING...CONT.


1. Over a time interval, t:

- ° Both () and P move a distance, s
- The wheel also rotates through an ang
- 2. The arc length point P turns is $s = \theta R$

3. Differentiating with respect to time: $ds/dt = (d\theta/dt) \times R$

Here:

 $ds/dt = [inear speed of the center (v_c)]$ $d\theta/dt = Angular speed of the wheel (w)$

4. Therefore,

 $v c = \omega R$

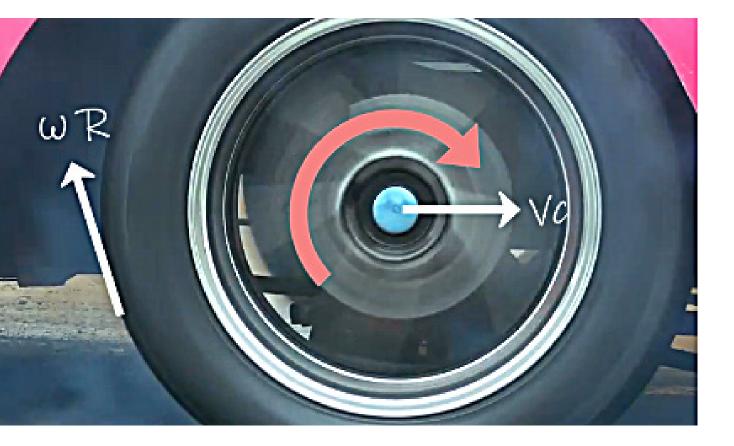
CONDITION FOR ROLLING WITHOUT SLIPPING

$$v_c = \omega R$$

is a condition that ensures rolling without slipping.

2. If this equation holds true, then:

- There is no relative motion between the surface and the object.
- This also means there would be
 - no slipping tyre spins in its own place more than moves forwardor
 - no skidding Tyre moves forward more than it turns

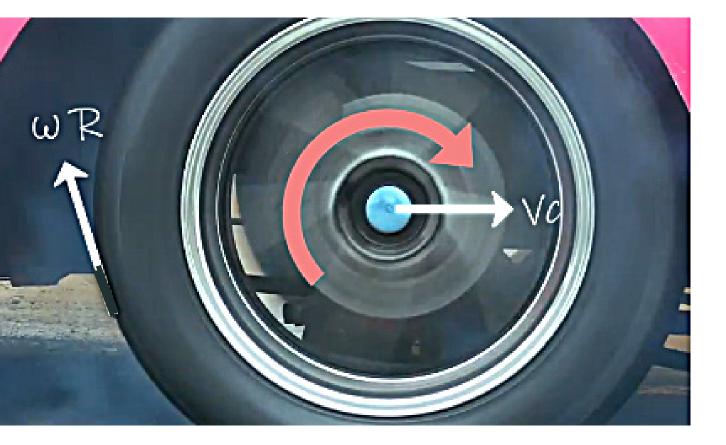


EXAMPLE: ROLLING WITH SLIPPING TIRES

- 1. When a racer accelerates suddenly, the rear tires may spin faster than the car's forward velocity (v_c)./n that case:
- 2. The tangential velocity at the surface of the tire (ωR) <u>exceeds v</u> c,

causing the tires to slip.

3. Evidence: Smoke from the tires due to friction heating the rubber.


Here

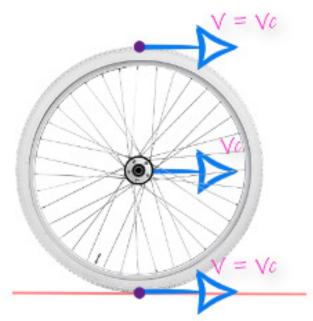
 $\omega R > v c$

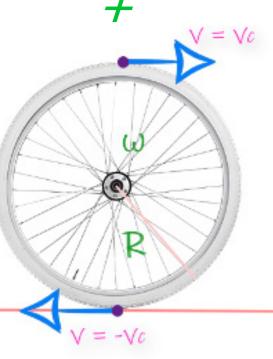
EXAMPLE: ROLLING WITH SKIDDING TIRES

- 1. If the rear tires spin slower than the car's forward velocity (v_c). In that case
- 2. The tangential velocity at the surface of the tire (WR) is <u>less</u> than v_c , causing the tires to skid.
- 3. Evidence: Skid marks on the road.

