

Strut-and-Tie Model

Deep Beam

Mongkol JIRAVACHARADET

INSTITUTE OF ENGINEERING

SCHOOL OF CIVIL ENGINEERING

UNIVERSITY OF TECHNOLOGY

SURANAREE

Deep beam with one point load on top

Beams with clear spans less than or equal to 4 times the total member depth or with concentrated loads placed within twice the member depth of a support are classified as deep beams

Deep beam with $L \le 4h$

EX1 : Deep Beam A transfer girder is to carry two 60 cm. square columns, each with factored loads of 400 tons located at the third points of its 10.8 m span. The beam has a thickness of 0.6 m and a total height of 3.6 m Design the beam for the given loads, ignoring the self-weight, using $f_c = 280$ ksc and $f_v = 4,000$ ksc.

(3) Truss Model:

(4) Size of Struts & Nodal zones:

@ Node a & c, nodal stress under column $f_{un} = 400 \times 10^3 / (60 \times 60) = 111 \text{ ksc}$ For node C-C-C, $\beta_n = 1.0$

$$\phi f_{ce} = \phi 0.85 \beta_n f_c' = 0.75 \times 0.85 \times 1.0 \times 280$$

= 179 ksc
$$> f_{un}$$
 OK

Assume distance between top strut & ties:

Center-to-center distance between top strut & tie = 3.6 - 0.75 = 2.85 m ≈ 2.88 m OK?

(5) Strength of Struts:
$$\phi F_{ns} = \phi 0.85 \beta_s f'_c w_i b_s$$

Assume uniform section for top strut and bottle-shaped for diagonal struts.

(6) Strength of Nodal Zones: $\phi F_{nn} = \phi 0.85 \beta_n f'_c w_i b_s$

At ends of strut ac, node a & c (C-C-C) $\beta_n = 1.0$,

 $\phi F_{nn} = 0.75 \times 0.85 \times 1.0 \times 280 \times 75 \times 60/1,000$

= 803 tons > 499 tons **OK**

At ends of strut ab, node a (C-C-C) $\beta_n = 1.0$, node b (C-C-T) $\beta_n = 0.8$, control $\phi F_{nn} = 0.75 \times 0.85 \times 0.8 \times 280 \times 96 \times 60/1,000$ = 823 tons > 640 tons OK (7) Design of Ties and Anchorage: $F_{ut} = 499 \text{ tons}$ b A_{ts} d

Steel area of tie: $A_{ts} = F_{ut} / \phi f_y = 499/(0.75 \times 4.0) = 166 \text{ cm}^2$

USE 17-DB36 ($A_{ts} = 173 \text{ cm}^2$)

Steel detailing for DB36:

$$A = 4 \text{ cm}, B = 1.2 \text{ cm}, C = 1.8 \text{ cm} \text{ and } D = 3.6 \text{ cm}$$

Max. number of DB36 in one layer:

7-DB36: b = 7(3.6) + 2(4+1.2) + 6(3.6) = 57.2 cm < 60 cm OK

USE 5 layers of steel 4+4+3+3+3 = 17-DB36 (trial&error)

Tie Width: $w_{tie} = 5(3.6) + 4(11.6) + 2(4+1.2)$

= 74.8 cm \approx 75 cm OK

Anchorage length of DB36: $\ell_{d} = \frac{0.19 f_{y}}{\sqrt{f_{c}'}} d_{b}$

Nodal + Extended zones:

= 108 cm $< \ell_{d}$

... Need 90° hook or mechanical anchor

(8) Shear Reinforcements: using DB12: $A_v = A_h = 2.26 \text{ cm}^2$ and $s_1 = s_2$

$$\frac{A_{v}}{s_{1}} = \frac{A_{v}}{s_{2}} = 0.0025b_{w} = 0.0025(60) = 0.15 \text{ cm}^{2}/\text{cm}$$

$$s_{1} = s_{2} = 2.26/0.15 = 15.1 \text{ cm} \quad \textbf{USE DB12 @ 0.15 m \# E.F.}$$
Check splitting of bottle shape strut:
$$\sum \frac{A_{si}}{bs_{i}} \sin \alpha_{i} \ge 0.003$$

$$\frac{2.26 \sin 38^{\circ} + 2.26 \sin 52^{\circ}}{60 \times 15}$$

$$= 0.0035 > 0.003 \text{ CK}$$

(9) Reinforcement details:

