

- 8 Sodium hydride, NaH, can be used to generate hydrogen for fuel cells.
 - (a) In order to calculate the first electron affinity of hydrogen, a student was asked to draw a Born-Haber cycle for sodium hydride.

The cycle had **two** errors but the numerical data were correct.

(i)	Identify a	nd correct	the two er	o errors in this Born-Haber cycle.					
									(2)

(ii) Calculate the first electron affinity, in kJ mol⁻¹, of hydrogen, using the values given in the cycle.

(1)

(b)	The equation	for the	formation of	sodium	hydride	is
-----	--------------	---------	--------------	--------	---------	----

Na(s) +
$$\frac{1}{2}H_2(g) \rightarrow \text{NaH(s)}$$
 $\Delta_f H^{\Theta} = -56 \text{ kJ mol}^{-1}$

The standard entropy change of the system, $\Delta S^{\Theta}_{system}$, for this reaction is $-76.5\,\mathrm{J\,K^{-1}\,mol^{-1}}$.

(i) Deduce the feasibility of this reaction at 298 K by calculating the free energy change, ΔG .

(2)

(ii) Calculate the temperature at which $\Delta G = 0$.

(1)

0	1 . 1	Define the term enthalpy of lattice formation.	[2 marks]
0	1 . 2	Some enthalpy change data are shown in Table 1 .	

Table 1

	Enthalpy change / kJ mol ⁻¹
$AgI(s) \to Ag^{\scriptscriptstyle +}(aq) + I^{\scriptscriptstyle -}(aq)$	+112
$Ag^{+}(g) \rightarrow Ag^{+}(aq)$	-464
$I^-(g) \rightarrow I^-(aq)$	-293

Use the data in **Table 1** to calculate the enthalpy of lattice formation of silver iodide.

[2 marks]

- 5 This question is about copper(II) sulfate, CuSO₄, and sodium thiosulfate, Na₂S₂O₃.
 - (a) The enthalpy change of reaction, $\Delta_r H$, for converting anhydrous copper(II) sulfate to hydrated copper(II) sulfate is difficult to measure directly by experiment.

$$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$$
 reaction 5.1

The enthalpy changes of solution of anhydrous and hydrated copper($\rm II$) sulfate can be measured by experiment. The reactions are shown below.

In the equations, 'aq' represents an excess of water.

$$CuSO_4(s) + aq$$
 $\rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$ $\Delta_{sol}H(CuSO_4(s))$ reaction 5.2

$$\text{CuSO}_4 \bullet 5\text{H}_2\text{O(s)} + \text{aq} \rightarrow \text{Cu}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) \qquad \Delta_{\text{sol}} \textit{H}(\text{CuSO}_4 \bullet 5\text{H}_2\text{O(s)}) \qquad \qquad \textbf{reaction 5.3}$$

Experiment 1

A student carries out an experiment to find $\Delta_{sol}H(CuSO_4(s))$ for **reaction 5.2**.

Student's method

- Weigh a bottle containing CuSO₄(s) and weigh a polystyrene cup.
- Add about 50 cm³ of water to the polystyrene cup and measure its temperature.
- Add the CuSO₄(s), stir the mixture, and measure the final temperature.
- Weigh the empty bottle and weigh the polystyrene cup with final solution.

Mass readings

Mass of bottle + CuSO ₄ (s)/g	28.04
Mass of empty bottle/g	20.06
Mass of polystyrene cup/g	23.43
Mass of polystyrene cup + final solution/g	74.13

Temperature readings

Initial temperature of water/°C	20.5
Temperature of final solution/°C	34.0

Experiment 2

The student carries out a second experiment with CuSO₄•5H₂O (reaction 5.3). The student uses the same method as in **Experiment 1**.

The student calculates $\Delta_{sol}H(CuSO_4 \cdot 5H_2O(s))$ as +8.43 kJ mol⁻¹.

13

F	Assume that the specific heat capacity, c , of the solution is the same as for water.
	Show your working, including an energy cycle linking the enthalpy changes. [6]
•	
	Additional answer space if required

(ii) The thermometer had an uncertainty in each temperature reading of ±0.1 °C.

The student calculates a 20% uncertainty in the temperature change in **Experiment 2**.

Calculate the temperature change in Experiment 2.

(b) The standard enthalpy change of reaction, $\Delta_r H^{\bullet}$, and the standard free energy change, ΔG^{\bullet} , for converting anhydrous sodium thiosulfate to hydrated sodium thiosulfate are shown below.

$$Na_2S_2O_3(s) + 5H_2O(l) \rightarrow Na_2S_2O_3 \cdot 5H_2O(s)$$
 $\Delta_l H^{\oplus} = -55.8 \text{ kJ mol}^{-1}$ $\Delta G^{\oplus} = -16.1 \text{ kJ mol}^{-1}$

Standard entropies are given in the table.

