e ROTATIONAL DYNAMICS

Net Torque and Rotational Dynamics
Variables Sl Unit

* Newton'’s laws of motion described how objects move and the
T torque N-m

relationship between linear forces and linear acceleration.
Newton’s 1st and 2nd laws of motion can also be applied to | rotational inertia kg -m?
torques and rotational motion.

. rad
* When working with rotational dynamics, it will help to review the @ angular acceleration 52
material on rotational kinematics. m mass kg

» The rotational version of a force is a torque.
» The rotational version of acceleration is angular acceleration. r distance from rotation axis m
e The rotational version of mass is rotational inertia, also referred

to as the moment of inertia.

* Newton'’s 1st law of motion (applied to rotation): An object at rest (with no angular velocity) will remain at rest
and a rotating object will maintain its angular velocity unless there is a net torque acting on the object (the sum of
all the torques acting on the object is not zero).

e When we see a rotating or spinning object slow down, there must be a net torque acting on the object caused by
forces such as friction or air resistance. In the absence of a net torque a rotating object will rotate forever.

e If an object is not rotating (or if it's rotating at a constant angular velocity) that doesn’t mean there are no torques
acting on the object, only that the net torque is zero (the torques balance each other in opposite directions).

An object at rest (with zero angular velocity) will A rotating object will maintain its angular
remain at rest if there is no net torque acting on it velocity if there is no net torque acting on it
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* Newton’s 2nd law of motion (applied to rotation): A net torque 7., acting on an object with a rotational inertia
I will cause an angular acceleration a in the same direction as the net torque, and the net torque is equal to the
rotational inertia multiplied by the angular acceleration: 7, = la

* The rotational inertia or the moment of inertia is covered in another section, but it's a value that represents the

mass of an object and how far that mass is distributed from the axis of rotation.

Newton’s 2nd law of motion rotational inertia
applied to rotation
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The net torque is the sum of all of the torques acting on an object
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Newton’s 2nd law of motion for linear motion and rotational motion
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e If the net torque acting on an object or system is zero, the angular acceleration is zero and we say the object or
system is in a state of rotational equilibrium.

e If an object or system is not rotating (or is rotating at a constant angular velocity), the net torque acting about any
point on the object or system is zero, not just about the object’s pivot point or center of mass. We can use this to
analyze the forces and torques acting on an object or system.

Two blocks sit on a massless beam on a pivot
point and the system is in rotational equilibrium

A mass hangs from the end of a massless pole
which is supported by an upper rope at an angle,
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Any variable can be solved for if
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o If the net torque acting on an object is not zero, the object is not in rotational equilibrium and it will rotate with an
angular acceleration.

A rope is wrapped around a pulley that has mass and rotational inertia, so the tensions in the sections of
rope on each side of the pulley are not equal. The ropes are massless and there are no other masses
involved. The different tension forces cause the pulley to rotate with an angular acceleration.
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Rotational Inertia (Moment of Inertia)

* An object’s rotational inertia I, also referred to as the moment of inertia, is the object’s resistance to angular
acceleration. The greater the rotational inertia, the more an object will resist a change to its state of rotation.

e The word “moment” has nothing to do with time and “rotational inertia” may be easier to remember, but the term
“moment of inertia” is still widely used.

» The rotational inertia can be thought of as the position-weighted sum of its mass or its mass distribution.

* The more mass an object has and the farther that mass is distributed from the axis of rotation, the greater the
object’s rotational inertia.

A hammer is easier to rotate quickly (an angular You automatically stick your arms out when trying to
acceleration) when held and rotated about the balance because it increases your rotational inertia
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greater smaller axis of
rotational inertia: rotational inertia: rotation
T« arm mass is clo.ser
more mass to axis of rotation

farther from
point of rotation

greater

o \ rotational i
J : : arm mass is
Inertia

farther from
axis of rotation

\ m™
® : N J. v
¥~ pointof =¥
rotation T \
more mass

more mass is
added farther
from axis of
rotation

closer to
point of rotation



e The rotational inertia for a system of point masses (or a group of objects) can be calculated using the equation

below, which is the sum of each mass m multiplied by the square of the distance between its own center and the

axis of rotation r2.
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e Any rigid body (an object that does not change shape) can be modeled as a system of many individual point
masses or particles (small sections of the object, molecules, atoms or even subatomic particles). If an object has
a complex shape the rotational inertia will usually be given if needed.

e Many objects can be modeled as one of the shapes shown below.

Rotational inertia for some common shapes, where m is the total mass of the object, r is the radius,
L is the total length of the object, and the axis of rotation is either through the center or one end
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