Here

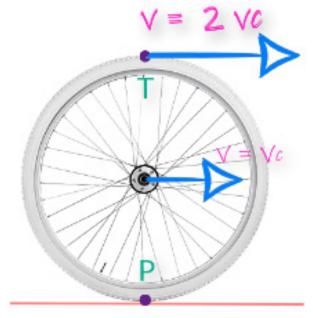
 $\omega R < v c$

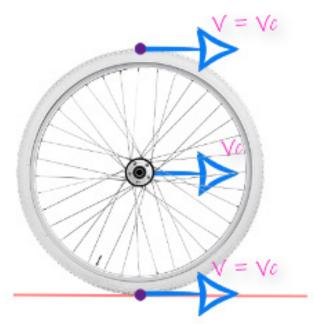



ROLLING = TRANSLATIONAL + ROTATIONAL MOTION

1. Pure Translation: Every point on the wheel moves forward with the same velocity 2. Pure Rotation: The wheel rotates about its axis, but the center does not move forward. 3. Combined Motion: When translation and rotation

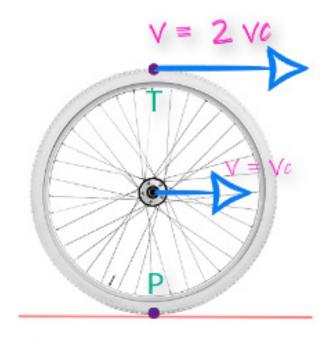
combine, rolling motion occurs.


Translation



VELOCITY ANALYSIS

- 1. Bottom of the Wheel (P):
 - Momentarily stationary as translational & rotational velocities cancel out.
- If this point had a net velocity, the wheel would skid, breaking the "rolling without slipping" condition.
 Top of the Wheel (T):
 - Moves at 2u_c since translational and rotational velocities add up in the same direction.



V = -Vc + Vc = 0

VELOCITY ANALYSIS

1. Observational Evidence: In a time-exposure photograph of a rolling wheel, the spokes appear more blurred at the top than at the bottom. 2. This shows that at the top, velocities add up, making it move at 2v c

KEY FORMULAS & EQUATIONS

Formula/Equation	When to Use	Caution/Not
v_com = ωR	To ensure rolling without slipping.	Ensure that v
$s = \theta \times R$	To calculate the distance traveled by the wheel.	θ must be in object.
$\omega = v_{com} / R$	To find angular velocity from linear velocity.	Valid only wh met.
v_bottom = 0	To identify the velocity at the contact point (P).	Only valid un
v_top = 2v_com	To calculate the velocity of the topmost point (T).	Applies when

otes

v_com and ω are for the same point and in inits.

radians; R is the radius of the rolling

hen rolling without slipping condition is

nder rolling without slipping.

n the object is rolling without slipping.

COMMON MISTAKES AND MISCONCEPTIONS

Misunderstanding the Condition for Rolling Without Slipping: Mistake: Believing that rolling without slipping does not require friction.

Clarification: Friction is essential to prevent slipping; it ensures no relative motion between the contact point and the surface.

Confusion Between Angular and Linear Quantities: Mistake: Mixing up angular velocity (ω) with linear velocity (v). Clarification: Remember the relationship v = WR. Angular velocity applies to rotation, while linear velocity is for translational motion.

COMMON MISTAKES AND MISCONCEPTIONS

Velocity at the Contact Point (P): Mistake: Believing the contact point is stationary with respect to the wheel.

Clarification: The contact point is momentarily stationary relative to the ground but not relative to the wheel.

lop Point Velocity Misconception: Mistake: [hinking the velocity of the topmost point (]) is equal to v c Clarification: At the topmost point, the velocities from rotation and translation add up, resulting in $2v_c$

COMMON MISTAKES AND MISCONCEPTIONS

Ignoring Slipping Cases:

Mistake: Not analyzing what happens when the condition v_c

 $= \omega R fails.$

Clarification: Slipping or skidding occurs when the tangential velocity (WR) is not equal to the linear velocity (v_c), leading to skid marks or energy loss.

