0-2: Real Numbers

Natural Numbers:

Whole Numbers: Integers:

Rational Numbers:

Every number in the previous three categories, as well as all

fractions, decimals that end (such as 0.23) and decimals that repeat

(such as 0.61).

Irrational Numbers:

Non-perfect squares (such as $\sqrt{10}$) and π .

Basically, decimals that continue forever, without any pattern.

Real Numbers:

All rational and irrational numbers.

Ex #1: Please name the set or sets of numbers that apply to each real number.

- 8 Natural, Wholes (a) Integer, Kational
- (b) $\frac{3}{7}$ Rational
- -2 Integer, Rational (c)
- (d) $\sqrt{25} = 5$, so... Natural, Whole, Integer, Rational

3.14 Rational (e)

(f) $\sqrt{24}$ Treational

Ex #2: Please order the following numbers from least to greatest.

(a) $\frac{3}{5}$, $-\frac{1}{5}$, $\frac{2}{5}$, 0, $-\frac{3}{5}$ (b) $\sqrt{2}$, $0.\overline{8}$, -0.7, $\frac{3}{10}$, $-\sqrt{3}$ (general rule: negative #s will 1. something be to the left of 0)

考, 士, の, 台, 音

 $-\sqrt{3}$, -0.7, $\frac{3}{10}$, 0.8, $\sqrt{2}$

Ex #3: Please make a list of the first twelve perfect squares. Remember that a perfect square is defined as a number times itself.

1 4 9 16 25 36 49 64 81 100 121 144 1×1) (2×2) (3×3) (4×4)...

Ex #4:	Between	which two	Natural	Numbers	are the	following	square roots	located?
--------	---------	-----------	---------	---------	---------	-----------	--------------	----------

For example, $\sqrt{6}$ is more than ____2__, and less than

- $\sqrt{17}$ is more than $\frac{4}{6}$, and less than $\frac{5}{\sqrt{16}}$, which is $\frac{4}{\sqrt{16}}$. $\sqrt{40}$ is more than $\frac{6}{\sqrt{16}}$, and less than $\frac{7}{\sqrt{40}}$ is between $\sqrt{36} = 6$ and $\sqrt{49} = 7$
- (b)
- $\sqrt{85.5}$ is more than 9, and less than 10, $\sqrt{81} = 9$, $\sqrt{100} = 10$ (c) (Hint: what perfect square is 80-something?)

Ex #5: Please simplify the following square roots.

 $\sqrt{1} = 1$ (a)

- (b) $\sqrt{64} = 8$
- (c) $\sqrt{.04} = 0.2$ (d) $\sqrt{\frac{9}{25}} = \frac{3}{5}$ (Since $0.2 \times 0.2 = 0.4$) (because $\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}$)

Now my favorite doodle since childhood, the cube of step 1: front step 2: diagonals step 3: connect diagonals

step 4: dotted back square

step 5: dotted back diagonal