
Java JUnit
for Unit Testing
JUNIT API (JUNIT 4.X)

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

What is JUnit
JUnit is a 3rd-Party API from junit.org

JUnit

Developer(s) Kent Beck, Erich Gamma, David Saff, Mike Clark
(University of Calgary)

Stable release 4.12 / December 4, 2014

Written in Java

Operating system Cross-platform

Type Unit testing tool

License Eclipse Public License

Website junit.org

https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Software_release_life_cycle
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/List_of_software_categories
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Eclipse_Public_License
http://junit.org/

Compatible with Other Languages
Ports

Actionscript (FlexUnit)
Ada (AUnit)
C (CUnit)
C# (NUnit)
C++ (CPPUnit, CxxTest)
Coldfusion (MXUnit)
Erlang (EUnit)
Eiffel (Auto-Test)
Fortran (fUnit, pFUnit)
Delphi (DUnit)
Free Pascal (FPCUnit)

Haskell (HUnit)
JavaScript (JSUnit)
Microsoft .NET (NUnit)
Objective-C (OCUnit)
OCaml (OUnit)
Perl (Test::Class and Test::Unit)
PHP (PHPUnit)
Python (PyUnit)
Qt (QTestLib)
R (RUnit)
Ruby (Test::Unit)

Automating Tests
Nearly every programmer tests his code. Testing with JUnit
isn't a totally different activity from what you're doing right
now. It's a different way of doing what you're already doing.
The difference is between testing, that is checking that your
program behaves as expected, and having a battery of tests,
little programs that automatically check to ensure that your
program behaves as expected. In this chapter we'll go from
typical println()-based testing code to a fully automated
test.

JUnit's Goals
Every framework has to resolve a set of constraints, some of which seem always to
conflict with each other. JUnit is no exception; simultaneously tests should be:

•Easy to write. Test code should contain no extraneous overhead.

•Easy to learn to write. Because our target audience for JUnit is

programmers who are not usually professional testers, we would like to

minimize the barriers to test writing.

•Quick to execute. Tests should run fast so we can run them hundreds

or thousands of times a day.

•Easy to execute. The tests should run at the touch of a button and

present their results in a clear and unambiguous format.

•Isolated. Tests should not affect each other. If the order in which the

tests are run changes, the results shouldn't change.

•Composable. We should be able to run any number or combination of

tests together. This is a corollary of isolation.

JUnit API
For most uses, JUnit has a simple API: subclass TestCase for your test
cases and call assertTrue() or assertEquals() from time to time.

Most of the time you will encounter five classes or interfaces when you are using JUnit:
Assert (an utility class)
A collection of static methods for checking actual values against expected values
Test (a test handler interface)
The interface of all objects that act like tests
TestCase
A single test
TestSuite
A collection of tests
TestResult
A summary of the results of running one or more tests

Default Test Class by BlueJ

Complete Testing Setup with JUnit

ad hoc Testing, If not Using JUnit
Go BlueJ!!!

Java Keyword
assert Expression1 ;
or
assert(Expression1);

TestAdder is a tester class.
Adder is a class.

Please refer to my Java Programming AP Edition or AP Computer Science Part 2: Chapter 12 for assertion and Exception.

assert Expression
1
;