Compound	S [⊕] /JK ⁻¹ mol ⁻¹
Na ₂ S ₂ O ₃ •5H ₂ O(s)	372.4
H ₂ O(I)	69.9

Determine the **standard** entropy, S^{\oplus} , of anhydrous sodium thiosulfate, $Na_2S_2O_3(s)$.

Give your answer to 3 significant figures.

Question Number	Answer	Additional Guidance	Mark	
8(a)(i)	An answer that makes reference to the following points:	Allow corrections to be made on the diagram	(2)	
	identification and correction of the first error (1)	Error 1 – arrow for enthalpy change of formation should go down/be reversed		
	identification and correction of the second error (1)	Error 2 – the word 'half' should be deleted from the enthalpy change of atomisation of hydrogen		

Question Number	Answer	Additional Guidance	Mark
8(a)(ii)		Example of calculation	(1)
	calculation of first electron affinity of hydrogen	1 st EA= -(218+496+107)-56 +804 = -73 (kJ mol ⁻¹)	
		Allow a TE 1^{st} EA = +39(kJ mol ⁻¹) if the first arrow	
		reversed direction is not identified	

Question Number	Answer		Additional Guidance	Mark
	Penalise incorrect	or missing units i	n (b)(i) and (b)(ii) once only	
8(b)(i)	• calculation of Δ <i>G</i>	(1)	Example of calculation $\Delta G = -56 - (298 \times \frac{-76.5}{1000})$ $= -33.203 \text{ (kJ mol}^{-1})$ or $\Delta G = -56000 - (298 \times -76.5)$ $= -33203 \text{ (J mol}^{-1})$	(2)
	• ΔG is negative/ <0 and so reaction	is feasible (1)	Ignore SF except 1 Allow ≤0 and so reaction is feasible Standalone mark Allow TE on own ΔG calculated value	

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)		Example of calculation	(1)
	• calculation of <i>T</i>	$\Delta G = 0$, so $\Delta H = T\Delta S_{\text{(system)}}$ or $T = \Delta H/\Delta S_{\text{(system)}}$	
		T = 56/0.0765 = 732 K	
		or	
		T = 56000/76.5 = 732 K	
		or	
		T = 459°C	
		Ignore SF except 1 SF	
		Do not award -732K	
		TE on incorrect values penalised already in (b)(i)	

(01.1	Enthalpy change or heat energy change when 1 mol of solid ionic compound/substance or 1 mol of ionic lattice is formed from its gaseous ions.	1	Allow: enthalpy change for:
(01.2	lattice dissociation energy= $(112 + 464 + 293) = +869$ $(kJmol^{-1})$ lattice formation energy = -869 $(kJmol^{-1})$	1	(+)869 = 1 mark

Question	Answer	Marks	AO element	Guidance
5 (a) (i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct – signs for $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 AND $\Delta_{r}H$, for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 from the: Energy change AND Amount in mol of CuSO ₄ . There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Processes experimental data to obtain the: Energy change from $mc\Delta T$ OR Amount in mol of CuSO ₄ . There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	AO3.1 ×4 AO3.2 ×2	Indicative scientific points may include: 1. Processing experimental data Energy change from $mc\Delta T$ • Energy in J OR kJ Using 50.70 g, 50.0 g = 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded) OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ) Amount in mol of CuSO ₄ • $n(\text{CuSO}_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$

Question		Answer	Marks	AO element	Guidance
(a)	(ii)	0 marks – No response or no response worthy of credit. Temperature change = $0.2 \times \frac{100}{20}$ = 1(.0)°C ✓	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4	AO2.4 ×4	
		Part 1: Calc of $\Delta_r S$ Use of 298 K (seen anywhere) 1 mark • e.g16.1 = -55.8 - 298 × ΔS			Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$
		CORRECT use of Gibbs' equation 1 mark using candidate's temperature (e.g. 298) with −16.1 AND −55.8 to calculate △S in kJ OR J			= -0.133(kJ K ⁻¹ mol ⁻¹) OR -133 (J K ⁻¹ mol ⁻¹) Sign required IGNORE units Calculator: -0.133221 (kJ K ⁻¹ mol ⁻¹) -133.221 (J K ⁻¹ mol ⁻¹)
		Part 2: Calc of $S(Na_2S_2O_3)$ 1 mark CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. $ 372.4 - [S(Na_2S_2O_3) + (5 \times 69.9)] $ • OR $372.4 - (5 \times 69.9)$ • OR $372.4 - 349.5$ • OR 22.9			ALLOW ECF from incorrect temperature.
		IGNORE sign, i.e. ALLOW –22.9, etc CORRECT calculation of $S(Na_2S_2O_3)$ using candidate's calculated ΔS in Part 1 to 3 SF 1 mark ✓			Using -133: $S(Na_2S_2O_3) = 372.4 - 349.5 - (-133)$ $= 22.9 + 133$ $= (+)156 (J K^{-1} mol^{-1})$ $3 SF required$
					ALLOW ECF from incorrect $\Delta_r S$ (Part 1)